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ABSTRACT 
 
Dynamics of a chaotic spiking neuron model are being studied mathematically and experimentally. The 

Nonlinear Dynamic State neuron (NDS) is analysed to further understand the model and improve it. 

Chaos has many interesting properties such as sensitivity to initial conditions, space filling, control and 

synchronization. As suggested by biologists, these properties may be exploited and play vital role in 

carrying out computational tasks in human brain. The NDS model has some limitations; in thus paper the 

model is investigated to overcome some of these limitations in order to enhance the model. Therefore, the 

model’s parameters are tuned and the resulted dynamics are studied. Also, the discretization method of 

the model is considered. Moreover, a mathematical analysis is carried out to reveal the underlying 

dynamics of the model after tuning of its parameters. The results of the aforementioned methods revealed 

some facts regarding the NDS attractor and suggest the stabilization of a large number of unstable 

periodic orbits (UPOs) which might correspond to memories in phase space. 
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1. INTRODUCTION 
 
Biologists suggest that chaos may play an important role in human brain [1-8]. Chaos has many 

interesting properties that might be exploited in carrying out information processing tasks. Such 

properties are: sensitivity to initial conditions, space filling, control, synchronization and rich 

dynamics that can be accessed using different control methods. When Artificial Neural Networks 

(ANNs) are equipped with chaos they might provide an access to large number of rich dynamic 

behaviours. These can be accessed if appropriate control mechanisms is chosen such as feedback 

control [9-11]. If such approaches are applied to chaotic neural models then the model might 

stabilize into one of many UPOs that a chaotic attractor encompasses. 

 

In recent years, many chaotic neural models have been devised to study how such rich dynamic 

behaviours might be exploited in carrying out information processing tasks. One of these models 

is the NDS model [12] which is based on Rössler system [13]. It is a simple chaotic system with 

one nonlinear term. Rössler system has been studied in different contexts such as control and 

biology to name a few [14,15]. 

 

The NDS model was first devised in 2003 [16] and it represents a chaotic spiking neural model. 

The authors introduced the model in [16] to represent an infinite state machine using the rich 
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dynamic behaviours that model encompasses. The authors have demonstrated that using input 

signals along with a control mechanism could stabilize the model attractor to one of its UPOs.  

The control mechanism used was a modified version of Pyragas [11]. The authors have studied 

small networks of 2-3 neurons, the results shows that the network has been stabilized to an UPO 

according to a periodic length that is relative to the input pattern. 

 

Using only one NDS neuron, its attractor might have access to large number of UPOs that can be 

stabilised to. These might be mapped to memories in phase space. In contrast, a Hopfield neural 

network can give only 0.15n memory size (where n is the number of neurons in the network). 

The NDS model has been studied in [12, 17-20]. In [17] Lorenz attractor has been used instead 

of Rössler in an application of human motion detection from a sequence of video frames. In 

another work [19] the authors suggested that chaos may equip mammalian brain with a 

mechanism that helps in solving hard nonlinear problems. In [20] networks of NDS neurons 

have been studied in terms of Spike Time Dependent Plasticity (STDP) which is a property of 

cortical neurons. Experiments results suggested that NDS neurons may have the propriety of the 

realism of biological neural networks. In [18] the NDS model has been investigated thoroughly. 

The author has studied the chaotic behaviour of the model both experimentally and analytically. 

The study has shown interesting results. 

 

This paper is organized as follows: in section 2 the original Rössler model is described, in 

section 3 the NDS model is introduced, in section 4 the discretization method that has been used 

to devise the NDS model is analysed and studied, in section 5 the experimentation setups  that  

are  carried  out  to  tune  the  parameters  of  the  NDS  model are described, section 6 is devoted 

to the analysis of the dynamics of the NDS attractor, section  7  includes discussions and finally 

section 8 concludes the paper. 

 

2. RÖSSLER CHAOTIC ATTRACTOR 
 
Rössler system [13] is a simple chaotic dynamical system and is represented by the following 

equations: 

uyx −−=′      (1) 

yaxy *−−=′     (2) 

)( cxzbz −+=′     (3) 

 

Where a and b are usually fixed and c is called the control parameter. The usual parameter  

settings  for  the  Rössler  attractor  are  a  =  0.2,  b  =  0.2,  and  c  =  5.7,  and  the attractor for 

such settings is shown in figure 1. 

 

 
 

Fig. 1 The Rössler chaotic attractor with parameters a = 0.2, b = 0.2, and c = 5.7. 
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3. DESCRIBING THE NDS MODEL 
 
The NDS model is first proposed in [12]. The NDS neuron is a discretized model that is based 

on Rössler’s attractor [13] as described by equations 1-3 in section 2. 

 

Large number of orbits with varying periodicity might be stabilised by varying different 

system’s parameters such as time delays, period length τ and initial conditions. 

 

The NDS model simulates a novel chaotic spiking neuron and is represented by: 
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Fig. 3 The chaotic behaviour of a NDS neuron without input (a) the time series of u(t) and γ(t) and (b) the 

phase space of x(t) versus u(t) 

 

where x(t), y(t) and u(t) describe the internal dynamics of the model, γ(t) is the model’s binary 

output, F(t) is the feedback signal, In(t) represents the external input spike train, and the 

parameters of the model are: a = 0.002, v = 0.002, b = 0.03, c = 0.03, d = 0.8, k = −0.057, θ = 

−0.01, η0 = −0.7 and τj is the period length of the feedback signal. 

 

The discretization method that is used in constructing the NDS model has been carried  out by 

scaling the system variables x(t), y(t) and u(t) using different scaling constants: b, c, d which 

been  tuned  by carrying out experiments until  major dynamics of the Rössler system are 

preserved. 
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Figure 3 depicts the dynamics of a single NDS neuron without input, whereas figure 4 shows the 

NDS dynamics when it is stabilised to period-4 orbit due to the feedback control mechanism F 

and a time delayed feedback connection. 

 
 

Fig. 4 The stabilizing of period-4 orbit of a NDS neuron with feedback connection. 

 

4. DISCRETIZATION METHOD 
 
There are different discretization methods that are used to convert a continuous system into 

discrete. One of the nonstandard methods is Euler’s Forward differentiation that is used in 

formulating simple simulation systems. A time step TS is used in calculating the approximate 

value of next step of a continuous system.  For example, when Euler’s Forward differentiation 

method is applied to equation 1 then it will become: 
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and then solving for )( 1+ktx : 

))()(()()( 1 kkkk tutyTStxtx −−+=+   (11) 

if )(tx is used instead of )( ktx , then the equation becomes: 

))()(()()1( tutyTStxtx −−+=+   (12) 

 

Note that TS is chosen to be parameter b with the value 0.03 when equation 12 is compared to 

equation 4.  

 

For simulation purposes TS is usually chosen to be small and it is preferable to be chosen 

according to: 

max

1.0

λ
≤TS      (13) 

Where 
max

λ  is the largest absolute eigenvalues for the system under study. For the NDS model 

and according to the mathematical analysis results that is achieved in [18], 5.68698
max

=λ .  

 

When substituting this value in equation 13: 

0176.0≤TS      (14) 

 

If this value is compared with b it is obvious that the time step that has been chosen doesn’t 

follow the simulation preferable setup. 
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Also, it is clear from equation 5 that TS is chosen to be c = 0.03 and a scaling factor is applied to 

y variable using a = 0.002. 

For the u variable TS is chosen to be d =0.8. Moreover, authors in [12] have scaled down 

constant c to 0.057 and modified its sign. Finally, sign of x and k have also been changed. 

The aforementioned modifications have affected the original Rössler system properties in phase 

space and in Eigen space as well. According to [18], the two spiral saddle points of fixed points 

of original Rössler system have become two spiral repellors in the NDS model. This major 

change might be due to the change to both scaling factors and sign of x and k. 

 

The change in the fixed points indicate that the NDS model have weak connection to the original 

Rössler system. This conclusion was shown in [18] when the author indicated that UPOs exist 

only as the results of both the acting forces of the spiral repellors of the attractor along with the 

applied reset mechanism. Without the reset mechanism the spiral repellors will enforce any 

nearby trajectory to approach infinity. 

 

When Euler’s forward differentiation method is applied to Rössler system then equations 1- 3 

become: 

))()(()()1( tutyTStxtx −−+=+   (15) 

))()(()()1( taytxTStyty ++=+   (16) 

)))()((()()1( ctxtzbTStutu −++=+   (17) 

 

Where TS = 0.0055, a = 0.2, b = 0.2, and c = 5.7.   

  

 
 

 
Fig. 5 The Discrete version of Rössler attractor based on equations 15- 17 

 

An experiment setup has been prepared to make sure the new equations will preserve the original 

Rössler system attractor. 

 

The following changes need to be made to equations 15-17 to follow the NDS equations: 

1. Set TS to 0.0055. 

2. Change b and c in equation 17 to v and k. 

4. Change TS in equations 15,16 and 17 to b,c and d and set them to the value of TS. 

7. Change the value of a and v and to 0.2. 

8. Change the value of k to 5.7 

9. Rename variable z to be u. 

10. Change the sign of the term (x(t)−k) in equation 17 to become (−x(t)+k) 
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When applying the previous changes, then equations 15- 17 become: 

 

))()(()()1( tutybtxtx −−+=+   (18) 

))()(()()1( taytxctyty ++=+   (19) 
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Where a = 0.2, b = c = d = 0.0055, and k = 5.7. 

 

To verify the new model an experiment has been carried out to depict the attractor that 

represents equation 18-20. This is depicted in figure 6. Note that the original Rössler attractor 

has disappeared. 

 

 
 

Fig. 6 The attractor of the model that is based on equations 18- 20. 

 

5. TUNING THE PARAMETERS OF THE NDS MODEL 
 
In this section the details of tuning the parameters of the NDS model is shown. To achieve this, 

many experiment setups have been prepared. The parameters that considered are a,v,b,c,d and k, 

the other parameters, viz., jτηθ ,, 0  have already been studied in [18]. In all experiments one 

NDS neuron is used where the feedback control is applied after time step of 1000. After that the 

experiment runs for 9000 iterations. 

 

Wide range of settings have been chosen. Values of the variables of the model are recorded and 

then are depicted in phase space. Values of the parameters are considered valid if an attractor 

exists for each setting. The results of valid ranges for the model parameters are shown in table 1. 

 
Table 1 Parameter value’s ranges 

 

Parameter a,v b,c D K 

Value 0.001-0.1 0.01-0.055 0.8-0.9 -(0.055-0.058) 

 

Different parameter settings have been chosen as stated in table 2. The NDS original parameter 

setup is used in setup 7 to compare this setup with other settings to highlight areas of 

enhancements of the model. 
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Table 2 Parameter settings with different selected values from the ranges appear in table1 

 

Parameter a,v b,c D K 

Setup 01 0.001 0.03 0.8 -0.057 

Setup 02 0.01 0.03 0.8 -0.057 

Setup 03 0.1 0.03 0.8 -0.057 

Setup 04 0.002 0.001 0.8 -0.057 

Setup 05 0.002 0.02 0.8 -0.057 

Setup 06 0.002 0.05 0.8 -0.057 

Setup 07 0.002 0.03 0.8 -0.057 

Setup 08 0.002 0.03 0.85 -0.057 

Setup 09 0.002 0.03 0.9 -0.057 

Setup 10 0.002 0.03 0.8 -0.055 

Setup 11 0.002 0.03 0.8 -0.056 

Setup 12 0.002 0.03 0.8 -0.058 

Setup 13 0.01 0.05 0.85 -0.055 

Setup 14 0.002 0.015 0.8 -0.058 

Setup 15 0.1 0.04 0.8 -0.056 

 

Another experiment setup has been prepared to verify the capacity of the attractor in terms of 

UPOs that it might encompasses. The average number of successfully stabilized UPOs is 

computed over 1000 run according to the parameter settings that appear in table 2 and then 

depicted in figure 7. 

 

 
 

Fig. 7 Average number of Stabilized UPOs over 1000 run based on the parameter settings that appear on 

table 2. 

 

Figure 7 suggests that slightly better parameter settings exist such as Settings 14 and Settings 05 

increased the attractor capacity when compared to the NDS original settings (Setting 07). 
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6. EIGEN SPACE ANALYSIS 
 

In this section the fixed points of the NDS attractor will be calculated for the different parameter 

settings that appear in table 2. Also Eigen space will be computed and compared to the NDS and 

original Rössler attractors. Before that a gentle introduction to Eigen space terminology will be 

prefaced. For more information about nonlinear dynamics and mathematical details used in this 

section please refer to [21-28]. 

 

6.1 Fixed points and Eigen space Analysis 
 
In a chaotic system there are poles that organize and control the behaviour of the trajectories that 

pass nearby them, and are known as fixed points. Around each of these points there is a basin of 

attraction or repulsion. Once a trajectory enters one of these basins of attraction its behaviour 

will be affected, then it will either be attracted and end up in a periodic or fixed point behaviour 

or it will be repelled and move to another basin of attraction. These fixed points restrict the 

behaviour of trajectories of a chaotic system in a fractal-bounded area and determine the shape 

of the attractor in the phase space. 

 

The types of fixed points of a dynamic system can be determined by finding its characteristic 

values. These characteristic values are then used to analyze and understand the different system 

behaviours around the fixed points including the stability of these points. The types of fixed 

points available depend on the dimensions of the dynamic system under study.  

 

Finding and analyzing fixed points in three-dimensional state space is more complicated than in 

one and two-dimensional state space. That is because systems in three-dimensional state space 

require: 

• Solving cubic equations which is usually hard and sometimes is impractical. 

• A larger Jacobian matrix which requires more calculations. 

• Calculating the three characteristic values that are used to determine the nature of each 

fixed point of the system. 

 

Finding the characteristic values from the Jacobian matrix includes solving quadratic equations. 

There are three roots that result from solving cubic equations, which are the characteristic 

values. The combination of these characteristic values together determines the type of the system 

fixed point(s).  

 

Then the characteristic values could be in one of these categories: 

• All real numbers: 

o All negative. The fixed point is of type Node: All trajectories head directly to it. 

o All positive. The fixed point is of type Repellor: All trajectories move away directly 

from it. 

o Two negative and one positive. The fixed point is of type Saddle point Index-1: 

Trajectories attracted by the saddle point on a surface (two stable manifolds) and 

repelled on a curve (one unstable manifold). 

o Two positive and one negative. The fixed point is of type Saddle point Index-2: 

Trajectories repelled by the saddle point on a surface (two unstable manifolds) and 

attracted on a curve (one stable manifold). 

 

The index number here indicates the number of the unstable manifolds. 

• Mixed real and imaginary numbers: 

o All negative; one real and two complex conjugate pair. The fixed point is of type Spiral 

Node. 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013 

115 

o All positive; one real and two complex conjugate pair. The fixed point is of type Spiral 

Repellor. 

o Two negative (complex conjugate pair) and one real positive. The fixed point is of type 

Spiral Saddle point Index-1: Trajectories spiral around the saddle point while they are 

attracted by the two stable manifolds. 

o Two positive (complex conjugate pair) and one real negative. The fixed point is of type 

Spiral Saddle point Index-2: Trajectories spiral around the saddle point on a surface (two 

unstable manifolds) while they are moving away from the saddle point. 

 

6.2 Calculating Fixed points and Eigen space values 
 

According to [18], the two fixed points for the NDS model are of type spiral repellor, where the 

original Rössler system fixed points are of type spiral saddle point. 

 

An extensive mathematical calculations need to be carried out to reveal the effect of parameter 

tuning that has been discussed in the previous section. Then an experiment setup has been 

prepared to calculate the fixed points and the Eigen space for the different parameter settings 

according to table 2. 

 

First the fixed points have been calculated for each parameter setup by solving the quadratic 

equations of the system. Second, the Jacobian matrices have been belt for each equilibrium 

vector, and then the Eigen vectors and Eigen values have been calculated. Finally, the fixed 

point type is specified based on the classification that is aforementioned in subsection 6.1. The 

results of running the experiment show different fixed points and Eigen values as shown in 

tables 4, 5 and 6. 

 
Table 4 Fixed points for each parameter settings that appears in table 2. 

 

Fixed Points 
First Fixed Point Second Fixed Point 

X y Z x y z 

Setup 01 -0.05702 57.01754 -57.01754 0.00002 -0.01754 0.01754 

Setup 02 -0.05870 5.87035 -5.87035 0.00170 -0.17035 0.17035 

Setup 03 -0.13248 1.32482 -1.32482 0.07548 -0.75482 0.75482 

Setup 04 -0.05707 28.53504 -28.53504 0.00007 -0.03504 0.03504 

Setup 05 -0.05707 28.53504 -28.53504 0.00007 -0.03504 0.03504 

Setup 06 -0.05707 28.53504 -28.53504 0.00007 -0.03504 0.03504 

Setup 07 -0.05707 28.53504 -28.53504 0.00007 -0.03504 0.03504 

Setup 08 -0.05707 28.53504 -28.53504 0.00007 -0.03504 0.03504 

Setup 09 -0.05707 28.53504 -28.53504 0.00007 -0.03504 0.03504 

Setup 10 -0.05507 27.53632 -27.53632 0.00007 -0.03632 0.03632 

Setup 11 -0.05607 28.03567 -28.03567 0.00007 -0.03567 0.03567 

Setup 12 -0.05807 29.03444 -29.03444 0.00007 -0.03444 0.03444 

Setup 13 -0.05676 5.67617 -5.67617 0.00176 -0.17617 0.17617 

Setup 14 -0.05807 29.03444 -29.03444 0.00007 -0.03444 0.03444 

Setup 15 -0.13185 1.31846 -1.31846 0.07585 -0.75846 0.75846 
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Table 5 Eigen values for the first fixed point and the corresponding fixed point type for each parameter 

setting that appears in table 2. 

 

 Eigen Values For the First Fixed Point Fixed Point Type 

Setup 01 1.0000+1.1702i  1.0000-1.1702i   1.0000 Spiral Repellor 

Setup 02 1.0007+0.3765i   1.0007-0.3765i   1.0003 Spiral Repellor 

Setup 03 1.0294+0.1782i   1.0294-0.1782i   1.0046 Spiral Repellor 

Setup 04 1.0000+0.1511i   1.0000-0.1511i   1.0000 Spiral Repellor 

Setup 05 1.0000+0.6760i   1.0000-0.6760i   1.0000 Spiral Repellor 

Setup 06 1.0000+1.0695i   1.0000-1.0695i   1.0001 Spiral Repellor 

Setup 07 1.0000+0.8281i   1.0000-0.8281i   1.0001 Spiral Repellor 

Setup 08 1.0000+0.8535i   1.0000-0.8535i   1.0001 Spiral Repellor 

Setup 09 1.0000+0.8783i   1.0000-0.8783i   1.0001 Spiral Repellor 

Setup 10 1.0000+0.8135i   1.0000-0.8135i   1.0001 Spiral Repellor 

Setup 11 1.0000+0.8208i   1.0000-0.8208i   1.0001 Spiral Repellor 

Setup 12 1.0000+0.8353i   1.0000-0.8353i   1.0001 Spiral Repellor 

Setup 13 1.0007+0.4937i   1.0007-0.4937i   1.0005 Spiral Repellor 

Setup 14 1.0000+0.5905i   1.0000-0.5905i   1.0000 Spiral Repellor 

Setup 15 1.0293+0.2069i   1.0293-0.2069i   1.0061 Spiral Repellor 

 
Table 6 Eigen values for the second fixed point and the corresponding fixed point type for each parameter 

setting that appears in table 2. 

 

 Eigen Values For the Second Fixed Point Fixed Point Type 

Setup 01 1.0031+0.0280i   1.0031-0.0280i   0.9483 Spiral Repellor 

Setup 02 1.0209+0.0075i   1.0209-0.0075i   0.9116 Spiral Repellor 

Setup 03 1.0842                  1.0091                0.8038 Repellor 

Setup 04 1.0003+0.0009i   1.0003-0.0009i   0.9537 Spiral Repellor 

Setup 05 1.0045+0.0177i   1.0045-0.0177i   0.9453 Spiral Repellor 

Setup 06 1.0070+0.0433i   1.0070-0.0433i   0.9405 Spiral Repellor 

Setup 07 1.0058+0.0262i   1.0058-0.0262i   0.9428 Spiral Repellor 

Setup 08 1.0060+0.0262i   1.0060-0.0262i   0.9396 Spiral Repellor 

Setup 09 1.0061+0.0263i   1.0061-0.0263i   0.9365 Spiral Repellor 

Setup 10 1.0061+0.0259i   1.0061-0.0259i   0.9439 Spiral Repellor 

Setup 11 1.0059+0.0260i   1.0059-0.0260i   0.9433 Spiral Repellor 

Setup 12 1.0057+0.0263i   1.0057-0.0263i   0.9423 Spiral Repellor 

Setup 13 1.0292+0.0180i   1.0292-0.0180i   0.8939 Spiral Repellor 

Setup 14 1.0036+0.0135i   1.0036-0.0135i   0.9464 Spiral Repellor 

Setup 15 1.1010                  1.0123                0.7852 Repellor 

 
6.3 Analyzing the results 
 
It is obvious from table 4 that setup 1, 2, 3, 13 and 15 are affected by tuning the parameters. 

Some values of the fixed points for the other setups have been slightly changed, but these have 

not affected the types of the fixed points as shown in both tables 5 and 6.  

 

The change in the values of the fixed points for setup 1, 2, 3, 13 and 15 have affected the type of 

the fixed points for setup 3 and 15 only as shown in table 6. However, the change from spiral 

repellor to repellor will not affect the dynamic behaviour of the attractor as both of them will 

repel trajectories heading toward them in all directions: x, y and z. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013 

117 

7. DISCUSSION 
 
There results attained in this paper suggest that there are weak connections between the NDS 

model and original Rössler system. The discretization method that is used in constructing the 

NDS model doesn’t follow known methods that are used in simulating continuous systems. The 

authors in [12] has used different time steps and nested scaling factors. These and the change 

that is made to the sign of both x and k has led to a change in attractor properties such as fixed 

points. Tuning the parameters of the NDS model has led to slight changes in the capacity of the 

attractor in terms of the number of stabilized UPOs. The mathematical analysis of the dynamics 

of the model for different parameter’s settings has shown that the fixed point’s types remained 

unchanged. 

 

The two spiral repellors of the NDS model force any nearby trajectory to evolve to infinity, but 

when NDS model is equipped with a suitable reset mechanism then trajectories will remain in a 

fractal dimension as shown in figure 3. This is one of the main chaos properties. It has already 

proven that the NDS model is chaotic according to the Lyapunov exponent estimates obtained in 

[29]. In contrast, the two spiral saddle points of the Rössler attractor will keep nearby trajectories 

evolving between the forces of attracting sides of both of saddle points. 

 

When comparing the attractors of both NDS and original Rössler as depicted in figure 1 and 

figure 3, it is clear that the shape of the attractor is preserved in x-u plot except that the attractor 

in the NDS model is flipped due to the sign change in x and k. However, when comparing the 

fixed points, eigenvalues and eigenvectors it is obvious that they are different. 

 

The results obtained in this paper also suggest that both the reset mechanism and the feedback 

signal are vital for the NDS attractor to exist. 

 

8. CONCLUSION 
 
Chaotic spiking neural models have been studied and investigated in recent years to explore the 

possibilities of exploiting dynamics of such models in carrying out information processing tasks. 

The NDS model encompasses a large number of UPOs that are stabilised using a feedback 

control mechanism. Although the NDS model has weak connections to the original Rössler 

system, still much rich dynamic behaviours are inherited from the Rössler system which can be 

noticed when comparing figure 1 and figure 3. 

 

The discretization method that is used in devising the NDS model  along with the change in sign 

in the term u(t)(x(t)−k) has affected the  shape and  properties  of the  NDS  attractor when  

compared  with Rössler system. 

 

Different experiments have been carried out to tune parameters of the NDS model. The valid 

ranges of the model have not changed the properties of the NDS model both in phase space and 

Eigen space. The mathematical analysis of the attractor for different parameter settings revealed 

that the underlying dynamics of the attractor remained the same.  

 

Although there are weak connections between the NDS and the Rössler models, the NDS 

attractor encompasses large number of UPOs and wide range of dynamic behaviours that may be 

exploited to carry out information processing tasks. 
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