Survey and Analysis of University Clustering

Srinatha Karur¹, Prof.M.V.RamanaMurthy²

¹Oracle DBA & Technical Support, Ibra College Of Technology ²Professor & Director, School of Computer Science, Osmania University, ¹karur_sri@yahoo.co.in , ² mv_rm@rediffmail.com

ABSTRACT:

This paper gives on Clustering of Universities in the world with respect to their country policies OR local polices OR continent level polices with sub aims. So clustering method can generally apply when objective is specifically mentioned. For general objectives clusters are available in the form of logical or physical groups without networks. In this paper we emphasis on only University Clusters directly or University Clusters. Data miming methods are used for useful for Sampling Analysis and Clustering of Universities and Colleges with respect to local clusters [1] pp 1.

KEYWORDS:

University Clustering, Policies, Survey, Data Mining methods, UGC.

1.INTRODUCTION

This document describes survey on University clustering, as global and efforts are concentrated for new model of University clusters. In India this cluster technology is at very initial stage and we do not have any perfect Government policies and implementation plans. But University Grants Commission has announced its Cluster college system for next five years plan [22]. Basically India is agriculture oriented country and developing country [26]. So extreme efforts are necessary to define the Education cluster policy for entire nation [25], pp 1-2. Due to lot of heterogeneous conditions of country it is necessary to have different policies for different regions [26]. This research work addresses mainly on survey on different Universities in the world for clustering policies and their implementations in different fields. Samples are considered from University level, Continent level, and Institute level from all parts of the world. Data Mining methods are useful to solve a problem as either supervised method or Unsupervised method as per given policy or objective of problem. Finally UGC policy is treated as tentative policy of Ministry of Human Resources, Government of India.

2.OBJECTIVE

Our research objective is estimate the type of clusters for Indian Universities using different developed countries cluster policies and different case studies across the world. After getting the clusters the data should be Visualize with supported tools. Supervised methods are applied wherever necessary condition takes place.

DOI: 10.5121/ijaia.2013.4412

3. RELATED WORK

3.1 University level Clustering

The Excellence Initiative of the German Federal Ministry of Education and Research and the German Research Foundation aims to promote cutting-edge research and to create outstanding conditions for young scientists at universities, to deepen cooperation between disciplines and institutions, to strengthen international cooperation of research, and to enhance the international federal government and the German states. More than 30 universities in total received funding. It includes three clusters [2].

William Peterson University, New Jersy, USA Cluster Program has been offering courses to freshmen for over 15 years and has received an enthusiastic response from students and faculty alike. Students find it is easier to make friends in smaller classes, to relate to their teachers, and to be interested in the courses which are more connected with each other. In all semesters subject wise clusters and Research clusters are available. Semester implementation is on the basis of 2 clusters and Research Departments have 5 clusters [4].

The National University of Singapore (NUS) Faculty of Arts and Social Sciences (FASS) set up multidisciplinary Research Clusters in 2006. Since then the cluster group has grown to seven clusters and continues to foster academic excellence by promoting high-impact research in innovative areas of relevance to Singapore and the Asian region. The Science, Technology, and Society (STS) Research Cluster studies the inter-relationships between the domains, especially in the context of Asia. As the newest cluster in ARI (August, 2009) is the smallest, but work closely with the existing, larger STS Research Cluster in the Faculty of Arts and Social Sciences (FASS) [5]. Intra cluster, inter cluster, Bi-cluster, and multiple clusters are available as per policies [6] [7] [8].PC-Clusters are available on the basis of personal computers which logically tends to Technical clusters [7] [9].

The Exeter University, United Kingdom has Institute of Arabic and Islam studies as affiliated body. It has 3 clusters. They are Islamic Studies, History and Social Sciences, and Languages. Using Literature the links which have developed between Arabic literature and European literature since the late 19th century. Within the University, consistant internal clusters are available [27]. The San Francisco University, USA has number of clusters which are purely internal clusters. Mainly they are Research, Science and IT, Literature, Engineering, and others [14].

The Sultan Quaboos University has its own affiliated hospital and Technical clusters are available for Hospital patient system. Linux clusters are available as physical clusters. With Fujitsu's solution, instead of spending a whole day dealing with a single request, now it can be closed within few minutes, all from one central console [15].

Dubai International Academic City was launched in April, 2007 in response to the tremendous growth witnessed by Universities in the Dubai Knowledge Village campus [16]. This organization has 5 clusters [29]. The five clusters are Industry clusters, human resource development clusters, region's leading centers of excellence for learning and human capital, DOZ clusters to set up a regional hub to expand operations in the Middle-East and African markets, and other clusters. (Other clusters such as DIC, DMC, DKV)

King Abdullah University of Science and Technology, Saudi Arabia consists of number of internal

clusters [17].Mainly it consists of Research park and Innovation cluster, National Industry clusters, Introductory cluster, Technology cluster, Technical cluster etc.

University Innovative clusters closing the gap between University and Society in East Africa (Uganda and Tanzania Case studies). Innovative Cluster Initiatives aim to bring up internal entrepreneurship in individual firms in close collaboration with similar firms in the same location and with academic researchers and government officials in a Triple Helix process. These two different real time applications in different countries can achieved their targets with, Research and Economic clusters. Research scholars worked closely along with all others in other cluster improved the quality of work [18].

University of Dalhousie, Canada consists of lot of internal clusters. Mainly they are Academic and themed clusters, Medical sciences clusters for find out the injuries as clusters [31], Research and Center clusters, Pure Academic clusters, PC clusters, Environment clusters, Local and Regional clusters, High Power Computer clusters, Student services clusters [32], etc. University has receiving \$140 Million for Research clustering.

University Of Massey, New Zealand consists of 4 important clusters. They are Community, Loci, Academic and Research clusters. The Research Support Services at Massey University consists of four clusters that provide policy and operational support to all research related activities within the institution. These functions range from providing support to doctoral and research students, assisting in the development of funding proposals and associated contracting, budgeting advice and project management, providing training and development opportunities for staff and students at all stages of their research career and policy development and implementation to support the Research Strategy 2012 – 2014 [33] [34] [35].

The 1st New Zealand e-research Symposium will be held in the Owen G Glenn Building, at The University of Auckland, on 26-27th of October, 2010 [37]. In this Symposium they discussed on Computational clusters, deploy the Institutional clusters, and Computational queuing clusters [36]. They used language R as Grid cluster at Application level [38]. It is possible for a .NET developer to write and compile console applications on Windows that can be executed on suitably prepared Rocks HPC clusters [39].

Clusters and Competitiveness of Automotive Companies in Slovakia (Case Study) mainly have 3 big car companies and they convert into Bi-cluster for high profits and quality. They achieved Academic cluster as internal cluster. This annual conference is joint venture of Australia and New Zealand Academy of Management. In terms of 4 Hypothesis they implemented the cluster policy [40].

The University of Iowa(UI), USA has lot of clusters [47].Mainly it has 5 objectives and five years strategic plan in the cluster hire initiative.. The 2009 Water Sustainability cluster emanated from President Mason's call for a strengthened emphasis on sustainability at UI. The 2010 clusters in Digital Public Humanities and Aging Mind and Brain have their origins in the UI Strategic Task Force reports of 2009. The 2011 call for cluster proposals was open, encouraging faculty to submit their ideas for successful clusters [48], pp2, pp5. They submitted report with 11 recommendations. All these recommendations are emphasis on Finance, Admin and Faculty clusters with logical flow [49], pp 3.

An Emerging Research cluster: India. Consists of 4 types of clusters. They are Industry clusters, Activity clusters, India and China activity cluster and Research cluster. Flow between University and Industry clusters is logical and physical also. Global strategy, long term commitment, staffing, and lack of exact knowledge between local and global needs etc. are the main issues in the Research cluster [50], pp 7-8.

Presidency University, Calcutta, India has been declared the first" Cluster Innovation Centre" (CIC) in Eastern India by the Govt. of India. Cluster Innovation Centers would promote innovation in and around the university system by" The National Innovation Council". CICs are expected to function as independent bodies inside the university and facilitate collaborations to create new knowledge, products, and processes. Academic and Research clusters are mainly focused in CIC [41] [42].

Delhi University, Delhi, India has been declared as Cluster Innovation Center (CIC) in North India by the Govt. of India. It has University level Governance and several projects are in progressive way. Along with Research Innovations, other Real time application projects are going on (Car Queuing system, Mathematics and Music relation). College Innovation Projects, Village Cluster Project, Student Internship & Projects, Engineering Kitchen etc. are also part of Delhi University CIC. All projects are funded by University itself [43].

3.2 Country Level Clustering

ATTRACT, funded in 2009 under the EU flagship programme "Lifelong Learning", is a follow up initiative of a Swedish national project which had the main objective of investigating the attractiveness of young and dynamic students. Finland, Ireland, Italy, Portugal, Sweden, Belgium, Germany are the participated countries. The project's aim is construct the clusters on different modes like Gender, Science, Arts, Engineering, and country wise also. All participated countries have general information of member countries. In this we have inter, intra and bi-clusters are available. Ministry of Higher Education and Ministry of Commerce and Industries have joint venture on this project. [44].

Enhancing the Creative, Digital and Information Technology Industries (CDIT) in Brighton- an Arts and Humanities Research Council (AHRC) Project mainly deals about "Role of Universities on enhances the clusters". Mainly this project focused on not only on its title and also on Economics, Networks, Relation between University and Industry, Digital clusters, and knowledge exchange. This project is sponsored by University of Brighton USA [45].

Australian Research Council (ARC), Govt. of Australia, consists of bi-clusters between ARC, Excellency in Research for Australia (ERA), and Research Evaluation Committee (REC).Research Evaluation Committee (REC) helps ERA on the basis of Citation Analysis, Ranked outlets, Income Research, Bibliometrics and Scientometrics (Quality vs. Quantity).They have Physics, Chemistry, Earth-Sciences as one cluster and Humanities and Creative Arts as another cluster [46], pp 20.

Arabic Cluster: A bridge between East and West consists of 5 members namely Egypt, Morocoo,Turkey,Kuwait, and Qatar are located in the Middle East. The main aim of cluster is to determine the Economic development in this area when compare to Global cluster. It also deals about detailed nature of all cluster members and have awareness of border members. Before the

independence all these countries are under British Empire. This is an initial sample for supervised learning in Middle East [28].

Ranking and Clustering Australian University, Research Performance, 1998-2002: This paper deals about the clusters, ranks and the research performance of thirty-six Australian universities over the period of 1998-2002. Research performance is measured according to audited numbers of PhD completions, publications and grants (in accordance with rules established by the Department of Education, Science and Training) and analysed in both total and per academic staff terms. Hierachical Clustering is used on all 36 Sampling Universities from Australia Country or Continent. Supervised Learning is used for Statistical Analysis [53], pp 8-9. Dendogram is not shown by the original authors [53]. In some applications proximity data is available then hierarchical approach may be better [53],pp 1-22, [54],pp 198. ANOVA results are also not shown by original author. ANOVA analysis and Outliers are implemented with TANAGRA 1.4 version software. There are totally 168 rules are generated with Association Rule Editor from Tanagra Tool. Only zero examples are idle.

ej (Intitled - Paint	CALL MANAGER	1. State	and the second	-		-				-			• • ×
	Home	View												0
Pa	Cut Cut Copy	Select Image	- / K / /	A Brush			0日本 合合 ののの Shapes	v Dutline v v v	Size	Color 1 Color		Colors		
	9 C Q 1	' 🕐 🔳 🥒 🦯	📣 A =											
	o	100	200	30		400		500	600	700		900 1000	1100	1200
•	Association	rule software - [Lea	arning set ea	ditor]									100 Total 1	
1	👶 File Edit	Data Statistics	Analysis	Window H	lelp									-
-	D 🚔 🔒													
	Selecte	d attributes		University	Group	Academic	ta Ph.DPers	ons Publications	Grants(\$Mil	K				E
-			1	Adeliade	G08	1109.00	172.00	1236.00	64.30					
H			2	Referent	NGU	344.00	8.00	125.00	1.66					
			4	Camberra	UGU	270.00	14.00	200.00	6.39		Total A	TTPIPIITES-6		
			5	CentralQuee	NGU	332.00	13.00	199.00	3.24		Total Ir	nstances or records-32		
			6	CharlesSturf	UGU	451.00	19.00	255.00	4.01		Ignore	d by Editor=1 record		
-			7	CurtinUniver	SATN	851.00	82.00	624.00	19.10		-Briefe	a aj cantor a record		
81			8	Deakin	UGU	451.00	19.00	225.00	4.01					
			9	EdithCowan	NGU	538.00	25.00	484.00	4.54					
			10	Fanders	IRUA	699.00	65.00	619.00	28.97					
			12	lamesCock	IIGU	502.00	69.00	333.00	10.29					
_			13	LaTrobe	UGU	1019.00	131.00	771.00	19.80					
8			14	Macquarie	IRUA	660.00	96.00	61.00	17.07					
			15	Melbourne	Go8	2084.00	366.00	2017.00	74.35					
			16	Murdoch	IRUA	467.00	70.00	430.00	16.47					
			17	NewSouthW	Go8	1905.00	297.00	2060.00	102.08					
			18	NewEngland	DUGU	458.00	69.00	483.00	9.76					
8			20	New Castle	INCIA	155.00	14.00	91.00	20.00					
			21	QueensLand	1 Go8	2234.00	337.00	2349.00	111.71					
			22	QUT	ATN	996.00	91.00	803.00	15.25					
-			23	RMIT	ATN	989.00	91.00	529.00	16.88					
			24	SouthAustra	IATN	797.00	65.00	\$65.00	17.66					
00			25	SouthernCro	NGU	254.00	33.00	136.00	4.28					
			26	SouthernQu	eNGU	357.00	14.00	150.00	3.54					-
-	< 270mm	1(7)	_	100.1	290 - 1026		0	_		_	_		1002 🔾	· ·
T.	xxo, 2/9px	141 	-		200 × 1936	px	20	-	-	1	-		100% (=)	11-41 DM
0	9 (8		0	Le 🥥		-1		n (?		9 4	9	📲 🔰 - 🖏 🤋 🕷 🖉 🕷	N 😔 🖸 🗊 😑 🚾	6/8/2013

Figure 3.2a: Association Rule Editor(TANAGRA)

ANOVA analysis between Input and Target (Ph.D and Group) has same Fishery statistics with respect to P-Value OR Input OR Output. This screen shot is with respect to P-Value. Remaing two combinations (Input and Output) not shown due to same result.

Untitled - Paint		J						- C - X
Home View								6
Paste Copy Copy Copy Copy Copy Copy Copy Copy		Øutine *	Color 2	Color	2	Edit		
🖬 🤊 🦷 🔍 🎢 🔞 🔳 🥒 🦯 🚯 A =								
0, 100 200	300 400 51	00 600	700	800	900	1000	110	0 1200
Dataset (Australia University Ouster.xls)	Parameters Sort results yes Sect criterion p-value(Stati	stic)		Parameters				
				Results				
	Attribute_Y Attribute_X		Description			Statistical test		
		Value E	Examples Ave	erage Std-	dev	Variance decompositi	on	-
310		Go8	6 3	001.8333 7	3.2377 Sou	ce Sum of square	d.f.	
		NGU	7	14.4286 1	1.0733 BSS	321998.5322	4	
	Ph.D Persons Group	UGU	9	51,1111 4	1.7715 WSS	42933.4365	27	
		ATN	5	78.2000 1	3.9535 TSS	364931.9688	31	
410		INUA	32	99,4699 10	2.6610 0.4050 State	Significance level	Broba	
				10,4000 10	Fishe	CLF 50.474648	0.000000	
			for sector		414 AV			
		Adeliade	Examples 1	172.0000 /	500-0eV Sou	variance decompositi	on d f	
85		AustraliaCatholic	1	8.0000	99999.0000 855	364931.9688	31	
		Ballarat	1	7.0000	99999.0000 WSS	0.0000	0	
		Camberra	1	14.0000	99999.0000 TSS	364931.9688	31	
		CentralQueensland	1	13.0000 -	99999.0000	Significance level		
103		CharlesSturt	1	19.0000 -	99999.0000 Stati	tics Value	Proba	
1	H I	CurtinUniversityOfTech	1	82.0000 -	99999.0000 Fishe	r's F 0.000000	1.000000	
+ 347 301 av 10 10	🗆 1280 x 1936nx 🔛			_			100% (-	, ,
	s 🔍 🧭 🔼	n 🕐 💷	0	9	- -	N S V V .	4 0 0	G C 5:46 PM

Figure 3.2b: ANOVA for Input and Target

Outlier detection for above 6 attributes and 32 instances are 5.It is not possible to remove the errors completely or partially.If we use Sigma Value method we can not find the outliers.For outer or inner fense we can find errors.For Inner fence method 5 outliers and for Outer fence method 3 outliers are formed. Tanagra

and other Data Mining tools are now emphasing on Outliers detection. But depend upon Dataset the outliers are vary from one application to other. Outliers are not only permitted to architectural level. During policy making also the outliers are formed internally or externally or locally or Globally.

Untitled - Paint		×
Home View		0
Puste Copy Copy Select Resize Clipbord Tools	↓ ○ ○ △ △ △ ↓ ○ ○ ○ △ ↓ ○ ○ ○ △ ↓ □ △ △ ↓ □ △ △ ↓ □ △ △ ↓ □ △ △ ↓ □ △ △ ↓ □ △ ↓ □ △ ↓ □ △ ↓ □ ↓ □ △ ↓ □ △ ↓ □ △ ↓ □ ↓ □ △ ↓	
		1000
is, <u>Oon-way ANOVA 1</u> 	Two Two <th></th>	
011	Results	
	Univariate Outliers Detection	
	Detailed results for each variable	
00 E	Variable Grubbs Stat. Sigma rule Inner Fence rule Outer Fence Rule	-
	Cut: 2,9380 L.B U.B Detected L.B U.B Detected L.B U.B Detected	
100	Potected Outliers fordiers :3 and Signification Different methods for outlier detection	
	n° example # detection Variable(s) 1. Sigma Rule=0 2.inner Fence Rule=5	
1	15 1 Ph.D Persons 3. Outer Fence Rule=3 are found	
100	16 1 Ph.D Persons It is not possible to remove the Outliers ie errors	
	22 1 Ph.D Persons	
	30 1 Ph.D Persons	
1 019	Removed outliers (if option activated) : 0	
	Computation time : 15 ms. Created at 6/8/2013 6:12:48 5M	
+ 260, 497px 10 1280 × 1936	брх 🛛 100% 💮 ———————————————————————————————————	- @
🛞 🖉 🔄 o 💿 🗔 🐧 🖲) 🔗 📕 n (?) 🔳 🧕 🖳 🥥 📲 🚺 v v k B t k 4 4 0 n 0 B 🔛	PM 2013

Figure 3.2c: Outlier detection

(Dendogram) Hierarchical Clustering of 6 attributes and 32 instances are available for Australian University Research Clusters. Single link or nearest neighbor algorithm is used for distance between clusters.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013

Figure 3.2d: (Dendogram) Hierarchical(Weka).

Figure 3.2e: Visualization for all 6 attributes.

3.3 Continent level Clustering

Heidelberg University and Tohoku University offer a joint doctoral program and initiated by Cluster Professor Harald Fuess. The new program me will enable students to receive a double degree from Heidelberg University and Tohoku University, Japan. The programme comes with a scholarship and includes a one-year stay at the Global Centre of Excellence "Gender Equality and Multicultural Conviviality in the Age of Globalization" in Sendai, Japan [3].

Heidelberg University, Germany. Consists of "Cluster-Excellence for Asia-Europe in global context. In this Bi-cluster there are totally 9 sub clusters are available. The main areas of implementation are Strategic planning, Academic, Finance, Admin and Research. Optional is available only for Technical clusters.

Middle East and North Africa Research cluster consists of mainly BI-Cluster. They are MENA 412 AND MENA 410 and/or MENA 411.Along with Middle East based languages different types of optional subjects are also available. One cluster is implemented for Languages and another cluster is implemented for optional subjects [10]. Arabic, Turkish, Persian, Hebrew, or Tamazight languages are available along with Anthropology, Art History, Comparative Literary Studies, History, Political Science, Religion, Radio/Television/Video/Film technologies. All dynamic clusters are treated as sub clusters and exceptional cases.

The York University, United Kingdom, Department of History has Research clusters for History subject. The area of clusters formation is Europe-Asia area which deals about the impact of empires in Asia and of Asian cultures on Europe studies, and to debates about the causes and consequences of globalization [11].Bi-Cluster implementation includes research on archival, textual and oral sources in West European and Asian languages, including Bengali, Bhojpuri, Chinese (modern and classical), Hindi, Japanese (modern and classical), Konkani, Marathi, Persian, Portuguese, Sinhalese, and Tamil. The official language of India is Hindi [26].So one cluster is useful for archival purpose and other for language research as Euro centric [11].

Case studies of Japan, German, and France Bio-Clusters are under Institute of Economic Research Hitotsubashi University, Tokyo, Japan have official publication paper on Bi-Clusters of Asia-Europe. The sample space countries are Japan, German and France. They have totally 5 technical (Bio-Technology) clusters. Three clusters from Japan, one from Germany and one from France [51],pp1.Especilally for Technical clusters, networking between industries and Universities are important for innovation(Mayer-Kramer and Schmoch 1998).Basically Local Productive Systems are the main core of French cluster policy [52],pp 3.France clusters are more flexible than Japan and Germany cluster policies[51],p6.All clusters are sponsored by respective Governments [51],pp 26.In Japan except "City Area" cluster all clusters are implemented as top-down approach. In Germany and France all clusters are applied bottom-up approach [51], pp 4-6.

4. PROPOSED FRAMEWORK FOR PROPOSED SYSTEM.

4.1 Node level

To develop the University Clustering System for country wise it is necessary to estimate the size of the data as per UGC 12th Five Year Plan. The size of the data must be consistent and unique. Let us assume "n" Universities are in India. On the basis of financial status, reputation of university, direction, category, nature, geographical conditions, policy, gender, Social needs etc. estimate initial clusters. Here proposed algorithm for cluster initiation on the basis of accreditation.

Algorithm-1. Create IN, PRE, AND POST Order tree with assumed value. Input: - maximum 'n' Universities are available. Consider 'k' Universities are fit for clustering. (n-k) are unfit for clustering and only 'm' are assumed as perfectly holds good, generally m<k (Practically). Process:-

Step1:- Initiate root value on the basis of accditation.Allot children to root as per rank

Of Universities and form a tree until zero or null or minimum

accreditation takes place. Step 2:- Create IN, PRE, And POST order trees Step 3:- Evaluate the path as per standard algorithms Output: - IN, PRE, And POST order trees are available with paths. Algorithm-2. Estimation of Network Cost. Input: - IN, PRE, And POST Order trees are available. Process: - Use any spanning tree algorithm and find minimum cost for available tree. Output: - Minimum cost of path can be estimated which is termed as Network cost. Algorithm:-3 Apply Clustering Algorithm on nodes obtained in Algorithm Input: - m nodes obtained from Algorithm-2 Process:- Apply k-means algorithm or any Unsupervised algorithm for clustering Output:- Number of clusters are available<m(Defined in Algorithm)

4.2 Database level

For prototype models only specifications are allowed but not table with Normalization. Since this is proposed model as per strategic level. At tactical or operational level all tables are available with normalization forms

4.2.1 Types of attributes in available Database (For specification's)

- a. Single value
- b. Binary values (0 OR 1) OR (Yes OR No)
- c. Multiple values

4.2.2 Cluster level Specifications

Id,Cluster_Id,Cluster_Name,No_Of_Clusters,Cluster_type,Sponsor,Time_Period,Budjet_estim ation,Budjet_alloted,Process(top_down,bottom_up),location_of_clusters,parent_cluster_id,loca l_clusterORglobal_cluster

4.2.3 University level Specifications

SNo, University_Name, University_Type, University_Rank, University_Location, Groups,

ELarning, Recruitment, Reservation Policy, result%, AICTE Recg, PG Core Subjects, PG Applied Sciences, Professors, Hostels, Library, Library, Rank, Train Facility, University Hospital, videoconf erence,Server_Location,Servers_Rank,No_Of_Servers,Tech_Support_Rank,ETrained_Staff,MOU Colleges, MOU Universities, Web Ranking, Multiple OS Available, Multiple OS Server Availa ble,Separate_Team,Separate_Team_Location,ETools,E-Fund, E-material, E-staff, E-methods, Education-Satellite, Estandards%. Audit, ELevels, Online_Courses, Wi-Fi, Wi-Fi_Units, Commitee_Experts, Commitee_Experts_Location, University_ Grade, University_ Direction. Type,Air_port_facility, Foreign_Languages_Dept, Node Female Students%, Funds_For_Research, Free_Laptop_facility, Free_USB_Facility, University_ Bus, Interdiscipline_Research, Faculty_Refresh_Course, Faculty_Refresh_Course_Sposnsor, Core_ Research

4.2.4 Policy based Specifications

Unlike cluster and Universities specifications, Policy specifications are more dynamic in nature. Since policies are depend on respective Ministries decisions and give Database form surely create more ambiguous in nature. Local based procedures are more important for formulate the policies [52], p1. Due to Local based procedures more local clusters are formed [52], p3. Due to its local clusters the process may be top-down or bottom-up approach [51], p4.So specifications are applicable for Tactical level and Operational level but not strategic level. Even though specifications are available they are highly unstructured. Tactical and Operational specifications are semi and full structured .Generally any Governance in the world prefers Management Information Systems for its policy implementation.

5.Implementation of University clustering With reference to FrameWork

Distance matrix consists of 30*30 matrix(900 entities).30 locations are randomly selected on the basis of SOUTH,NORTH,EAST,WEST AND NORTHEAST directions. All 30 locations are selected on the basis of alphabetical order for easy of use.

File H	lome Inse	rt Page	Layout	Formulas	Data	Review \	New Lo	ad Test P	owerPivot	Team	_	_	_					- 🕥 ۵
🎢 🔏 Cu	rt	Calibri	- 1	· · A /	. = =		📑 Wri	ap Text	Genera	d.					>	ΣΑυ	utoSum * A	7 8
aste Co	py -	B / U	- 181-	3- A		通 读 (rge & Center	- s -	% , 5	8 23	Conditional I	Format Cel	I Insert	Delete Form	at an	So	rt & Find a
- V Fo	rmat Painter										1	formatting * a:	Table - Style			2 G	car T Fill	ter + Select -
Clipboa	ro is	6	Font		a	Alig	nment		Gr.	vunber		50	nes		Cells		Earling	
A1		(C)	J∗ Citie	25														
A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
Cities	Aizwal	Bangalore	Bhopal	Bhuvanes	Bombay	Calcutta	ChandiNa	ChandiNa	ChandiNa	Delhi	Dispur	GandhiN	la Gantok	Goa	Hyderaba	Impal	ItaNagar	Jaipur
Aizwal	0	2289	1952	1952	2118	530	565	565	564	1635	1 1	354 255	2 717	2348	2552	200	2552	2166
Bangalor	re 2289	0	1500	1400	1039	2192	2261	2261	2261	2094	2	600 156	3 2455	615	562	2700	2638	1985
Bhopal	2321	1500	0	1192	838	785	1000	1000	1000	800	2	294 104	1 1494	1291	700	2339	2160	576
Bhuvane	s 2046	1440	1192	0	1507	441	1900	1900	1900	1603	1	922 174	4 1047	1746	1075	1967	1375	1791
Bombay	2118	1039	838	1507	0	2084	1900	1900	1900	1431	2	620 60	0 2320	2877	767	2265	2877	1170
Calcutta	530	2192	785	441	2084	0	1826	1826	1826	1441	1 3	750 202	8 786	2166	1065	1467	2000	1581
ChandiN	a 565	2500	1000	1900	1900	2000	0	0	0	250	2:	100 100	0 1800	2000	1800	2000	2000	600
ChandiN	a 565	2500	1000	1900	1900	2000	0	0	0	250	2	100 100	0 1800	2000	1800	2000	2000	60
ChandiN	a 565	2500	1000	1900	1900	2000	0	0	0	250	2	100 100	0 1800	2000	1800	2000	2000	60
Chennai	2205	350	2000	1700	1277	1712	2500	2500	2500	2154	2	355 172	7 2057	900	650	2500	2660	2007
Delhi	1639	2094	800	1603	1441	1431	250	250	250		2	160 91	0 1128	2027	1524	2252	1800	250
Dispur	350	2600	1859	1119	2620	750	2100	2100	2100	1800		0 224	8 420	2758	2104	327	263	1828
Gandhin	aj 2552	1563	602	1744	600	2018	1250	1250	1250	910	2	248	0 2080	1085	1019	2433	2469	64
Gangtok	717	2455	1517	1047	2320	786	1400	1400	1400	1128	1 4	420 208	0 0	2519	1900	750	618	1583
Goa	2348	615	1178	1717	500	2166	2000	2000	2000	1725	2	758 108	5 2519	e	672	2000	1900	1620
Hyderab	a 2552	562	850	1075	767	1065	1800	1800	1800	1500	2	100 110	8 2519	672	2 0	2255	2367	1365
Imphal	200	2700	2339	1967	2265	2000	2000	2000	2000	2252		327 243	3 750	2000	2265	0	300	2284
Itanagar	2552	2638	2106	1375	2877	200	2265	2265	2265	2026	6 3	263 246	9 618	1620	2367	300	0	2202
Jaipur	2166	1951	550	1574	1170	1581	550	550	550	285	1	828 59	6 1583	1609	1369	2284	2202	
Jammu	2553	2767	1351	2203	1933	2121	350	350	350	650	2	240 134	9 1814	2401	2181	2566	2386	810
Kohima	2533	2788	2139	1301	2880	831	2233	2233	2233	2192		300 273	0 722	3000	2324	120	200	2284
Luknow	2533	1976	666	1110	1503	1114	750	750	750	517	1	355 115	2 954	1826	i 1353	1521	1572	632
Patna	1000	2100	1028	750	1822	600	1244	1244	1244	1064	1	837 147	8 500	2030	1429	1115	1078	1173
Pudeche	n 2500	335	1068	1404	1345	1877	2643	2643	2643	2341	2	520 183	1 2427	948	778	2579	2771	2147
Raipur	2078	2218	1000	1701	1680	1688	200	200	200	262	1	700 119	3 1345	2107	1655	1927	2000	548
Ranchi	458	1768	1012	450	1723	410	1473	1473	1473	1250		900 148	5 690	1860	1219	1119	1164	1300
APH R	eal DATA FO	R PHD(Inc	lia Univers	12/								()		
ady																	100% 😑 🚽	
							- Course						-					0.22 0

Figure 5a:. Sample Distance for 30 random selected locations

Weka-3.7 Visualization for University Location Sample .All 30 locations is considered. Distance between all 30 locations forms 30*30 matrix(900 elements)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013

Figure 5b. Weka-3.7 Visualization for University Location

R Latticist: ci	rs\$dataset[crs\$sample, c(the local division in which the	-				- 0 - X
Eile View	Style Theme Labels Iools	Data Options Help					
+ + 2	🔞 💢 marginal.plot(dat, data	a = dat, groups = UGC, reorder =	FALSE, type = c("p", "I"), auto.k	ey = list(lines = TRUE, title = "U	JGC", cextitle = 1, columns = 3, c	ex = 0.7), sub = list("N = 21, 201	3-02-02, R 2.15.2°, x 💌 Edit call.
•				UGC			
Stay on top			A •	в о	c •		
(H)	Cities	Aizwal	Bangalore	Bhopal	Bhuvaneswar	Bombay	Calcutta
Navigate		AMARC 10000	X X X X X X X X X X X X X X X X X X X	XXXX X X X	2000000000	1000000	20000000
i 🏟 Pan	C. C	(0)09111110101723119490					(Shibilitanak) Maadha,
0	ChandiNagar.1	ChandiNagar.2	ChandiNagar.3	Delhi	Dispur	GandhiNagar	Gantok
Identity	1 1000	100000000	ANC. LONG	000000	70000000	MAX 1007 A	X 200000
Brush		20000000000000000000000000000000000000	200495%21240925282000000 200495%212697553666539666	al de la contraction de la contraction Contraction de la contraction de la cont	na an a	CARLES BEESE ARCENTICE ARCENTICE	na an a
A	SAMANASSED AMARING ST	Articlisee . KM-Labor 12	Herrich States and Marked States	WWWWWWWWWWWWWW	44455555645133449475555337d	ANNAL CONTRACTOR	Month Construction Construction
Annotate	Goa	Hvderabad	Impal	ItaNagar	Jaipur	Jammu	Kohima
Arrow	000000	1 1 10000	XX X X	XC XXX XX	Nor xxx		TX MAXXXX
\$	99999999999999999999999999999999999999	nunnin an	an a		16.2000.00000.0000.000		<i>46899899999999999999</i> 9999999999999999999
Panel	Luknow	Patna	Pandicherry	Raipur	Ranchi	Shillong	Shimla
% Plot settings			La ana	<u>hannan</u>	<u>kowcocw</u>	Maccon	<u>Kaaaaa</u>
	Constant and a constant of the	an a		kkiriki di jarahi (Sikada	l si kana ka	kan series and the series of t	ikidetain an
	SriNagar	Chennai	UGC				
	NY W W	CX MCX	× ~				
	08283498949328%78058956	000012022022200000000000000000000000000	N 8 C	_			
	VMA.105505555	ANALMARKERS -V. 1998 B.D.					
Auto 2 4	West	C OD 3X00'	recet	Gu	uner / Colon molede Condition	in a	N = 21, 2013-02-02, R 2.15.2
marginals	solom (pairs) parallel V y=		1000		SC +		
Subset:	Select variables> 📝 x=			v De	pth (3D)		
	- Aspect:	v	☑ Lines.	Levels: 4	Y Scales:		
Click on an ob	oject to see details, Shift-click to de	stroy; Right-click or Esc to canci	el.				
- 🚱 - i	ai 📋 🖸 🤅	S 📀 🖪	🐮 K ℝ				🔺 🎦 📴 🌒 2:36 PM

Figure 5c:. Linear Projection with respect To Chennai(Red line)

10 Association Rules are found with this Sample. Minimum support 0.15, Confidence=0.9 for 30 nodes of different locations sample. Zero examples are left. The number of rules are generated is completely depend upon minimum support and confidence level.

Weka Explorer	Convert of Converting Name of Converting		0 X
Preprocess Classify Cl	ster Associate Select attributes Visualize		
Associator			
Choose Apriori -	110-T 0-C 0.9-D 0.05-U 1.0-M 0.1-S-1.0-c-1		
Start Stop	Associator durput		
Description of the	Chennai		^
Result list (right-click	Bec		
20:55:56 - Apriori	and Associator model (full training set) and		
	Apriori		
	Minimum support: 0.15 (S instances)		
	Minimum metric confidences: 0.9		
	Number of cycles performed: 12		
	Generated sets of large itemsets:		
	Size of set of large itemsets L(1): 13		
	Dire of oco of first respecto s(1), to		
	Size of set of large itemsets 1/2). 5		
	pare of oco of antik respecto alti, o		
	Size of set of large itemsets L(3): 1		
	part of oco of anti- roundon b(o), r		
	Best rules found:		
	1. Bhopal=1000.0 4> ItaNagar=2000.0 4 <conf:(1)> lift:(6) lev:(0.11) (3) conv:(3.33)</conf:(1)>		
	 Goag2000.0 4 ==> Calcuttag2000.0 4 <conf:(1)> lift:(7.5) lev:(0.12) [3] conv:(3.47)</conf:(1)> 		
	3. Calcutta=2000.0 4 ==> Goa=2000.0 4 conf:(1)> lift:(7.5) lev:(0.12) (3) conv:(3.47)		
	4. Chennais2500.0 4 ==> Calcuttas2000.0 4 <conf:(1)> 1:ft:(7.5) lev:(0.12) (31 conv:(3.47)</conf:(1)>		E
	5 Calcutta=2000 0.4 ==> Chennai=2500 0.4 cconf:(1)> 11fr:(7.5) lev:(0.12) [3] conv:(3.47)		
	 Chennais2500.0 4 ==> Goss2000.0 4 <conf: (1)=""> lift: (7.5) lev: (0.12) (31 conv: (3.47)</conf:> 		
	7. Goa=2000.0.4 ==> Chennal=2500.0.4 (conf:(1)> 11fr:(7.5) lev:(0.12) [3] conv:(3.47)		
	8 Parchi=1500.0.4 => Trnal=2000.0.4 (conf: (1)> lif: (6) lar: (0.11) [3] conv: (3.33)		
	9. Goa=2000.0 Chennai=2500.0 4 ==> Calcutta=2000.0 4		
	10 Calcutter2000 0 Channair2500 0 4 ==> Coar2000 0 4 (Confr (1)) lift: (2 5) law: (0 12) (3) conv: (3 42)		
			+
Status			
OK		Log	-x0
			0.66 014
		🖸 🕲 🗊 🔮 🕪 🙆 💀 😂 📖 😂 🤷	6/7/2013
			41112013

Figure 5d: Association Rules

Supervised method(Navie Bayes) method is applied for given sample with 30 entities with Confusion matrix and Mean absolute error=0.0222.Confusion matrix gives the quality of Sample.

Weka Explorer Preprocess Classify Cluster Associate : Classifier	Select attributes Visualize	- 8	20 B			
Coose Verification Coose verification Coose verification Coose verification Percentage safe % % 66 Fore options @tony LOC State State	Caseffr output The taken to build model: 0 second	29 1 0.9479 0.2222 0.1491 5.205 % 32.2239 % 43.3333 % 33.5333 % 20.527 1 1 0.923 0.927 1 1 0.929 0.927 1 1 0.929	96.6667 % 3.3333 % F-Measure ROC Are 0.96 1 0.967 1 0.967 1	A Class A B C		
Status OK						Log 🥢 ×0
🌍 🎐 😼 🔛					a 🛛 🕄 🗐 🕼 🖉 🖓 😒	og 😳 🗊 😁 🔀 9:02 PM 6/7/2013

Figure 5e: NavieBayes method with Confusion matrix(Weka tool)

Hierarchical Cluster with Tree form with 30 nodes and tim taken to built the tree=0.01 seconds. There are 300 entities are available(30*30). Hierarchical clusters are implemented with TANAGRA tool. Total computational time is 16ms. Cluster1 has 11, cluster2 has 6 and cluster3 has 13 nodes. Total 30 nodes are available in Random Sampling.

		Dent					
	Default tile	Report	Dendrogram	n			
Dataset (Real DAT.	A FOR PHD(India Universites	Distances)-			HAC 1		
Define status 1	1			Par	ameters		
K Means 1		# clust	ers				
Neighborh	ood Graph 1	Detection	Automatic				
		Data transfo	ormation				
		Transformation	None				
		Visualiz	ation				
		Index selection	1				
		Tree structure	0				
		Anova per variat	xe 0				
				1	lesults		
		Clustering	results				
		Clusters	3				
		cluster Des	cription size				
		cluster n°1 c_	hac_1 11				
		cluster n 2 c	hac_2 8				
		cluster in 3 C_	100_0 12				
		Bost clust	or coloction				
			Com	ponents			
ata visualization	Statistics	Nonparametric statistics	Instance selection	Feature construction	Feature selection	Regression	Factorial analy
PLS	Clustering	Spv tearning	Meta-spv learning	Spy learning assessment	scoring	Association	
	K-Means	M VARHCA					
P	Kohonen-SUM	VARKMeans					
Selection	Neighborhood Graph						
KC .	WARCLUS						

Figure 5ee: 3 Clusters are formed for 30 nodes(Tanagra tool)

Figure 5f: .Hierarchical Cluster with Dendogram 30 nodes with height=10(Tanagra tool)

Visualization is available here in the form of all nodes with respect to x and y axis. All nodes are available in the form of Grid and each time we can select one item for enlarge the image. In Weka for clarity of image we can adjust the jitter values, in such a way that the image should be visible as per data.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013

Figure 5g: Visualization of all locations with 2D form(X And Y Axis)

Load the Database into Weka tool for all types of Universities as per UGC list with minimum=1, maximum=31, Mean=16 and standard deviation=9.1.Standard form of Dataset is .arff .But both .arff and .csv files are used as Dataset. All types of Universities are loaded into Weka tool for Modelling.

Figure 5h: Weka tool for all types of Universities

Visualization is one type of GUI technology which analysis the things on the basis of 2Dor 3D.Actually Visualization is not a part of Data Mining technique. But when more attributes are available in Dataset then only first m items are sequentially selected. Scaling methods and GUI methods are different from one tool to other. Generally Visualization is useful for extract the information from different models into GUI [55], pp-1.

Figure 5i:. Visualized with Weka 3.7 Data Mining Tool.

Figure 5j: Visualization of UGC list, Indian Universities (with Ggobi software).

Unsupervised Methods are useful to construct the Clusters for Universities which are defined as On the basis of states. Hierarchical clustering method is useful when we have a distance matrix. Here we applied Hierarchical clustering with Wards linkage. Dendogram also available. Height is 0.73. This height is different from one distance method to other.

In this we implemented Hierarchical Clustering Wards linkage with Euclidian Distance. There are different tools are available and dedicated tools are also available. Out of available generally for Research and studies some special software are available. They are TANAGRA, R,WEKA, and ORANGE etc. Along with Microsoft SQL Server we can get Data Mining Service Analysis. Hierarchical clustering has lot of advantages when compare to other clustering methods. Orange and R consider mixed type of Inputs. ORANGE tools have lot of Visualization facilities Due to prototype Model nature it is not possible to estimate total number of records in Data base. But some attributes of binary and category nature. So we can easily apply supervised methods as per

context. If we apply different linkages for Hierarchical Clustering the height of resultant cluster has different value. Generally Dataset may be in the form of .xls, .arff, .txt,. csv etc.

Figure 5k: Hierarchical clustering Wards linkage.

University Database list is loaded into tool Gephi 0.82 version for Network modelling. In this model we can get direct and Undirect graph with Visualizations. Details of Network Modelling for Proposed system comes under Technical Cluster Analysis. For prototype model Technical specifications are optional. University Database list is loaded into tool Gephi 0.82 version for Network modeling for Directed Graph. Generally Graph theory is most suitable for prototype model networks. Non Linear Data structures are also implement for obtained or given networks in the form of nodes.

Figure 51:. Directed Graph generated with 84 nodes, 198 edges

6. CONCLUSION

When compare to developed countries, India has old models and trail and error methods. Depend upon UGC 12TH FYP it is very difficult to estimate exact database and number of clusters. Since this is Strategic plan for next five years (2012-16).Due to different conditions in India the uniform policy should not available [26]. So for India lot of Local clusters are necessary. So more studies are necessary on Japan, German and France CASE STUDIES which may be maximum suitable to India's environment. Prototype model should be implemented for avoid the ambiguity in different cluster policies. Deep research is necessary on creation of Local Clusters and scope of clusters.

ACKNOWLEDGEMENTS

The authors would like to thanks for all teachers from school level to Research level.

REFERENCES

- [1] http://ibr.hi.is/sites/ibr.hi.is/files/Location_Competition_and_Economic_Development_Local_ Clusters_in_a_Global_Economy.pdf
- [2] http://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative#Winners: _Clusters_of_Excellence
- [3] http://www.asia-europe.uni-heidelberg.de/en/news-events/news/detail/m/joint-doctoralwith-tokoku. html
- [4] http://www.wpunj.edu/registrar/registration/cluster-programs.dot
- [5] http://www.fas.nus.edu.sg/research/centres.html
- [6] http://www.fas.nus.edu.sg/research/clusterupdate2013sem1.pdf
- [7] http://www.eng.nus.edu.sg/eitu/pc.html
- [8] http://utown.nus.edu.sg/about-university-town/education-resource-centre/study- clusters/
- [9] http://www.ari.nus.edu.sg/article_view.asp?id=921(Science and IT)
- [10] http://www.tgs.northwestern.edu/academics/academic-programs/clustercertificate/humanities/mena/cluster-requirements/index.html
- [11] http://www.york.ac.uk/history/research/researchclusters/amea/Asia-MiddleEast
- [12] http://socialsciences.exeter.ac.uk/iais/research/clusters/Arab-Islamic-studies
- [13] http://www.thunderbird.edu/wwwfiles/sites/globe/pdf/jwb_arab_cluster.pdf
- [14] http://search.calstate.edu/search?site=sfsu_all&output=xml_no_dtd&client=sfsu-edu&proxystylesheet=sfsu-edu&q=clusters
- [15] http://www.fujitsu.com/hr/Images/120727_CS_Fujitsu_SQUH_en.pdf
- [16] http://www.diacedu.ae/component/search/?searchword=CLUSTERS&ordering=&searchphrase=all DUBAI-INTERNATIONAL ACADEMY
- [17] http://www.kaust.edu.sa/search/search.html?cx=003599135184284100168%3Aoh_nsnl2p4&cof=FORID%3A11%3BNB%3A1&ie=UTF-8&q=clusters&sa=Search
- [18] http://sicd.se/wp-content/uploads/2012/06/Research-Report-Seaweed-Salt-2011.pdf
- [19] http://www.massey.ac.nz/massey/about-massey/subsidiaries-commercial-ventures/centre-foreducational-development/professional-learning/clusters/clusters-networks_home.cfm
- [20] http://www.eresearch.org.nz/nz-eresearch-symposium-2010
- [21] http://staff.business.auckland.ac.nz/DesktopModules/StaffProfiles/Publications/8631.pdf
- [22] http://www.ugc.ac.in/oldpdf/commissiondecision/425.pdf PAGE-17
- [23] http://www.ugc.ac.in/pdfnews/9211228_Centurian.pdf PAGE-12 10 CLUSTERS
- [24] www.ugc.ac.in/oldpdf/xiplanpdf/womenstudies.pdf
- [25] www.ugc.ac.in/ugcpdf/740315_12FYP.pdf Innovative clusters

- [26] http://en.wikipedia.org/wiki/India
- [27] http://socialsciences.exeter.ac.uk/iais/research/clusters
- [28] http://www.thunderbird.edu/wwwfiles/sites/globe/pdf/jwb_arab_cluster.pdf
- [29] http://www.diacedu.ae/component/search/?searchword=clusters&ordering=&searchphrase=all
- [30] http://www.dal.ca/search.html?stype=main&q=clusters
- [31] http://informatics.medicine.dal.ca/PastHISeminars.htm
- [32] http://www.dal.ca/content/dam/dalhousie/pdf/dept/senior-administration/ss_report_11.pdf
- [33] http://www.massey.ac.nz/massey/search.cfm?cx= 007028990505551826392%3Amqdofac7ule&cof =FORID%3A9&ie=UTF-8&q =clusters&searchtype=all
- [34] http://www.massey.ac.nz/massey/learning/colleges/college-creativearts/people/research/matter/initiatives/clusters-and-loci_home.cfm
- [35] https://www.massey.ac.nz/massey/research/research-support/research-support_home.cfm
- [36] http://www.eresearch.org.nz/soer-projects/selection-tools-for-genomics-researchers
- [37] http://www.eresearch.org.nz/search/node/clusters
- [38] http://www.eresearch.org.nz/content/r-grid
- [39] http://www.eresearch.org.nz/content/mono-brings-net-linux-hpc39]
- [40] http://staff.business.auckland.ac.nz/DesktopModules/StaffProfiles/Publications/8631.pdf
- [41] http://presiuniv.ac.in/web/introduction.php
- [42] http://presiuniv.ac.in/web/research_physics.php
- [43] http://cic.du.ac.in/cic/innovation.html
- [44] http://attractproject.org/sites/default/files/document/Attract%20Project%20-%20Full%20Report%20-%202012.pdf
- [45] http://www.brightonfuse.com/wp-content/uploads/2012/02/Brighton-fuse-universities-and-cditclusters.pdf
- [46] http://www.arc.gov.au/pdf/P_UTASPCE_11Jul09.pdf
- [47] http://search.uiowa.edu/search?entqr=0&ud=1&sort=date%3AD%3AL%3Ad1&output =xml_no_dtd&oe=UTF-8&ie=UTF-client=default_frontend&proxystylesheet=our_frontend&site =default_collection&q=clusters
- [48] http://provost.uiowa.edu/clusters/docs/ClusterHireInitiativeGuidelines.pdf
- [49] http://www.provost.uiowa.edu/clusters/docs/ClusterWhitePaper.pdf
- [50] http://www.value-leadership.com/download/vlg_ranga_emerging_research.pdf
- [51] http://cei.ier.hit-u.ac.jp/English/database/documents/wp2011-7.pdf
- [52] http://econ.sciences-po.fr/sites/default/files/file/tmayer/spl_pub.pdf
- [53] http://ro.uow.edu.au/commwkpapers/125
- [54] Introduction to Data Mining With Case Studies : Second Edition : "Dr. G.K.Guptha", Professor of ComputerScience, Manosh University, Austrialia.
- [55] http://www.kurims.kyoto-u.ac.jp/EMIS/journals/NSJOM/Papers/37_2/NSJOM_37_2_161_180.pdf

AUTHOR PROFILES:

Mr.Srinatha Karur is Research scholar and has both academic and technical profile. He completed M.CA from Gulbarga University campus on 1997- May, M.Tech (IT) from Punjabi University, GGSIIT, 2002-04, Patiala, India, and M.Phil. from Global University, Kohima, India, 2009 December.

Prof.M.V.Raman Murthy is senior professor and Director for Department of Computer Science, Osmaina University, Hyderabad, India. He is author of core programming languages and international Publications on different applications. His profile shows his complete grip on Academic, Administration and Technical fields.

