
International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

DOI : 10.5121/ijaia.2013.4303 23

OFFLINE CHARACTER RECOGNITION USING

MONTE CARLO METHOD AND NEURAL NETWORK

Hitesh Rajput1, Tanmoy Som2, and Somitra Kar3

1,2 Department of Applied Mathematics, IIT(BHU), Varanasi, India
1hrajput.rs.apm@iitbhu.ac.in , 2tsom.apm@iitbhu.ac.in

3Image Processing & Machine Vision, Bhabha Atomic Research Centre, Mumbai, India
3skar@barc.gov.in

ABSTRACT

Human Machine interface are constantly gaining improvements because of increasing development of

computer tools. Handwritten Character Recognition do have various significant applications like form

scanning, verification, validation, or checks reading. Because of the importance of these applications

passionate research in the field of Off-Line handwritten character recognition is going on. The challenge in

recognising the handwritings lies in the nature of humans, having unique styles in terms of font, contours,

etc. This paper presents a novice approach to identify the offline characters; we call it as character divider

approach which can be used after pre-processing stage. We devise an innovative approach for feature

extraction known as vector contour. We also discuss the pros and cons including limitations, of our

approach.

KEYWORDS

Artificial Neural Network, Back propagation, Feature extraction. Monte Carlo, Vector Contour

1.INTRODUCTION

Character recognition has been an active research topic for more many decades. With the advent
of digital computing and signal or image processing, the problem of character recognition was
clearly posed and thoroughly studied. There is a need of automatic character recognition in
various real life applications viz credit cards, ATM cards, bank cheque, form processing, zip
code, etc. Like nature and understanding; writing style of different persons are also different. Also
even for the same person, it varies in different situations depending on the state of the human
mind.

For this reason, the researchers are continuously publishing new and efficient approaches to
address the problem of character recognition. The current approaches are based on template
matching, dynamic programming, artificial neural network, hidden Markov model, or
combination of these techniques. Some commercial software is also available in the market for
character recognition viz OCR software, ANPR software, etc. Rhee et al. [16] proposed a
recognition technique for rotated characters but failed to recognize the character of different size.
The classical l paradigm for character recognition has three steps: segmentation, feature
extraction, and classification. Lecolinet and Crettez [15] proposed two main classes of methods
for recognition of words termed as analytical and global. The analytical class attempts to slice
words into letters for recognition. On the other hand the global class attempts to recognize the
words globally. The discussion of global approach is out of the scope of this paper and needs in-

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

24

depth understanding of each symbol as these contain numerals like check number. Analytical
methods are of following two categories:

1. with external segmentation [5]. In this segmentation stage is before recognition stage
2. with internal segmentation [17]. In this segmentation and recognition stages are at same

time

Proper feature extraction requires a priori knowledge of the patterns that form meaningful units,
which implies recognition capability. To, tackle this dilemma, we device a new approach for
feature extraction based on vector contour that is illustrated in next section. The process involved
in our approach is very similar to existing approaches as illustrated under:

1. Handwritten characters
2. Optical scanner for Digitalization
3. Isolation of characters
4. Preprocessing for Normalization & Thinning
5. Feature Detector (Matching)
6. Identity of characters (Recognition)

In pre-processing phase of characters, the character is bounded for normalization for standard size
and thereafter thinning of character for noise removal or skeletonizing is done. The following
steps are involved in our Preprocessing phase-

1. Extraction of a character in the given word.
2. Position normalization of character
3. Normalization of character
4. Thinning of normalized character

The preprocessing phase can be done using the standard techniques available.

The paper is organized as follows. We give the review of the basic concepts, required for our
work in Section 2. We illustrate our approach for character recognition in Section 3. Section 4
describes the Pros and Cons of two stage Back propagation neural classifier which we have used.
Section 5 illustrates the experimental results. Section6 describes the limitations of our approach
and finally Section 7 concludes the paper.

2.BASIC CONCEPTS

2.1. Character Normalization

Normalization is done to make the size of all extracted character bitmaps equal. In order to match
the extracted isolated character, it is important that all patterns should have the same size. So, size

Handwritten
character

Optical

scanner
Isolation of
character

Recognition Feature

detector
Preprocessor

Fig.1 General Block diagram of handwritten character recognition

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

25

normalization is required. Size normalization is the most efficient pre-processing technique.
However, the use of pre-processing techniques depends on many factors such as quality and
shape of the data and the recognition process employed.

There are various techniques available for normalization which can be referred from the test
books or research papers. For the sake of completeness we try to explain as:

In this method, every input bitmap P, of dimension ‘m x n’, is transformed into a normalized
bitmap P’, of dimension ‘p x q’. The geometric transformations generally modify the spatial
relationships between pixels in an image. They are also termed as rubber sheet transformations.

2.2. Thinning

Thinning is the process to extract and apply additional constraints on the pixel elements that are
to be preserved so that a linear structure of the input image will be recaptured without destroying
its connectivity. Thinning plays a very important role in the pre-processing stage of pattern
recognition. This is due to the fact that:

• It preserves essential structural information of an image

• It reduces the space to store topological as well as shape information of an image

• It reduces the complexity of analyzing the image.

In the context of two - dimensional binary image processing, thinning is considered as an
recursive process of removing points or layers of outline from a binary image until all the lines or
curves becomes single pixel wide. The reduced pattern is called the skeleton. A good thinning
algorithm must preserve the topology as well as the shape of the original image in the skeleton.
Many thinning algorithms (or modifications of existing ones) have been proposed in recent years,
and a comprehensive survey of these methods is contained in Lam L., Lee, Suen[9]. However, to
name a few, Naccache and Singhal[13] made a study of fourteen thinning algorithms based on
iteration erosion of boundary. They proposed the safe point thinning algorithm (SPTA). Saha et.
al [14] proposed an improvement on the SPTA algorithm by suggesting a rotational invariant
single scan boundary removal thinning algorithm (SBRTA). Lu and Wang [12] suggested an
improvement on this. Lam and Suen[10] evaluated ten thinning algorithms.

2.3. Artificial Neural Netwrok

ANNs were introduced by McCulloch and Pitts in 1943. ANNs consists of algorithms, having
capability to learn to solve complex problems from training data. ANNs consist of a set of pairs
of inputs and desired outputs (targets). There is a wide range of ANN applications including
speech recognition, image processing, etc. They can be trained to perform a specific task such as
prediction, and classification.

P[x][y]

P’[x’][y’]

(0,0) (0,n)

(m,0) (m,n)

(0,0) (0,q)

(p,0) (p,q)

Fig. 2 Normalization

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

26

ANN consists of interconnected processing elements called neurons that work together to produce
an output.

2.6.1. Single Neuron and the Least-Mean-Squares (LMS) algorithm

The architecture of a single neuron is given Figure 3. The output a of the neuron is a weighted
linear combination of its inputs. Here ƒ is a scaling function. Some commonly used transfer
functions are shown in Figure 4.

The weights of the neuron can be repeatedly adjusted to give local or global optima using training
data. Optimum weights in the sense of least square errors were derived by Widrow and Hoff [9]
derived the optimum weights using least square errors algorithm. This algorithm is popularly
known as LMS algorithm or Widrow-Hoff rule. In the Widrow-Hoff rule, the network weights
are moved along the negative of the gradient of the performance function. After every iteration,
the weights are adjusted according to the following rule:
 W ← W + α	e	V

where α is the learning speed, and the input vector VϵR
 is given by
 V = [v�, v�, … v
]�

and WϵR
 is the vector of weights and is given by
 W = [w�, w�, …w
]�

The output a of the neuron is defined by the following expression
 o = w�v� + w�v� + ⋯+ w
v

After scaling, output of the neuron y is given by y = f(o), where f is the transfer function (Fig.4).
The error e is the difference between the neuron’s output and the desired output. The initial
weights can be set using existing information. Alternatively, zero or some random values can be
given to the weights.

2.6.1. Multilayer ANN

The architecture of multilayer ANN is given in Fig. 5, which shows a two-layer network. ANN is
designed such that desired output can be obtained from the given set of inputs. The weights for
the first (input) layer and the second (hidden) layer of the ANN in Fig. 6(a) are shown in Fig. 6(b)

where w�,�� denotes the weight for the ith input in the jth neuron of the kth layer

Ʃ ƒ

��

��

��

��

��

��

o

�

1

Fig. 3 Single neuron Fig.4 Transfer functions

y

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

27

Fig.5.Multilayer ANN

�

!w�,�� w�,�� w�,"�⋮ ⋮ ⋮w�,�� w�,�� w�,"�⋮ ⋮ ⋮w
,�� w
,�� w
,"� $%

%%
&
 'w�,�� w�,��w�,�� w�,��w",�� w",�� (

2.4. Back propagation Algorithm

Multilayer ANN that uses the Widrow-Hoff learning rule and nonlinear differentiable transfer
functions is known as Back propagation. It has capacity to approximate any function with a finite
number of discontinuities. Properly trained back propagation networks have proven to give
reasonable answers when presented with inputs that they have never seen. It is possible to train a
neural network on a particular set of input to get good results, rather than training the network on
all possible inputs, which are generally very large.

In back propagation, learning cycle consists of two phases: (i) broadcasting the input patterns
through the network and (ii) adapting the output by manipulating the weights in the networks. In
the network operation, the error signals are back propagated to the hidden layers. An estimate of
the contribution of a particular neuron to the output error can be seen by the portion of the error
signals that a hidden layer neuron receives.

The squared error is reduced in each cycle and finally minimized by repeatedly adjusting the
weights. In the feed forward back propagation network the connections from each neuron in a
layer to every neuron in the next layer is forward. There are no lateral or recurrent connections.
Labels on connections indicate weights.

2.6. Monte Carlo method

These are the class of computational algorithms that rely on repeated random sampling to
compute their results. Monte Carlo methods are often used in computer simulations of physical
and mathematical systems. They are used to model phenomena with significant uncertainty in
inputs.

Fig.6 weight matrices of ANN in Fig. 3: (a) Layer1 and (b) Layer2

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

28

The Monte Carlo method was introduced by John von Neumann, Stanislaw Ulam and Nicholas
Metropolis in the 1940s during their Manhattan Project, which was based on nuclear weapon in

the Los Alamos National Laboratory. It was named after the Monte Carlo Casino, a famous
casino where Ulam's uncle often gambled away his money.

Monte Carlo methods vary, but tend to follow a particular pattern:

1. Define a domain of possible inputs
2. Generate inputs randomly from a probability distribution over the domain.
3. Perform a deterministic computation on the inputs.
4. Aggregate the results

3. FEATURE EXTRACTION AND CHARACTER IDENTIFICATION

We propose a novice method, termed as character divider approach for feature extraction of
characters after the preprocessing steps. There are 7 phases, performed in our approach and is
illustrated in the Fig 8

Phase1: Character Preprocessing

In this Phase we do the preprocessing of the character (as discussed in section1) can be done in
three phases, given in Figure7.

Fig.8.Phases for character identification

We perform 3 steps for character isolation, illustrated below:

Step1: Extraction of Lines- the text image is scanned from top to bottom and from left to right to
extract number of lines in the written text. The algorithm is given in Figure9

Step2: Extraction of Character- within each line, top-left and bottom-right co-ordinates of each
character is obtained using the algorithm, given in Figure10:

Character
isolation

Normalizat
ion

Thinning

Fig.7 Phases of character preprocessing

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

29

Step3: Position normalization of characters- For each character array obtained from above two
algorithm, redundant rows of ‘0’s are removed to get the actual character array, which fits into a
bounding box.

Following above three steps, all the characters of different sizes, in separate 2D binary array. So

we need normalization as give in section2.2 and illustrated in detail as under:

In the two quadrilateral regions, given in Figure2; the vertices correspond to the tie points. The

 Fig.9.Line Extraction Algorithm Fig.10.Character Extraction Algorithm

geometrical transformation process within the regions is modeled by a pair of bilinear equations
so that
 x* = c�x + c�y + c"xy + c- y* = c.x + c/y + c0xy + c1

These equations can easily be resolved for 8 coefficientsc�, i = 1…8. Once the coefficients are
known, they constitute the model used to transform all pixels within the quadrilateral region
characterized by tie points used to obtain the coefficients.
Simplifying the above equations, we get,
 c� = pm ;	c/ = qn ; c�, c", c-, c., c0, c1 = 0

Therefore, x* = :pm;x;	y* = (qn)y

If we try to normalize the thinned character skeleton, the resulting skeleton is not found to be
connected. So, the unthinned character is normalized and later thinned.

Reverse mapping is done for normalization i.e.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

30

1. For each pixel position P’[r][c], the equivalent pixel position P[i][j] is found using above
relation (many pixel positions of Q may map to the same pixel position of P)

2. The value (0 or 1) at P’[r][c] pixel is set to that at the location P[i][j]

 After normalization, we do the thinning as per the algorithm, given in Figure 11

 Fig.11.Thinning Algorithm Fig.12.Vector Contour of ‘B’

Phase2: Contour analysis of characters for its pre-classification

In this phase we do the contour analysis for each character starting from A to Z.
The contour contains the necessary information on the object shape. We define contour as a
boundary of an object, a population of pixels, separating object from a background. We have
encoded contour by the sequence consisting of complex numbers. On a contour, the starting point
is fixed. Starting point should be the centroid of the pixel. Then, the contour is scanned (is
admissible – clockwise or anticlockwise depending on the continuity of the connectivity of the
adjacent pixels), and each vector of offset is noted by a complex number a+ib. Where a is the
point offset on x axis, and b is the offset on y axis. Offset is noted concerning the previous point.
To illustrate our approach for defining the vector contour of a character, we create the vector
contour of ‘B’ as given in Fig 12. It is to be noted that from the starting point there is no adjacent
pixel in clockwise direction, hence anticlockwise direction has been considered for deriving the
vector contour.

 So VC is the set of vectors, known as elementary vectors which define the contour of the
character. Hence for character ‘B’, the VC defines as: >?@ = {B, B, B, B, B, B, 1, 1 − B,−B, −1 − B, −1,1, 1 − B, −B, −1 − B, −1}.

We have pre-classified all the capital letters based on their vector contours. Similarly we can
compute the VC for all characters which are given below:
 >?E = {−1 − B, −B, 1 − B, 1 + B, B, −	1 + B}. >?@ = {B, B, B, B, B, B, 1, 1 − B, −B, −1 − B, −1,1, 1 − B, −B, −1 − B, −1}. >?F = {−1,−1 − B, −1 − B, 1 − B, 1 − B, 1}. >?G = {−B, −B, −B, 1 − B, 1 + B, 1 + B, B, −1 + B, −1 + B, −1 − B}.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

31

>?H = {−1,−1, B, B, 1, −1, B, B, 1, 1}. >?I = {B, B, 1, −1, B, B, 1, 1}. >?J = {−1,−1 − B, −1 − B, 1 − B, 1 − B, 1, B, −1}. >?K = {−B, −B, −B, −B, B, B, 1, 1, B, B, −B, −B, −B, −B}. >?L = {−1 − B, −B, 1 − B, 1 − B, −B, −1 − B, −1 + B, B, 1 + B, 1 + B, B, −1 + B}. >?M = {1, 1, −1,−B, −B, −B, −B, −B − 1,−1,−1 + B}. >?N = {−B, −B, −B, −B, B, B, 1 + B, 1 + B, −1 − B, −1 − B, 1 − B, 1 − B}. >?O = {−B, −B, −B, −B, 1,1}. >?P = {B, B, B, B, 1 − B, 1 − B, 1 + B, 1 + B, −B, −B, −B, −B}. >?Q = {B, B, B, B, 1 − B, 1 − B, 1 − B, 1 − B, −B, −B, −B, −B}. >?R = {−1 − B, −1 − B, −B, 1 − B, 1 − B, 1, 1 + B, 1 + B, B, B, −1 + B, −1 + B, −1}. >?S = {B, B, B, B, 1 + B, 1 − B, −1 − B, −1 + B}. >?T = {−1 − B, −1 − B, −B, 1 − B, 1 − B, 1, 1 + B, −1 + B, 1 − B, 1 − B, 1 + B, B, B, −1 + B, −1 + B, −1}. >?U = {B, B, B, B, 1 + B, 1 − B, −1 − B, −1 + B, 1 − B, 1 − B, 1 − B}. >?V = {−1 + B, −1 + B, −1,−1 − B, −1 − B, 1 − B, 1 − B, 1 − B, −1 − B, −1 − B, −1,−1 + B, −1 + B}. >?W = {1,1, −1,−B, −B, −B, −B}. >?X = {−B, −B,−B, 1 − B, 1,1 + B, B, B, B}. >?Y = {1 − B, 1 − B, 1 − B, 1 + B, 1 + B, 1 + B, 1 + B}. >?Z = {1 − B, 1 − B, 1 − B, 1 + B, 1 + B, 1 + B, 1 + B, 1 − B, 1 − B, 1 − B, 1 + B, 1 + B, 1 + B, 1 + B}. >?[= {1 − B, 1 − B, 1 − B, 1 − B, −1 + B, −1 + B, −1 − B, −1 − B, 1 + B, 1 + B, 1 + B, 1 + B}. >?\ = {1 − B, 1 − B, 1 + B, 1 + B, −1 − B, −1 − B, −1 − B, −1 − B}. >?] = {1,1,1, −1 − B, −1 − B, −1 − B, 1,1,1}.

Table 1 VC of characters & its VE

We define the Vector Contour VC for characters as the set of vector contour of all characters. >?= {>?E, >?@ , >?^ , >?G , >?H , >?I , >?J , >?K , >?L, >?M, >?N , >?O , >?P , >?Q , >?R, >?S , >?T , >?U , >?V, >?W, >?X , >?Y , >?Z, >?[, >?\ , >?]}.

which is a two dimensional array. Table1 illustrates the number of vector elements in each of the
VC set and hence the number of bits to represent them by knowing that 1 bit is sufficient to
represent 21 states/values and 2 bits are sufficient to represent 22 states/values and so on…

Phase 3: Character embedding in circle

In this phase we circumscribe the character with a circle to create the boundary to be analyzed for
its (character) identification.

VC character No. of Vector
elements

No. of bits
required

A,C,L 6 3

B,Q 16 4

D,E,J 10 4

F,G,P,Y 8 3

H,W 14 4

I,K,M,N,X 12 4

O,S 13 4

R 11 4

T,V 7 3

U,Z 9 4

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

32

Phase 4: Circle partition

In the previous phase, the centroid of each character pixel (black pixel 1’s) has already been
computed. Subsequently, in this phase, division of circumscribed circle into eight parts (arcs)
with centroid is carried out so that each partition can take the range of 45 degrees, which has been
assumed to be optimized value with respect to the computation and information integrity.

Fig.13.Circle partition with character ‘A’ enclosed

Table 2 describes the range of degrees for each partition in circle

Partition Number Partition Range R (in degree)

1 0 < ` ≤ 45
2 45 < ` ≤ 90
3 90 < ` ≤ 135

4 135 < ` ≤ 180
5 180 < ` ≤ 225
6 225 < ` ≤ 270
7 270 < ` ≤ 315
8 315 < ` ≤ 360

Table2 Partition number and its range

Phase5: Data Normalization & character identification using Monte Carlo Method

We use Monte Carlo method as described in section2.6 for data normalization in which the
following steps are performed:

 In each partition of the circumscribed circle, count the number of pixel’s (1’s), say npi , where i
is the partition number of circle. So range of i is from 1 to 8.

Count the total number of pixel’s present in the character array, say npt.

Do normalization by performing

ij
ik

We have shown the enclosed character ‘B’ with its partition in Fig 12.

In each partition, angle of each pixel is found which varies between particular partition’s
minimum range and maximum range. The summation of all angles of all the pixels of each
partition is done and then normalization of this partition data vector is carried out. Then the
centroid of the character i.e. the x and y co-ordinates of centroid is taken and normalized and is
also considered as data for identification of characters. In all we got 10 partition data. This data is
collected for all input characters set written by different individual. It uses the same pre-
classification as described in Phase 2, using vector contour.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

33

Phase 6: Back propagation Algorithm

We have preclassified the characters using VC in phase2. Then in phase 5, we extracted the data
for each partition for the given character. In this phase, this partition data is fed as input to back
propagation algorithm. Back propagation algorithm is given in Fig 14.

Fig.14.Back Propagation Algorithm

Networks are trained according to following Back propagation neural network classification
which is based on the VC. given in Table 3.

Topology
No.

No. of
Input
nodes

No. of
hidden
nodes

No. of
output
nodes

Character

1 26 20 3 A,C,L,F,G,P,Y,T,V

2 26 20 4 B,Q,D,E,J,H,W,I,K,M,N,X,O,S,R,U,Z

Table 3 Topology for EV

Reason for taking 26 input nodes in each topology is because from the character 26 circle data are
extracted i.e. 26 features of characters are extracted. The number of output nodes has been
derived from the number of bits required as shown in table1. As there is no clear rule for the
‘best’ number of hidden nodes, so as a good starting point and to get understood to the novice
readers we assign the number of hidden nodes by the following formula:

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

34

 No. of	hidden	nodes = 	no. of	input	nodes + no. of	output	nodes2

The experienced mathematical researches can assign the number of hidden layers using Fisher
Information Matrix [5]

Characters A,C,L,F,G,P,Y,T,V are trained with 26-20-3 configuration and rest of the characters
are trained with 26-20-4 configuration.

Initially these networks are set up with weight generated from random number generator which
may also affect the performance of the resulting Multi-layer Feed-Forward (MLF) ANN. These
weights are adjusted during training to desired output as per the following procedure:

1. The input and output of each node (j) in the hidden and output layers are computed

 I� = uw��� o� + b�
j = 1,2,3,…8	(no. of	training	data)

 w�� − 	weight	of	the	connection	from	node	i	in 	the	previous	layer	to	node	j. o� − 	Output	of	node	i	in	the	previous	layer. b� − 	bias	of	node	j.
o� = f}I�~ = 11 + e���

which is non linear and differentiable
2. Search for a set of weights that fits the training data such that the mean squared error (MSE)

can be minimized, using gradient descent method. Error of node j,

Err� = � o�}1 − o�~}T� − o�~(j	is	an	output	node)
o�}1 − o�~ue�	. w��(j	is	a	hidden	node)�

�
o�- the output of node j T�-the true target value of node j e�- the error of node j in the next layer w��-the weight of connection from node j to node k

Change in weight ∆w�� = (l)e�o�
Change in bias ∆b� = (l)e� l- learning rate (a rule of thumb: l = �� , t is the number of iterations so far w�� = w�� + ∆w�� b� = b� + ∆b�
3. Stop the process till all ∆��� are below some specified threshold

So, in total 8 training files which consist of extracted partition data of character are trained and
subsequently 8 weight files are generated.

Phase 7: Type classification

From table 3, it can be seen that there are some elementary vectors in set VC (Phase 2) which do
have either horizontal or vertical or both symmetry.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

35

VC0, VC1, VC3, VC8

So in VC, 3 sub groups lie:

1. Horizontal symmetry based sub group number 1: (VCC, VCE, VCI)
2. No symmetry based sub group number 2: (VCF, VCG, VCJ, VCL, VCN, VCS,VCZ)
3. Vertical symmetry based sub group number 3: (VCM, VCU,VCV, VCW)

Since within the set of VC, characters can be placed in 3 subgroups as discussed above. So there
is need for two stage back propagation neural classifiers, which is described below:

A neural network having d input nodes, c output nodes can be considered as a classifier to assign
a given sample with d feature to one of 3 predefined sub group numbers.

During recognition of unknown character it goes through 2 stage process. During its first stage
type classifier gets activated which indicate whether the character is from horizontal or no
symmetry or vertical symmetry subgroup. Then according to the identification of subgroup from
first stage, in second stage particular type recognition network (type 1 or type 2 or type 3) gets
activated which finally gives true identity of character.

4.PROS AND CONS OF TWO STAGE BACK PROPAGATION NEURAL CLASSIFIER

There are two main advantages of using 2-stage Back propagation neural classifier:

1. A single problem can be decomposed into many small sub-problems, which are easier to
manage.

2. The output node of the ANN can be reduced for efficiency purpose

If we look into the disadvantages, we could found only one that is if the first classifier fails to
interpret correctly, that wrong output of the first classifier will become the input of the second
classifier, which will give the wrong prediction. But that can always be minimized by making the
use of efficient training algorithm to train the hidden layer of ANN.

5.EXPERIMENTAL RESULTS

5.1.Sample Text Files

Some test documents containing character sets written by different individuals in their
handwriting was collected and scanned using scanner to generate corresponding tiff file and
corresponding to which binary files were formed and processed. First lines were separated out
from text followed by separation of each character which were then enclosed in a bounding box,
binaries, normalized and thinned using a thinning algorithm.

Some test documents containing phrases on different lines were tested during experiments.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

36

Fig.15 Sample Text File1

We collected character set in different handwritings from A-Z in a file.

5.2 Preprocessing of characters

5.3 Normalized circle data of file

Normalized circle data of file for ‘H’ is only shown
0.086957 0.152174 0.196552 0.326078 0.108696 0.134351 0.134509 0.156900 0.189036
0.118818 0.153421 0.247432 0.339870 0.077045 0.066120

Several experiments were carried out to demonstrate the performance of this data. For training
and testing total number of samples taken from different persons is shown in Table 4

Subgroup
number

1 2 3

Training
sample
number

100 147 123

Table4. Data from different persons

Total number of samples for training = 370

Recognition rate of this approach found is 76%

Fig.16 ‘H’ extracted from input text file Fig.17 Feature extraction (after thinning)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

37

6.LIMITATIONS

There are some limitations to our approach for character identification which are give as under:

1. Sometimes the person can write the characters which are not purely separated due to
hurry-burry or the individual’s style of writing. In that case our Vector contour will not
be appropriate and our system would have to train for large data sets and for longer
duration to predict the given character correctly.

2. We have partitioned the circumscribed circle into 8 parts. As the number of partitions
increases, the prediction would be more accurate but the complexity will be increased and
the designer must have to analyze the proper balancing in between the number of
partitions and its complexity.

3. We have used MLF ANN, for which the training time can be very lengthy.
4. There is a need of rather a relatively large dataset for training to get accurate predictions.

7.FUTURE WORK AND CONCLUSION

In this paper, we introduced a novel set of features that is well-suited for representing handwritten
characters. The features are derived from the Vector Contour (VC) set and symmetrical nature of
the characters. For the sake of simplicity during the VC analysis we assumed the value of a and b
in a+ib as unity though actual value have to be trained by collecting large data set. The feed
forward neural network was trained for VC and symmetrical nature identification which
collaboratively is the very unique feature for character, even VC itself is the most unique feature,
if the values of a & b are given correctly. Our character recognition system can also be used for
numeral recognition.

We have introduced a mechanism for handwritten character recognition and all the related
algorithms. Our future work will be to implement our approach to show the experimental results
for evidence, which is lacking in this paper and shall be illustrated in our next paper.

REFERENCES

[1] S K Hasnain, Azam Beg and Samiullah Awan, “Frequency Analysis of Urdu spoken Numbers Using

MATLAB and Simulink” Journal of Science & Technology PAF KIET ISSN No 1994-862x, Karachi,
Nov. 2007.

[2] A. Beg, P.W.C. Prasad, S.M.N.A. Senanayake. Learning Monte Carlo Data for Circuit Path Length.
In Proc. International Conference on Computers, Communications & Control Technologies, CCCT
2007, Orlando, Florida, July 12-14, 2007.

[3] A. Beg, P.W.C. Prasad, M. Arshad, S. K. Hasnain. Using Recurrent Neural Networks for Circuit
Complexity Modeling", In Proc. IEEE INMIC Conference, Islamabad, Pakistan, December 23-24,
2006, pp. 194-197.

[4] Y. Le Cun et al., “Constrained Neural Network for Unconstrained Handwritten Digit Recognition,”
Proc. of 1st Int. Workshop on Frontiers in Handwriting Recognition, Montreal, Canada, Apr. 1990,
pp. 145-154.

[5] Fletcher el, “Optimizing the Number of Hidden Nodes of a Feed forward Artificial Neural Network”,
Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence.

[6] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,”
IEI7E Trans. on Pattern Analysis and Machine Intelligence, Vol. ll, No. 7, pp. 674-693, 1989.

[7] L. Stringa, “A new set of constraint-free character recognition grammars,” IEEE Trans. Pattern Anal.
Machine Intell, vol. 12, pp. 1210–1217, 1990.

[8] L. K. Hansen and P. Salamon, “Neural-network ensembles,” IEEE Trans. Pattern Anal. Machine
Intell, vol. 12, pp. 993–1001, 1990.

[9] Lam, L., Lee, S.W., Suen, C.Y., “Thinning Methodologies- A Comprehensive Survey”, IEEE Trans.
On PAMI, Vol. 14, No. 9, pp. 869-885, 1992.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.3, May 2013

38

[10] Lam and Suen, “An evaluation of parallel thinning algorithm for character recognition, “IEEE Trans.
On PAMI, Vol. 17, No.9, pp. 914-919, 1995.

[11] W. K. Pratt, Digital Image Processing. New York: Wiley, 1978.
[12] Lu H.E., Wang P.S.P., “A comment on fast parallel algorithm for thinning digital patterns”,

Communications of the ACM, Vol. 29, No.3, pp. 239-242, 1986.
[13] Naccache N.J., Shinghal R., “SPTA – A Proposed Algorithm for Thinning Binary Patterns”,

Communications of the ACM, Vol. 29, No.3, pp. 239-242, 1986.
[14] Saha P.K et al, “ A single scan Boundary Removal Thinning Algorithm for 2-D Binary Object”,

Pattern Recognition, Vol. 14, No. 3 pp. 173-179, 1993.
[15] Jairo and Pavlidis, “Character Recognition Without Segmentation”, IEEE trans. on Pattern Analysis

and Machine Intelligence, Vol. 17. No. 9, Sept 1995.
[16] Rhee et al., “Utilizing Consistency Context for Handwritten Mathematical Expression Recognition”,

2009 10th International Conference on Document Analysis and Recognition.
[17] S. Tsujimoto and H. Asada, “Resolving ambiguity in segmenting touching characters,” First Int’l

Con$ Document Analysis and Recog- nition, pp. 701-709, Saint-Marlo, France, Sept. 1991.

