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ABSTRACT

Protein secondary structures prediction (PSSP) is considered as a challenging task in bioinformatics.
Many approaches have been proposed in last few decades in order to solve this problem. Despite the
enhancements achieved, the prediction accuracy still remains limited. Accurate prediction of the secondary
structure of proteins is a critical step in deducing tertiary structure of proteins and their functions. Among
the proposed approaches to tackle this problem, artificial neural networks (ANN) are considered as one of
the most successful methods that widely used in the field of PSSP. Recently, many efforts have been devoted
to modify, improve and combine this technology with other machine learning methods in order to get better
results. In this paper, we have proposed an ensemble method which combines the outputs of four feed-
forward neural networks. In each network one of the machine learning approaches has been applied in
order to solve the class imbalance problem of protein secondary structure classification. The experimental
results on RS126 data set show that our ensemble system has better performance compare to the best
individual classifier. The results also reveal that the proposed system yields significant improvement in
prediction accuracy of beta-sheet structure and a more balanced classification of three secondary
structures.
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1. INTRODUCTION

Proteins are the main building blocks and functional molecules of the cell and play a key role in
almost all biological processes. They take part in maintaining the structural integrity of the cell,
transport and storage of small molecules, catalysis, regulation, signaling and the immune system
[1]. Proteins are large, complex molecules consist of long amino acid chains. Different chemical
properties of 20 amino acids cause the protein chains to fold up into complex shapes, and the
shape of a protein determines its function.The secondary structure prediction is an intermediate
step of deducing the 3D structure of proteins. Secondary structure is the local spatial arrangment
of its polypeptide backbone ignoring the conformation of the individual sidechains (R groups).
Secondary structures are held together by hydrogen bonds. The PSSP problem aims at predicting
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each amino acid in a protein sequence as α-helix (H), β-sheet (E) or neither (C) from its primary
structure or indeed, the linear sequence of its amino acid structural units. X-ray crystallography,
nuclear magnetic resonance (NMR) spectography and electron microscopy are in vitro methods,
used to determine the 3D structure of proteins. Though they increasingly being applied in a high-
troughput manner, but these methods are time consuming, expensive and not applicable to all
proteins. Instead, comutational methods are widly used to predict the secondary structures as a
step toward the prediction of 3D structure of proteins. During the last decades, many
computational techniques have been proposed in the litrerature to tackle this problem. The earliest
approaches for secondary structure prediction considered just single amino acid statistics and
properties, and were limited to a small number of proteins with solved structures. While these
early methods are not state-of-the-art, they are the basis of many subsequent approaches [1]. some
of the most well-known early secondary structure prediction methods are being the Chou-Fasman
method which uses a combination of statistical and heuristic rules [2], GOR method on the basis
of information theory framework [3] and Lim method [4] as a stereochemical rule-based approach
for predicting secondary structure in globular proteins. Since the secondary structure of each
amino acid is affected by its neighbors through the interactions between the constituent amino
acids along a protein chain, other  methods try to consider higher-order intractions between
residues. Information theoretic approaches such as  an extension of  original GOR method is
proposed in [5] which considers the high-order residue interactions. Nearest neighbor approaches
which incorporate local dependencies for predicting secondary structure of a residue [6,7],
consider a window of residues surrounding it and classify each test residue according to the
classification of neighbor residues in training samples. Neural network is another method to
consider higher-order interaction between residues [8], [9], [10]. The first attempts to use neural
networks for PSSP were made by Qian and Sejnowski [8]. They used a fully connected
perceptron with at most one hidden layer and gained the accuracy of 64.3% that was more
accurate than other priveous methods. Their work was followed by others in various ways in
order to improve the prediction accuracy by applying sophisticated network structures [11], [12],
[13], [14]. Further improvement in preformance of PSSP were also acheived by exploiting
evolutioary information via multiple sequence alignments (MSAs) profiles [10], position-specific
score matrices (PSSM) [15], homology detection using hidden markov models [16] and PSI-
BLAST [17]. Other approaches have been applied to PSSP are support vector machines (SVM)
[18], [19] and ensemble methods that combine some machine learning approaches [20] via the
majority voting or weighted majority voting techniques. These methods could optain up to a 3%
improvement in Q3 accuracy over the best individual method. In this paper, we have used
ensemble method which combines the outputs of four feed-forward neural networks. Existing
sampling methods and a tree-based tertiary classifier have been used to overcome class imbalance
problem of each network. The results of ensemble members are combined using three different
methods, simple majority voting (SMV), weighted majority voting (WMV) and using genetic
algorithm to find the weights named genetically weighted majority voting (GWMV). The weights
of each classifier in WMV method are specified using prediction accuracy of corresponding
classifier on a validation set. Each solution in GWMV method is also evaulated with prediction
accuracy of ensemble result on a validetion set according to the weights specified with that
solution. The weights which are proposed by genetic algorithm will result in higher overal
accuracy.

The remainder of this paper is organized as follows: section 2 is about related materials which
describes dataset, secondary structure assignment, evaluation methods and PSSM generation. Our
proposed method is described in section 3. Section 4, presents and analyzes the exprimental
results on RS126 dataset and finally, the conclusions are drawn in section 5.
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2. RELATED MATERIALS

In this section we describe RS126 data set, secondary structure assignment methods, Measures of
prediction accuracy and PSSM generation details.

2.1. Data Set Description

The dataset we used in this work is the RS126 set which was proposed by Rost and Sander [10].
It contains 126 non-homologous globular proteins which no pairs of proteins in the set have more
than 25% similarity over a length of more than 80 residues [10]. RS126 contains 23,346 amino
acids with 32% α-helix, 23% β-sheet and 45% coil. Average sequence length of all the proteins in
this set is 185. This dataset was used in many researches in protein secondary structure prediction
field [14], [21].

2.2. Secondary Structure Assignment

Given the 3D atomic coordinate of a protein structure, there are several methods to assign its
secondary structures including dictionary of secondary structure of proteins (DSSP) [22],
STRuctural IDEntification (STRIDE) [23] and DEFINE [24]. Since the secondary structure
assignment of each residue is not completely well-defined, these methods often disagree on their
assignments. For example, DSSP and STRIDE differ on approximately 5% of residues [1]. This
inconsistency justifies the need for a certain and standard assignment method that could be used.
The method was adopted here is DSSP as the standard algorithm and the most widely used
secondary structure definition method. The DSSP specifies eight secondary structure
classifications: H (α-helix), E (β- strand), G (3 10 helix), I (π-helix), B (bridge), T (turn), S (bend)
and C (other residues). The eight possible secondary structure specified by DSSP can be reduced
to 3 classes [25]:

1.{ } )(,, HelixHGIH → , { } )(, BetaSheetBBE → , { } )(,,Re CoilCCTSst →

2.{ } )(, HelixHGH → , { } )(BetaSheetBE → , { } )(,,,,Re CoilCCIBTSst →

3.{ } )(HelixHH → , { } )(BetaSheetBE → , { } )(,,,,,Re CoilCCIBTSGst →

4.{ } )(, HelixHGH → , { } )(, BetaSheetBBE → , { } )(,,,Re CoilCCITSst →

In this work we applied method 1.

2.3. Measures of Prediction Accuracy

We have used two measures to evaluate the prediction accuracy of the methods. The three state
accuracy (Q3) is defined as the percent of residues that have been predicted correctly:

N

nnnQ
T

CEH ++=3 (1)

Where nH, nE, nC are the number of correctly predicted residues of type H, E and C, respectively
and NT is the total number of residues in dataset. Although Q3 is a concise and useful measure to
compare different methods, but for known protein structures it has shown that residues are
approximately 30% in helices, 20% in sheets and 50% in coil. Because of this imbalanced
characteristic of PSS datasets, Q3 does not convey useful types of information. For example, a
classifier that always predicts C has a Q3 accuracy of 50%. It does not also indicate whether one
type of structure is predicted more successfully than another [1], so we have also used Matthews
correlation coefficient (MCC) [26] for each of the three secondary structures to judge the quality
of prediction. This measure would be a value between −1 and +1 where +1 represents a perfect
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prediction, 0 no better than random prediction and −1 shows total disagreement between
prediction and observation. So, coefficients closer to +1 represent better prediction. The
Matthews correlation for a particular state { }CEHi ,,∈ is defined as:

( ) ( ) ( ) ( )FNTNFPTNFNTPFPTP

FNFPTNTP
c

iiiiiiii

iiii
i

+×+×+×+
×−×= (2)

Where TPi, TNi, FPi and FNi are the number of correctly predicted (true positives), correctly
rejected (true negatives), incorrectly predicted (false positives), incorrectly rejected (false
negatives) residues, respectively and Ci indicates Matthews correlation coefficient for each three
classes H, E and C.

2.4. PSSM Generation

To obtain Position-Specific Scoring Matrix (PSSM) profile for each protein sequence, we
performed PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) [17]
against a non-redundant sequence (NR) data base. BLAST is the most widely used sequence
similarity tool. PSI-BLAST is an iterative database searching method that uses homologous
proteins found in an iteration to build a profile to be used for searching in the next iteration. This
profile incorporates sequence weighting so that several closely-related homologs detected in the
database do not overwhelm the contribution of more remote homologs [1]. The detected
homologous proteins are then used as input into the neural network via the PSSM profile
provided by PSI-BLAST. E-value threshold for inclusion is set to 0.001 and number of iteration
to 3. The PSSM for each protein sequence has 20×L elements where L is the length of target
sequence and each element represents the log-likelihood of particular residue substitution based
on a weighted average of BLOSUM62 [27].

3. PROPOSED METHOD

In this section we first describe class imbalance problem which is a serious problem in machine
learning and some approaches to tackle this problem. Then each ensemble member and three
voting combination methods which we have used in this paper are introduced.

3.1. Class Imbalance Problem

When the number of training samples of one class is significantly fewer than other classes, class
imbalance problem occurs [28]. Neural networks and most other machine learning algorithms aim
to optimize the overall classification accuracy. So, these methods work well with balanced data
sets. But when the data set is imbalanced the learning algorithm tends to be biased towards the
majority class and the minority class samples are more likely to be misclassified [28]. In protein
secondary structure prediction, this problem is an intrinsic property. For example RS126 data set
contains 32% α-helix, 23% β-sheet and 45% coil. So most classifiers used in PSSP have tendency
to predict a residue as coil (which is the majority class) to obtain a higher overall accuracy and
have weak prediction for beta-sheet structure (which is the minority class). With these classifiers
minority class is less important than the majority class.

3.2. Some Approaches to Solve Class Imbalance Problem

In this part some exiting machine learning approaches which we used to solve class imbalance
problem are described.
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3.2.1. Sampling

Sampling is one of the common approaches to class imbalance problem. In this approach the prior
distribution of the minority and majority class are modified in order to obtain a more balanced
number of samples in each class [28]. Two basic sampling methods are under-sampling and over-
sampling:

Under-sampling extracts a smaller set of majority instances while preserving all the minority
instances. A drawback with under-sampling is that by discarding instances of majority class some
informative instances may be lost and classifier performance degrades [28]. Over-sampling
increases the number of minority instances by replicating them [29], [30]. The advantage is that
no information is lost. However it has its own drawbacks. For instance over-sampling leads to a
higher computational cost [28].

3.2.2. Tree-based Tertiary Classifier

The distribution of three secondary structure class instances shows that the number of residues
with coil structure is approximately equal to the number of residues with non-coil structures
(alpha-helix and beta-sheet). For example 45% of RS126 data set residues are coil (C) and 55%
are alpha-helix (H) and beta-sheet (E). So using the tree-based tertiary classifier which is shown
in Figure 1 can help to have more balanced training set.

Figure 1. Tree-based tertiary classifier

3.3. Description of Ensemble Members

In this section we describe the structure of four classifiers which are ensemble members. All
classifiers are based on a feed-forward neural network with one hidden layer, 25 neurons in
hidden layer and PSSM profiles as their input. Since the optimum length of window according to
the RS126 set is 13 [10], [31], in each network we used a sliding window of size 13 which moves
through the protein sequence and the output of the network is attained for the residue in the
middle of the window. As a result, the input layer includes 13×20=260 neurons (i.e., 13 rows of
PSSM including 20 elements are concatenated).

 In first network under-sampling has been used. In this method NH-NE samples of class H
and NC-NE samples of class C are selected randomly and discarded from training set in
order to have equal number of residues of each class. (NH, NE and NC indicate the number
of residues of class H, E and C in training set respectively). So the number of samples in
each class got equal to NE.

C/~C
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 In second network over-sampling has been applied. NC-NH samples of class H and NC-NE

samples of class E are selected randomly and replicated in training set (in the case that
NC-NE is larger than NE, all samples of class E are replicated). So the number of samples
in each class in this case gets equal to NC.

 In third classifier under-sampling and over-sampling methods were combined. NC-NH

randomly selected samples of class H are discarded and NH-NE samples of class E are
selected randomly and replicated. So the number of samples in each class gets equal to
NH.

 Fourth classifier is a tree-based tertiary classifier. Two binary classifiers which are feed-
forward neural networks are cascaded according to Figure 1 in order to have an
approximately balanced training set. Unlike previous classifiers the number of samples of
three classes is not exactly equal.

3.4. Voting Combination Methods

In this part we introduce three voting combination schemes which we have used in this paper to
combine ensemble member outputs.

3.4.1. Simple Majority Voting (SMV)

Suppose we have N samples, C classes and M classifiers. Each classifier will assign a class to
each sample according to its prediction. Final prediction for each sample is the class which gains
the majority vote with classifiers.

Let Vc indicates the vote is assigned to class c for sample x. we can formulate this as follows:

)(
1

c
M

i
ic pV ∑

=
= (1)

Where pi(c) is 1 if class c is predicted for sample x with classifier i, otherwise it is equal to 0.

Finally the predicted class for sample x is obtained according to the following formula.

},...,1{

)max(arg)(

Cc

xp V c

=
=

(2)

3.4.2. Weighted Majority Voting (WMV)

In this method the decision of a more qualified classifier is more important in the vote. For
example in this work we have weighted the decision of each classifier by its prediction accuracy
on a validation set. So Vc in formula (1) can be redefined as follows:

)(
1

cpwV i

M

i
ic ×= ∑

=
(3)

Where wi is weight of classifier i. Final prediction for sample x is obtained according to formula
(2) with this modification on term Vc. In other words the class which obtains the greatest total
weight is assigned to example x.
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3.4.3. Genetically Weighted Majority Voting (GWMV)

In this method we have used genetic algorithm to find the weight of each classifier. As shown in
Figure 2 Real-valued chromosomes of length 4 (the number of classifiers) are used to represent
solutions where each gene of a chromosome corresponds to the weight of a classifier. The fitness
is assigned to each solution is the prediction accuracy of ensemble system on a validation set
(which is obtained according to the weights of ensemble members in corresponding
chromosome). The function for creating initial population is feasible population which creates a
random initial population that satisfies all bounds (i.e., held in [0,1]). The fitness scaling function
scales the raw scores according to their ranks in the sorted scores. The selection function of
genetic algorithm to specify how parents are chosen for the next generation is stochastic uniform.
In this method, parents are laid out in a line in which each parent corresponds to a section of the
line of length proportional to its scaled value. The algorithm moves along the line in steps of
equal size. At each step, the algorithm allocates a parent from the section it lands on. Crossover
function is scattered which creates a random binary vector and selects the genes where the vector
is a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and
combines the genes to form the child. Mutation function is Gaussian which adds a random
number is taken from a Gaussian distribution with mean 0 to each entry of the parent vector.

Figure 2. Using genetic algorithm to find the weights of classifiers

Moreover since the length of consecutive helices, H, and strands, E, should be at least three and
two, respectively, we also have used the filtering method proposed by Salamov and Solovyev
[32] for each individual classifier result and also ensemble results to make the predictions more
realistic. So the following modifications are applied to the final output in order to exclude
physically unlikely structures:

[ ] [ ]EEEEHE → , [ ] [ ]HHHHEH → , [ ] [ ]HHHHCH → , [ ] [ ]EEEECE → , [ ] [ ]HHHHHEEH →

Also, all helices of length one or two and all strands of length 1 are converted to coils, C.

Validation set

W1 W2 W3 W4

Chromosome

C1 C2 C3 C4

Fitness function

C*

Genetic algorithm

Accuracy
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4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section to evaluate our method, we have used seven-fold cross-validation on the RS126
set. In this method the dataset is spitted to seven equal parts A, B, …, G and each part is in turn
left out of the training set and used as test set. So, the networks are trained using 108 proteins and
the rest 18 proteins are left for test in each turn. 10% of this training set is set aside for validation
set which is needed for finding weights of ensemble members in WMV and GWMV voting
schemes. First individual classifiers are evaluated and their results compare with the results of a
neural network which was trained with imbalanced training set. Then a comparison is made
between three combination methods. All results are after applying the filtering method.

4.1. Comparison of Individual Classifiers

Table 1 illustrates the prediction accuracy and MCCs for each ensemble member and a NN with
imbalanced training set (the results were averaged on seven test groups). In this table, QH, QE and
QC are the percentage of correctly predicted residues observed in class E, H and C, respectively.

Table 1. The average accuracies obtained for each classifier.

Accuracies
Training set QH QE QC Q3 CH CE CC

NN (Imbalanced training set) 68.07 52.78 87.20 73.33 0.65 0.54 0.51

NN (under-sampling) 69.76 68.07 77.48 73.02 0.64 0.56 0.49

NN (over- sampling) 71.72 68.90 77.44 73.75 0.66 0.57 0.51

NN (under-sampling and
over-sampling)

71.05 69.38 77.38 73.73 0.65 0.56 0.51

NN (tree-based) 75.78 67.85 74.84 73.51 0.64 0.55 0.52

The results show that the overall prediction accuracy of network is decreased when under-
sampling is used. Because in this method some useful information contained in ignored samples
of majority class is lost and the performance of the network degrades. But this method has
significant improvement in prediction of beta-sheet which is the minority class compare to NN
with imbalanced training set. In three other classifiers the performance of the network is
improved. Since in over-sampling no information is lost, better performance has been obtained
using this method. As shown in Figure 3 all of four methods could decrease misclassification
tendency of minority class and prediction ability of the network for three classes is more balanced
(when imbalanced training set is used the difference between prediction accuracy of beta-sheet
and coil is very high).
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Figure 3. QH,QE and QC of individual neural networks

4.2. Evaluating Ensemble Method Using Three Voting Schemes

Table 2 reports the results of ensemble method using three methods for combining the outputs of
ensemble members and compares them with the best ensemble member.

Table 2. The average accuracies obtained for voting schemes.

Accuracies
Voting scheme

QH QE QC Q3 CH CE CC

SMV 74.85 72.78 75.32 74.66 0.67 0.58 0.53

WMV 72.43 69.76 78.43 74.64 0.67 0.58 0.53

GWMV 72.61 70.25 78.56 74.90 0.67 0.58 0.53

Best Ensemble member 71.72 68.90 77.44 73.75 0.66 0.57 0.51

We can justify that using genetic algorithm to find the weights of classifiers has the best overall
prediction accuracy. Figure 4 visualizes comparison between these three ensembles and the best
ensemble member. This figure shows that compare to the best classifier, prediction accuracies for
three classes and overall accuracy improved with ensemble method for three combination
schemes except for QC in simple majority voting.  Matthews correlation coefficients (MCCs) for
each of the three secondary structures are also better than the best classifier. Simple majority
voting has the best accuracy for prediction of alpha-helix and beta-sheet predictions. Another
comparison which was made in Figure 5 shows that simple majority voting has the most balanced
prediction for three classes H, E and C and the best response to our method for solving class
imbalance problem to avoid giving more importance to coil structure compare to alpha-helix and
beta-sheet.
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Figure 4. The comparison of ensemble methods and the best ensemble member accuracies

Figure 5. How much prediction accuracy of H,E and C are balanced in each method

5. CONCLUSIONS

Most machine learning algorithms which are used in protein secondary structure prediction suffer
from class imbalance problem. In this work we used ensemble method and combined the results
of four feed forward neural networks. Three of them trained with balanced training sets which
were obtained using sampling methods (under-sampling, over-sampling and a combination of
both methods) and in forth classifier a tree-based structure was used in order to have more-
balanced training set. Results showed that when a neural-network is trained with imbalanced set,
there is large difference between prediction accuracy of coil structure (majority class) and beta-
sheet structure (minority class). In other words this network gives more importance to prediction
of coil structures compare to alpha-helix and beta-sheet. But we had more balanced classification
of these three classes in four classifiers with sampling methods and tree-based structure. The
worst and best overall accuracy was obtained by under-sampling and over-sampling method
respectively. This is because of discarding some informative samples in under-sampling method,
but with over-sampling no information is lost. We used three voting schemes to combine the
outputs of ensemble members (simple majority voting, weighted majority voting and using
genetic algorithm to find the weights). Highest overall accuracy (Q3) was obtained using genetic
algorithm and simple majority voting had the most balanced classification of H, E and C. So
using machine learning approach to solve class imbalanced problem can help to have
approximately a fair prediction of three secondary structures and with ensemble of these
approaches more accurate prediction is obtained compare to the best classifier.
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