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ABSTRACT 
 

Cloud computing is a highly discussed topic in the technical and economic world, and many of the big 

players of the software industry have entered the development of cloud services. Several companies’ and 

organizations wants to explore the possibilities and benefits of incorporating such cloud computing 

services in their business, as well as the possibilities to offer own cloud services. We are going to mine the 

un-compressed image from the cloud and use k-means clustering grouping the uncompressed image and 

compress it with Lempel-ziv-welch coding technique so that the un-compressed images becomes error-free 

compression and spatial redundancies. 
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1. INTRODUCTION 
 

 In cloud computing, the word cloud  is used as a metaphor for “the Internet” so the phrase cloud 

computing means "a type of Internet-based computing," where different services -- such as 

servers, storage and applications -- are delivered to an organization's computers and devices 

through the Internet.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Cloud Computing Model 
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Clustering can be considered the most important unsupervised learning technique; so, as every 

other problem of this kind, it deals with finding a structure in a collection of unlabeled data. 

Clustering is “the process of organizing objects into groups whose members are similar in some 

way”. A cluster is therefore a collection of objects which are “similar” between them and are 

“dissimilar” to the objects belonging to other clusters. The typical requirements of clustering in 

data mining are 1. Scalability 2. Ability to deal with different types of attributes 3. Discovery of 

clusters with arbitrary shape 4. Minimal requirements for domain knowledge to determine input 

parameters 5. Ability to deal with noisy data 6. Incremental clustering and insensitivity to the 

order of input records. 7. High dimensionality.  Clustering is also called data segmentation 

because clustering partitions large data sets into groups according to their similarity.   
 

 

2. K-MEANS METHOD 

  
In this cloud we are going to cluster the un-compressed Image by centroid based technique:   The 

K-means algorithm takes input parameter and partitions a set of n-objects into k clusters so that 

the resulting intra-cluster similarity is high but the inter-cluster similarity is low.  K-Means 

algorithm proceeds as it randomly selects k of the objects, an object is assigned  to the cluster it is 

the most similar, based on the distance between the object and the cluster mean.  It Computes the 

new mean for each cluster it iterates until the criterion function converges.   

The square-error criterion   

                             k 

                   E   =    ∑         ∑       | p-mi| 2    where E is the sum of the square error for all 

objects in  

                              i=1   pɛCi 

the data set;  p is the point in space representing a given object and mi is the mean of cluster Ci 

 

Algorithm: The k-means algorithm for partitioning, where each cluster’s center is represented by 

the mean value of the objects in the cluster.   

 Input : 

            k: the number of clusters 

            D: a data set containing n objects 

 Method: 

(1)  arbitrarily choose k objects from D as the initial cluster centers   Repeat  Assign each 

object to the cluster to which the object is the most similar  Based on the mean value of 

the objects in the cluster;   Update the cluster means, i.e., calculate the mean value of the 

object for Each cluster;  Until no change. 

 

.  

Figure 2.   shows the mean m1,m2 is far away from the final boundary 
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Figure 3. shows how the means m1 and m2 move closer to the final boundary  

 

 
Figure 4.  shows different types of clusters 

 

After the algorithm finishes, it produces these outputs: 

 

• A label for each data point 

• The center for each label 

 

A label can be considered as “assigning a group”. For example, in the above image you can see 

four “labels”. Each label is displayed with a different colour. All yellow points could have the 

label 0, orange could have label 1, etc. 
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Figure 5. Grouping different set of uncompressed images 

 

Step 0: Get the dataset 

As an example,  We will be using the data points on the left. We’ll assume K=5. And it’s 

apparent that this dataset has 5 clusters: three spaced out and two almost merging. 

 

Step 1: Assign random centers 
The first step is to randomly assign K centers. We have marked them as red points in the image. 

Note how they are all concentrated in the two “almost merging” clusters. These centers are just an 

initial guess. The algorithm will iteratively correct itself. Finally, these centers will coincide with 

the actual center of each cluster. 

 

Step 2: “Own” datapoints 
Each datapoint checks which center it is closest to. So, it “belongs” to that particular center. Thus, 

all centers “own” some number of points. 

 

Step 3: Shift the centers 

Each center uses the points it “owns” to calculate a new center. Then, it shifts itself to that center. 
 

If the centers actually shifted, we again go to Step 3. If not, then the centers are the final result. 

We proceed to the next step 
 

Now that the centers do not move, you can use the centers. 

 

3. SCOPE OF THE RESEARCH 
 

We know about the term compression ratio. This means as:  

Compression Ratio , Cr= ((Data size of original message)/ (Data size of Encoded message))  
 

Now-a-days, compression ratio is a great factor in transmission of data. By this research we can 

have a better solution about how to make compression  ratio higher, because data transmission 

mostly depends on compression ratio.       Images transmitted over the world wide web  here data 

compression is important. Suppose we need to download a digitized color photograph over a 

computer's 33.6 kbps modem. If the image is not compressed (a TIFF file, for example), it will 

contain about 600 kbytes of data. If it has been compressed using a LSW CODING technique 

(such as used in the GIF format),it will be about one-half this size, or 300 kbytes. If LSW 

CODING TECHNIQUE has been used (a JPEG file), it will be about 50 kbytes. The point is, the 

download times for these three equivalent files are 142 seconds, 71 seconds, and 12 seconds, 

respectively. Digitized photographs, while GIF is used with drawn images, such as company 

logos that have large areas of a single color.  

 

Disadvantage of Lossless Compression 

Lossless compression, refers to the process of encoding data more efficiently so that it occupies 

fewer bits or bytes but in such a way that the original data can be reconstructed, bit-for-bit, when 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 

149 

 

the data is decompressed. The advantage of lossless encoding techniques is that they produce an 

exact duplicate of the original data but they also have some disadvantages when compared to 

Lossy encoding techniques.  

 

4. COMPRESSION RATIO 
 

Lossless encoding techniques cannot achieve high levels of compression. Few lossless encoding 

techniques can achieve a compression ratio higher than 8:1 which compares unfavorably with so-

called lossy encoding techniques. Lossy encoding techniques -- which achieve compression by 

discarding some of the original data -- can achieve compression ratios of 10:1 for audio and 300:1 

for video with little or no perceptible loss of quality. According to the New Biggin Photography 

Group a 1,943 by 1,702 pixel 24-bit RGB color image with an original size of 9.9 megabytes can 

only be reduced to 6.5 megabytes using the lossless PNG format but can be reduced to just 1 

megabyte using the lossy JPEG format. 

 

5. TRANSFER TIME 
 
Any application that involves storing or distributing digital images, or both, presupposes that 

these operations can be completed in a reasonable length of time. The time needed to transfer a 

digital image depends on the size of the compressed image and as the compression ratios that can 

be achieved by lossless encoding techniques are far lower than lossy encoding techniques, 

lossless encoding techniques are unsuitable for these applications. 
 

5.1. Lempel-Ziv-Welch (Lzw) Coding Technique 
 

LZW compression is named after its developers, A. Lempel and J. Ziv, with later modifications 

by Terry A. Welch. It is the foremost technique for general purpose data compression due to its 

simplicity and versatility. Typically, you can expect LZW to compress text, executable code, and 

similar data files to about one-half their original size. LZW also performs well when presented 

with extremely redundant data files, such as tabulated numbers, computer source code, and 

acquired signals. Compression ratios of 5:1 are common for these cases.  

 

LZW compression uses a code table, as illustrated in Fig. 6. A common choice is to provide 4096 

entries in the table. In this case, the LZW encoded data consists entirely of 12 bit codes, each 

referring to one of the entries in the code table. Un compression is achieved by taking each code 

from the compressed file, and translating it through the code table to find what character or 

characters it represents. Codes 0-255 in the code table are always assigned to represent single 

bytes from the input file. For example, if only these first 256 codes were used, each byte in the 

original file would be converted into 12 bits in the LZW encoded file, resulting in a 50% larger 

file size. During un compression, each 12 bit code would be translated via the code table back 

into the single bytes. Of course, this wouldn't be a useful situation. 

 

6. ADVANTAGE OF LZW COMPRESSION 
 

The LZW compression can compress executable code, text, and similar data files to almost one-

half of their original size. It usually uses single codes to replace strings of characters, thereby 

compressing the data. LZW also gives a good performance when extremely redundant data files 

are presented to it like computer source code, tabulated numbers and acquired signals. The 

common compression ratio for these cases is almost in the range of 5:1. 
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Figure 6 – Flow chart for LZW coding compression 

 

Many methods of LZW coding compression have been developed; however, a family of 

techniques called transform compression has proven the most valuable. The best example of 

transform compression is embodied in the popular JPEG standard of image encoding. JPEG is 

named after its origin, the Joint Photographers Experts Group. LZW compression is different 

from other common compression algorithms (e.g. Huffman encoding) in that it does not require 

an initial processing of the data file to determine the codes to be used.  Instead, the code table is 

generated “on the fly” at the same time that the file is compressed.  The algorithm operates so that 

at each basic step, either the code for a sequence of values already exists in the table, or the code 

for a new sequence is generated and inserted into the table.  Another interesting characteristic of 

LZW compression is that it is not necessary to send a full code table along with the compressed 

file.  Only a table of the individual colors that exist in the image is needed.  Then codes for 

sequences of colors are generated during the decompression process such that the codes are 

always available in the table when they are needed.  
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The first step in LZW is initialization of the code table to include all the colors in the image file.  

For an 8-bit image, this would be up to 256 colors.  If all colors were used, the codes would be 

the values from 0 through 255, each code requiring eight bits.  The algorithm proceeds by 

processing the pixels in the image file from left to right and top to bottom of the image.  The basic 

idea of the algorithm is that strings of colors are put into the code table as they are encountered.  

Grouping strings of colors together into a single code results in compression.  
  
The basic algorithm for LZW compression is given below.  In the pseudocode that follows, 

pixelString is a sequence of pixel values.  pixel = next pixel value means “read the next pixel out 

of the image file.”  pixelString + pixel means “take the current pixelString value and concatenate 

pixel onto the end of it.”  
 

algorithm LZW 

/*Input:    A bitmap image 

Output:  A table of the individual colors in the image and a compressed version of the file 

Note that + is concatenation*/ 

{ 

initialize table to contain the individual colors in bitmap 

pixelString = first pixel value 

while there are still pixels to process { 

pixel = next pixel value 

stringSoFar = pixelString + pixel 

if stringSoFar is in the table then 

pixelString = stringSoFar 

else  { 

output the code for pixelString 

add stringSoFar  to the table 

pixelString = pixel 

} 

} 

output the code for pixelString 

} 
Consider an simplified problem a string  BABAABAAA use the LZW Algorithm to compress the string. 
[ 

 

TABLE-1 EXAMPLE WORK FOR COMPRESSION 
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A  simplified examplealgorithm LZW_decompress 

/*Input:   Compressed bitmap image and table of individual colors in image 

Output: Decompressed image*/ 

{ 

/*Initialize table*/ 

stringSoFar = NULL 

while there are still codes to process in the code string { 

code = next code in the code string 

colors = the colors corresponding to code in the table 

 

if colors == NULL      /*Case where code is not in the table*/ 

/*stringSoFar0 is the first color in stringSoFar*/ 

colors = stringSoFar + stringSoFar0 

 

output colors 

if stringSoFar != NULL 

put stringSoFar + colors0 in the table 

stringSoFar = colors 

} 

} 
 

 
Basic LZW Decompression Algorithm  

  

A simplified example for the string BABAABAAA the compressed code words are        

<66><65><256><257><258><259><260> using the code word we are going to de-compress the 

information  
                                       TABLE -2 EXAMPLE WORK FOR DE-COMPRESSION 

 

Encoder output string String table code-word String 

B   

A 256 BA 

BA 257 AB 

AB 258 BAA 

A 259 ABA 

AA 260 AA 
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Figure 7. JPEG IMAGE DIVISION 

 

JPEG image division. JPEG transform compression starts by breaking the image into 8×8 groups, 

each containing 64 pixels. Three of these 8×8 groups are enlarged in this figure, showing the 

valuesof the individual pixels, a single byte value between 0 and 255. 
 

 

 

 
A. Original image 
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B. With 10:1 Compression 

 
C. With 45:1 Compression 

 

 

Figure 8 Example of JPEG distortion. Figure(a) shows the original image, while (b) and (c) shows 

restored images using compression ratios of 10:1 and 45:1, respectively. The high compression 

ratio used in (c) results in each 8X8 pixel group being represented by less than 12 bits. 
 

 
Figure 9. A plot of the intensity data of line 266 of the original (uncompressed) image 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 

155 

 

 
 

Figure 10.  A plot of the intensity data of line 266 of the 1.0 bpp NSI compressed image. 

 

7. CONCLUSION 
 

Image compression is a topic of much importance and employed in many applications. Methods 

of Image compression have been studied for almost four decades. An enhanced scaling algorithm 

was devised. This algorithm utilized the proximity of the sample points chosen to each other to 

detect edges This paper has provided an overview of Image compression methods of general 

utility. The algorithms have been evaluated in terms of the amount of compression they provide, 

algorithm efficiency, and susceptibility to error. While algorithm efficiency and susceptibility to 

error are relatively independent of the characteristics of the source ensemble, the amount of 

compression achieved depends upon the characteristics of the source to a great extent. 
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