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ABSTRACT 

RAFI is a self-driven mapping robot with 16 Degrees-of-Freedom (DOF). Its software development, 

structural and electrical design and mechanical construction are presented in this paper. RAFI moves with 

wheels having differential type motion with 2DOF.  The head has 3 DOF sufficient for volumetric mapping 

by rotating the head in different directions and both hands have 5 DOF to empower its grip and carrying.  

An 8-bit microcontroller is used to control all the motors. 4 Ultrasonic-rangefinders have been used for 

obstacle-detection and avoidance which are also interfaced with the same microcontroller. Its head is 

equipped with two identical webcams for stereoscopic vision for generating 3D map of the field of view 

after generating disparity map. To optimize the computational speed and mapping accuracy images of 

640×480 resolution are 85% compressed and dynamic programming with image pyramiding by quad-

pyramid without sub-pixel estimation is pursued. 
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1. INTRODUCTION 

This paper focuses on the architectural design, mechanical construction and software 

development of an autonomous mobile robot-‘RAFI’, powered by stereo vision which is capable 

of mapping an unknown area. It is also capable of self-localizing and avoiding obstacles. It has 

two hands for grabbing objects of different shapes and sizes. 

RAFI is equipped with two regular webcams in the head for 3D vision. It has two hands, each 

having 5 degrees of freedom for grabbing objects. It analyzes data output from the ultrasonic 

rangefinders to avoid obstacles while moving. The head has 3 degrees of freedom. Being 

equipped with proper object-matching algorithm, it can recognize objects. It can sense 

insufficiency of light and can use its own light-source for mapping (if needed). Stereo vision 

algorithms are implemented in MATLAB [1], run within Microsoft Visual Studio 2010 [2] with 

OpenCV [3] environment. 

This paper is segmented into three parts. In the first portion, software development and 

implementation sequence is discussed. Then comes the System description which covers the 

architectural and mechanical construction details. Finally circuit design is detailed, covering the 

electrical system for proper control of the mechanical system.  

2. PREVIOUS WORKS 

Thrun et al. [4] developed the museum tour-guide robot MINERVA that employs EM to learn its 

map and Markov localization with camera mosaics of the ceiling in addition to the laser scan 
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occupancy map. 3D mapping has also been deployed by Thrun et al. [5]. The Monte Carlo 

Localization method based on the CONDENSATION algorithm was proposed in [6].  Hayet et al. 

[7] extracted and recognized visual landmarks for mobile robot navigation. Planar quadrangular 

landmarks are extracted from images and homography rectification is applied to obtain an 

invariant representation for the principal component analysis (PCA) learning stage. Kosecka et al. 

[8] employed gradient orientation histograms to capture the essential appearance in- formation. A 

Learning Vector Quantization technique is applied to obtain sparser representations by selecting 

prototype vectors which best cover the class. During the recognition phase, new images are 

classified using a nearest neighbor test. Smith et al. developed stochastic map estimating the 

spatial relationships, uncertainty and inter-dependency. One of the appealing aspects of a hybrid 

metrical/topological approach to mapping and localization [9], [10] is that uncertain state 

estimates need not be referenced to a single global reference frame. Gutmann and Konolige [11] 

proposed a real-time method to reconstruct consistent global maps from dense laser range data. 

The techniques of scan matching, consistent pose estimation and map correlation are integrated 

for incrementally building maps, finding topological relations and closing loops.  

Bosse et al. [12] proposed a hybrid approach by using a graph where each vertex represents a 

local frame (a local environment map) and each edge represents the transformation between 

adjacent frames. Loop closing is achieved via an efficient map matching algorithm. Kuipers et al. 

[13] presented a hybrid extension to the spatial semantic hierarchy, using metrical SLAM 

methods to build local maps of small-scale space while topological methods are used to represent 

the structure of large-scale space. Their method creates a set of topological map hypotheses and 

can handle multiple nested large-scale loops. Our approach also makes use of submaps, but 

differs from these works as we build 3-D submaps and our map also allows global localization to 

recover from localization failure. 

Stereo vision has been used for mobile robot navigation using stereo correspondence and Kalman 

filtering [14]. Stephen Se et al. proposed vision based simultaneous localization and mapping by 

tracking SIFT (Scale Invariant Feature Transform) features [15].  Our approach is to make 3D 

submaps tracking SURF features and recover depth. 

3. GENERATING 3D VIEW USING STEREO VISION 

Stereo vision is the process of recovering depth from camera images by comparing two or more 

views of the same scene. Simple binocular stereo uses only two images, typically taken with 

parallel cameras that are separated by a horizontal distance known as the "baseline" The output of 

the stereo computation is a disparity map (which is translatable to a range image) which tells how 

far each point in the physical scene was from the camera. 

MATLAB and Microsoft Visual Studio 2010 with OpenCV are used to compute the depth map 

between two rectified stereo images. Firstly, basic block matching, which is the standard 

algorithm for high-speed stereo vision in hardware systems [8] is used. But, it has not shown 

satisfactory accuracy in generating 3D view. Then dynamic programming is applied to improve 

accuracy, and image pyramiding is done to improve speed. Combining dynamic programming, 

image pyramiding and sub-pixel accuracy shows slightly better 3D view but becomes 

computationally more expensive. 

3.1. Rectification 

Stereo image rectification projects images onto a common image plane in such a way that the 

corresponding points have the same row coordinates. This process is useful for stereo vision, 

because the 2-D stereo correspondence problem is reduced to a 1-D problem. As an example, 

stereo image rectification is often used as a pre-processing step for computing disparity or 

creating anaglyph images. Here, the rectification is computed of two un-calibrated images 
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without using the camera intrinsic. There is an obvious offset between the images in orientation 

and position. The goal of rectification is to transform the images, aligning them such that 

corresponding points will appear on the same rows in both images. 

Step 1: Read the stereo image pair (Fig.1) 

Step 2: Generate correspondence, points of interest are collected between two images and 

potential matches are found out using Speeded-Up Robust Features (SURF) descriptor [16], [17]. 

(Fig.2)  

Step 3: Find Putative Point Correspondences using Sum of absolute differences (SAD) metric. 

Some outliers are still present (Fig.3 (a)). 

Step 4: Remove outliers using geometric constraint by approximating the transformation using an 

affine transform thus, eliminate a substantial number of outliers. Since the underlying 

transformation between the images is non- planar, a large distance threshold has been set for 

computing the affine transform (Fig.3 (b)). 

Step 5: Remove outliers using epi-polar constraint which is satisfied by the correctly matched 

points only (Fig.4).  

Step 6: Rectify Images using projective transformations, t1 and t2. The overlapping area of the 

rectified images are finally cropped (Fig.5). 

 

(a)                                                                     (b) 

Figure 1. (a) Image from left camera (b) Image from right camera (After flipping dimension) 

 

(a)                                                                              (b) 

Figure 2. Inlier points in both images (a) Left image (b) Right image 
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(a)                                                                          (b) 

Figure 3. (a) Putatively matched points and (b) Geometrically matched points 

 
   Figure 4. After removing outliers using                 Figure 5. Rectified Stereo image 

   epipolar constraint                                             (Red-left and Cyan-right)  

  

3.2. Basic Block Matching 

For every pixel in the right image, the 7-by-7-pixel block is extracted around it and searched 

along the same row in the left image for the block that best matches it. The pixel's location in the 

first image is searched in a range of pixels around, and the sum of absolute differences (SAD) is 

used to compare the image regions. Only search over columns is required because the images are 

rectified. We use the Template Matcher System object to perform this block matching between 

each block and the region of interest. 

The left color image FL and the right color image FR may be represented in the RGB color space 

as 

FL (i,j) = (RL (i,j) GL (i,j) BL (i,j))                                                (1) 

And 

FR (i,j) = (RR (i,j) GR (i,j) BR (i,j))                                                (2) 

SADcolor(x,y,∆)= (| RR (x+i, y+j)- RL (x+i+∆, y+j)| 

+| GR (x+i, y+j) - GL (x+i+∆, y+j)|+|BR (x+i, y+j) - BL (x+i+∆, y+j)|)                   (3) 

Disparity, D=                                         (4) 
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Correct shape of the stereo image can be recovered using basic block matching, but when no 

prominent image features are present noisy patches appear. Then the matching process is subject 

to noise since each pixel chooses its disparity independently of all the other pixels. The depth map 

is saturated to have only positive values. In this case, the stereo cameras are near perfectly 

parallel, so the true disparities have only one sign. Thus this correction is valid. Generated 

disparity map and 3D view are shown in Fig.6, 7. 

3.3. Sub-pixel Estimation 

The disparity estimates returned by block matching are all integer-valued, so the depth map 

exhibits contouring effects where there are no smooth transitions between regions of different 

disparity. This can be ameliorated by incorporating sub-pixel computation into the matching 

metric. The minimum cost and the two neighboring cost values are also considered here as the 

disparity besides the location of the minimum cost. We fit a parabola to these three values, and 

analytically solve for the minimum to get the sub-pixel correction. 

3.4. Dynamic Programming 

Basic block matching creates a noisy disparity image which can be improved by introducing a 

smoothness constraint. Basic block matching chooses the optimal disparity for each pixel based 

on its own cost function alone. Now, a pixel is allowed to have a disparity with possibly sub-

optimal cost for it locally. This extra cost must be offset by increasing that pixel's agreement in 

disparity with its neighbors. In particular, each disparity estimate is constrained to lie with ±3 

values of its neighbors' disparities, where its neighbors are the adjacent pixels along an image 

row. The problem of finding the optimal disparity estimates for a row of pixels now becomes one 

of finding the "optimal path" from one side of the image to the other. To find this optimal path, 

block matching metric is used as the cost function and constrain the disparities to only change by 

a certain amount between adjacent pixels. This is a problem that can be solved efficiently using 

the technique of dynamic programming [18], [19]. 

Dynamic programming is applied to each row individually. But it introduces errors of its own by 

blurring the edges around object boundaries due to the smoothness constraint. Also, it does 

nothing to smooth ''between'' rows, which is why a striation pattern now appears on the left side 

foreground chair. Despite these limitations, the result is significantly improved, with the noise 

nearly completely removed, and with many of the foreground objects being better reconstructed. 

Generated disparity map and 3D view are shown in Fig.8, 9. 

3.5. Image Pyramiding  

While dynamic programming can improve the accuracy of the stereo image, basic block matching 

is still an expensive operation, and dynamic programming only adds to the burden. One solution 

is to use image pyramiding and telescopic search to guide the block matching [20], [21]. With the 

full-size image, we had to search over a -pixel range to properly detect the disparities in the 

image. If the image is down-sized by a factor of two, however, this search could have been 

reduced to pixels on an image a quarter of the area, meaning this step would cost a factor of 8 

less. Then the disparity is estimated from this down-sized operation to seed the search on the 

larger image, and therefore we only need to search over a smaller range of disparities. A four-

level image pyramid is used here. The Pyramid and Geometric Scaler System objects have been 

used. The disparity search range is only pixels at each level, making it over 5x faster than basic 

block matching based computation. Yet the results compare favorably. 

The disparities D(s+1) at level (s +1) can be derived from the disparities D(s) of the preceding 

level (s) by applying a modified block matching algorithm to the image of level (s+1). The search 

space for the disparity of each block at level (s+1) is derived from the disparity of the 
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corresponding block at level (s) by a tolerance factor DT. This parameter defines the width D∆ of 

the reduced search space [Dmin, Dmax] and controls the smoothness of the disparity map. 

                                                                                      (5) 

                               (6) 

                               (7) 

3.6. Combined Pyramiding and Dynamic Programming 

Finally dynamic programming is merged with image pyramiding, where the dynamic 

programming is run on the disparity estimates output by every pyramid level. The results compare 

well with the highest-quality results we have obtained so far, and are still achieved at a reduced 

computational burden versus basic block matching. Generated disparity map and 3D view are 

shown in Fig.10, 11. Sub-pixel estimation is introduced for better accuracy and generated 

disparity map and 3D view for this case are shown in Fig.12, 13.  

3.7. Back-projection 

Re-running basic block matching, we achieve the result below where the contouring effects are 

mostly removed and the disparity estimates are correctly refined. This is especially evident along 

the walls. 

With a stereo depth map and knowledge of the intrinsic parameters of the camera, it is possible to 

back project image pixels into 3D points [22], [23]. 

One way to compute the camera intrinsics is with the MATLAB Camera Calibration Toolbox 

[24] from the California Institute of Technology(R). Such a tool will produce an intrinsics matrix, 

K, of the form: 

K=                          (8) 

Computed Camera intrinsic matrix 

                        K =                                                   (9) 

This relates 3D world coordinates to homogenized camera coordinates via: 

  =K.            (10) 

With the intrinsics matrix, each image pixel can be back projected into a 3D ray that describes all 

the world points that could have been projected onto that pixel on the image. This leaves the 

distance of that point unknown to the camera. This is provided by the disparity measurements of 

the stereo depth map as: 

                                            (11) 
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Unit less pixel disparities cannot be used directly in this equation. Also, if the stereo baseline (the 

distance between the two cameras) is not well-known, it introduces more unknowns. Thus this 

equation is transformed into a general form: 

                                                    (12) 

We solve for the two unknowns via least squares by collecting a few corresponding depth and 

disparity values from the scene and using them as tie points.  

 3.8. Results 

We solve for the two unknowns via least squares by collecting a few corresponding depth and 

disparity values from the scene and using them as tie points.  

 

Figure 6. Depth-map from basic block matching.       Figure 7. Generated 3D map from 

                Noisy patches are present                                           basic block matching 

  

 

Figure 8. Depth map after dynamic programming       Figure 9. Generated 3D map from dynamic   

                                                                                                      Programming 

 
Figure 10. Depth-map after 4 level pyramid    Figure 11. Generated 3D map from 4 level 

                   with dynamic programming                             pyramid with dynamic programming 
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Figure 12. Depth-map after Pyramid with           Figure 13. Generated 3D map from dynamic 

dynamic programming and sub-pixel accuracy                    programming and sub-pixel accuracy 

 

 
(a)                                                                       (b) 

Figure 14. (a) Depth-map (b) 3D map from dynamic programming after resizing to 85% 

 

 
(a)                                                                       (b) 

Figure 15. (a) Depth-map (b) 3D map from 4 level pyramid with dynamic programming after 

resizing to 85% 

 

 
(a)                                                                       (b) 

Figure 16. (a) Depth-map (b) 3D map from dynamic programming and sub-pixel accuracy after 

resizing to 85% 
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Figure 17. Depth-map after    Figure 18. Depth-map after         Figure 19. Depth-map after 

2 level pyramid with              3 level pyramid with                    5 level pyramid with 

dynamic programming             dynamic programming                 dynamic programming 

 

Table 1. Time requirement for different approaches in generating 3D view 

Hardware Algorithm No 

resize 

85% 

resize 

Intel Core2Duo 

2.66GHz 

4GB RAM 

Basic block matching 123s - 

Dynamic programming 121.64s 87s 

4 level pyramid with dynamic programming 140s 95s 

Pyramid with dynamic programming and sub-pixel 

accuracy 

348.30s 281s 

 

After resizing the images into 85%, computation time is decreased significantly but the 3D view 

is considerably satisfactory (Fig.14-16). If the compression is below 85%, computation time 

decreases. But the problem is, 3D view becomes blurred and the object seems deformed. 

With the increase in the number of pyramids in image pyramiding, computation time increases. 3 

and higher level pyramids give satisfactory disparity map. But, 2 level pyramiding shows poor 

disparity map (Fig.17-19). For our purpose, we choose 4 level pyramiding. 

3.9. Embedding the Mapping Algorithms in RAFI 

Rafi is equipped with a laptop where mapping algorithms are implemented enabling it to generate 

3D maps of an unknown area taking series of images with two camera and moving avoiding the 

obstacles. Mechanical and electrical designs are made suitable for the purpose. 

 

4. MECHANICAL CONSTRUCTION 

The skeleton of the robot is of cubic shape large enough for placing a laptop on and PCBs within. 

The cubic-shape box is built with low-cost partex board which is light-weight, strong and durable. 

For placing the hand and head, a platform is developed using strong but light-weight Aluminum 

pipe. The total structure without laptop does not weigh more than 8 Kg.  
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4.1. Wheel setup 

Two wheel are coupled with two different gear-motors with same operating-characteristics to 

facilitate differential drive (Fig.20). An omnidirectional wheel is placed in front for proper 

weight-balance of the robot. 

4.2. Hand Design & Construction 

Both of the hands have 5 DOF powered by servo-motors (Fig.21). The hands are built with ultra-

durable and light-weight Aluminium sheet and pipe. The shoulders have 2 DOF (Fig.22) and the 

grips have 3DOF (Fig.23) to facilitate human-like grip using opposable thumb. 

4.3. Head Design 

The head provides placement of two Logitech c310 HD webcams [25] side-by-side for stereo-

vision which enables it to generate 3-D map (Fig. 24). To detect insufficiency of light an LDR is 

placed and for self-sufficient illumination an LED is kept on the head. For fast movement and 

weight issues, thin and lightweight Acrylic and Aluminium sheet are used for construction of the 

head. The webcams are bound to be in fixed position with respect to each other and for this 

purpose a thin but durable frame is designed to hold the webcams. 
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The head has 3DOF powered by servo-motors for proper area-mapping (Fig.25). 

As backup for the ultrasonic rangefinders a small camera is attached with a servo-motor in the 

front side of the robot to provide information about any impediments lying in front so that the 

robot may avoid collision on the course (Fig.26).  

5. ELECTRICAL DESIGN 

For wheel-rotation, gear-motors are used. Servo-motors are used in the hands and head for 

providing motion in different directions. Ultrasonic rangefinders are used for getting information 

about the impediments on the path. All the motors are controlled from laptop using serial 

communication with the ATmega16 [26] microcontroller. This section covers the total electrical 

part of the design. Two 3-cell Li-polymer battery packs have been used to power-up the electrical 

circuits.  

5.1. Gear-Motor Control 

For high voltage and high current drive of the gear-motors from ATMEGA16 microcontroller, L-

298 IC [27] has been used which is a dual-bridge controller for motor drive and can be controlled 

by sending PWM from the microcontroller into its Enable pin. It supports bi-directional motor-

drive with about 46 volt and 3.5 Ampere. Diode-protection using 1N4007 [28] has been deployed 

for protecting the motor driver from back electromotive force. 

5.2. Serial Interfacing 

Serial Interfacing is used for communication between Laptop and the microcontroller. It is to be 

noted that, Serial communication is more efficient than parallel one. ATmega 16 supports 

Universal Asynchronous serial Receiver and Transmitter (UART) communication [26]. The 

MAX232 converter [29] allows the microcontroller to communicate with the Laptop using a 

standard serial cable and the RS232 serial COM port. In order for the Laptop and the 

microcontroller to communicate successfully, some logic level shifting and translation is 

necessary. The MAX232 converter IC converts 0 and 5 volt Transistor -Transistor Logic (TTL) 

signals to -12 and 12 volt RS-232 serial COM port signals. As USB to RS-232 converter is 

affordable and locally available, system can be seamlessly used in laptops without built-in serial  
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port. DB9 connectors are used for serial communication. The circuit diagram for serial 

communication is shown in Fig.28. UART communication is used with 57600 BAUD rate, 8 bit 

frame size, 1 stop bit and parity mode disabled. 

5.3. Servo Motor Control 

An (unnumbered) acknowledgements section may be inserted if required. Servo-motors have 

been used in head and hands. For providing shoulder motions, high-torque (10 kg-cm), coreless, 

metal-gear, dual-bearing TowerPro MG995 – Standard Servo motors [30] have been used. For 

grip rotation and motions in the head, relatively low-torque (8 kg-cm), 3-pole, plastic-gear, dual-

bearing TowerPro SG-5010 - Standard Servo motors [31] have been used. For light-weight 

applications like finger movements and small camera-movements low-torque (1.8 kg-cm) 

TowerPro SG91R - Micro Servo motors [32] have been used. They are shown in Fig. 29. 

Servo-motors require approximately 5V and 500mA supply each. So, to power-up all the 14 

servo-motors used in this robot linear voltage regulator IC 7805 [33] has been used for constant 

5V supply. In normal operation of 7805, it provides only 500mA current. But due to the high 

current requirement of the system for driving servo-motors, a modified circuit is used 

incorporating TIP127 [34] which is a pnp Epitaxial Darlington Transistor with large current gain 

(1000) as show in Fig.30. This circuit can support up to 8A output current.  

Servo-motors are controlled by pulse from microcontroller. A signal of 20ms period is sent 

continuously. For 0 degree position the duty period of the pulse is 1.5ms. For -45 degree and +45 

degree the duty periods are 1ms and 2ms respectively. 

5.4. Operation of Ultrasonic Rangefinder 

Detection and avoidance of obstacles is a must for autonomous mobile robots. For this purpose, 

TS601 ultrasonic electric telemeter module (Fig.31) has been used which is capable of measuring 

distance within 0.03-3M [35].  

It sends the data into pulses having different pulse-widths depending on the measured distance. 

The pulses from SIG pin are read in ATmega16 using 16bit Timer-counter. 

5.5. LDR operation for light-sensing 

Insufficient lighting may result in poor 3-D map. So, luminosity has been sensed and necessity of 

lighting has been detected and the robot is equipped with self-lighting scheme (Fig.32).  
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Locally available LDR has been used which shows good variation of resistance with the 

luminosity. To differentiate the insufficient lighting, comparator IC LM358 [36] has been used. 

IRF540N [37] is used for high current switching of LED. 

6. SYSTEM PROTOTYPE 

Fig.33 shows the block diagram of the overall setup. The completed robot in one piece is shown 

in Fig.34.  
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7. CONCLUSIONS 

This work manifests the innovative architectural design and mechanical construction of a 16 

Degrees-of-Freedom Mapping Robot in detail. To power the mechanical framework, the designed 

electrical circuitry are also shown. This construction is perfectly suitable for recognizing, 

localizing and mapping of objects in an unknown area thereby providing a complete picture of an 

area. This robot is built from low-cost but lightweight and durable materials suited for its purpose. 

Stereo vision is implemented for accurate localization and mapping.  For optimization, dynamic 

programming with image pyramiding without sub-pixel estimation is used for 3D view 

generation. 
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