
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

DOI : 10.5121/ijaia.2014.5405 63

COMPARISON OF VARIOUS HEURISTIC

SEARCH TECHNIQUES FOR FINDING

SHORTEST PATH

Mr. Girish P Potdar
1
, Dr.R C Thool

2
.

 1

Associate Professor, Computer Engineering Department, P.I.C.T, Pune,
2
Professor, Department of Information Technology, SGGS IE&T, Nanded,

ABSTRACT

Couple of decades back, there was a tremendous development in the field of algorithms, which were aimed

at finding efficient solutions for widespread applications. The benefits of these algorithms were observed in

their optimality and simplicity with speed. Many of the algorithms were readdressed to solve the problem of

finding shortest path. Heuristic search techniques make use of problem specific knowledge to find efficient

solutions. Most of these techniques determine the next best possible state leading towards the goal state by

using evaluation function. This paper shows the practical performance of the following algorithms, to find

the shortest path:Hill Climbing, Steepest-ascent, and Best-First and A*. While implementing these

algorithms, we used the data structures which were indicated in the original papers.In this paper we

present an alternative data structure multi-level link list and apply the heuristic technique to solve shortest

path problem. This was tested for class of heuristic search family-- A* and Best First Search approaches.

The results indicate that use of this type of data structure helps in improving the performance of algorithms

drastically.

Keywords:

Multilevel link list, Informed search techniques, Heuristic function, Shortest path algorithm.

1.INTRODUCTION

Heuristic search algorithms have exponential time and space complexities as they store complete

information of the path including the explored intermediate nodes. Hence many applications

involving heuristic search techniquesto find optimal solutions tend to be expensive. Despite of

these, the researchers have strived to find optimal solution in best possible time. In this paper we

have considered major algorithms which are applied to find the shortest path: hill – climbing,

steepest –ascent, best first and A* [1,2,4].

Hill climbing algorithms expand the most promising descendant of the most recently expanded

node until they encounter the solution. Steepest – ascent hill climbing differs from hill climbing

algorithm only the way in which the next node is selected. In this method it selects best successor

node for expansion, unlike the first successor node for expansion, as done in hill climbing.

Though this method tries to choose best possible path , but this method , like hill climbing

method may fail to find a solution by reaching to a node from were no improvements can be

done [5,8]. Best first search method selects the “best” node for further expansion by applying a

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

64

heuristic function. It then generates the successor node in similar fashion till the goal node is

reached. This technique tries to explore the advantages of breadth first and depth first search

technique and provides better time bound solution. Best first algorithm involves OR graph, it

avoids the node duplication and also works on the assumption that each node has parent link to

give the best node from the node where it is derived and link to successors. A* algorithm is a

slight modified version of best search algorithm. The difference is that in A* the estimate to the

goal state is given by heuristic function and also it makes use of the cost of the path developed

[2,3,6].

We will now discuss each of these methods for finding the shortest path.

2.HILL CLIMBING METHOD FOR SHORTEST PATH FINDING

Hill climbing algorithm expands one node at a time beginning with the initial node. Each time it

expands only the best node reachable from current node. Thus this method does not involve

complex computation and due to this reason cannot ensure the completeness of the solution. Hill

climbing method does not give a solution as may terminate without reaching the goal state

[12].Now let us look at algorithm of hill climbing for finding shortest path:

Procedure for hill climbing algorithm to find the shortest path:

hill_climb_sp (s, g, Q)

{

// s& g are start and goal nodes respectively.

// Q is queue which stores the successor

 // nodes.

// let curr_node indicate current working

// node.

// path _cost gives the cost of the path.

initialiseQ;

curr_node = s;

path_cost=0;

while (1)

{

if (curr_node is goal node) then

terminate the process with SUCCESS;

else

{

find successor node of curr_node;

addthis node in Q ;

}

if(Q is empty)then

terminate the process with FAILURE;

else

{

temp_node = first node of Q ;

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

65

path_cost = path_cost +

edge_cost [curr_node][temp_node];

curr_node = temp_node;

delete first node from Q ;

}

}

One may notice that there can be failure state when algorithm may fail to reach the goal node.

This will happen especially when the processing has reached to a node from where no new best

nodes are available for further expansion. This will happen especially when the processing has

reached to a node from where no new best nodes are available for further expansion.

3. STEEPEST ASCENT HILL CLIMBING METHOD FOR SHORTEST PATH

FINDING

This method is a result of variation in hill climbing. Here, instead of moving the immediate best

node, all the reachable nodes from current node are considered and among these the best one is

chosen. In case of simple hill climbing, the first successor node which is better, is selected, due to

this we may omit the best one. On the contrary steepest ascent hill climbing method not only

reaches to the better state but also climbs up the steepest slope.

The variation in algorithm will be only in finding the best successors node from all the possible

successor nodes from all possible successor, and not just the first best node [2,12,15].

The algorithm is given below:

steep_asc_hll(s, g , Q)

{ // s& g are stait and goal nodes respectively.

 // Q is queue which stores the successor

 // nodes.

// let curr_node indicate current working // node.

// path _cost gives the cost of the path.

initialise Q;

curr_node = s;

path_cost=0;

while (1)

{

if (curr_node is goal node) then

terminate the process with SUCCESS;

else

 {

find all the reachable node from curr_node;

determine the cost of reaching to these nodes

fromcurr_node;

according their cost add them in Q.

 }

if (Q is empty) then

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

66

terminated the process with FAILURE;

else

{ temp_node = first node of Q ;

path_cost = path_cost +

edge_cost [curr_node][temp_node];

curr_node = temp_node;

delete first node from Q ;

 }

}

One can notice that hill climbing and steepest – hill climbing may fail to find a solution. Either

algorithm may not reach goal node as it may reach to a node where we may not find better nodes.

In such cases we may need to back-track as use more rules before choosing the next node.

However this process will be time consuming.

Both the methods discussed, may terminate not by finding a goal node but may reach node from

where no better nodes can be generated.

This will happen if the processing has reached to one of the following situations:

i) A node might have been selected which may be better that its neighbors, however

there may be few better nodesavailable which are step away. This situation is termed

as local maxima.

ii) A node might have been selected, whose neighbors may have the same value and

hence choosing next best node is difficult. This is known as plateau.

iii) A ridge is a special kind of local maximum, though the path selected so far may be

the best, yet making further moves difficult.

The next algorithms described here try to overcome these problems.

4. BEST FIRST METHOD FOR SHORTEST PATH FINDING

Best first search is a type of graph search algorithm. Here the nodes are expanded one at time by

choosing lowest evaluation value. This evaluation value is a result of heuristic function giving a

measure of distance to the goal node. For typical applications such as shortest path problems, the

evaluation function will be accurate as it accounts for distance or an absolute value [14,19].

Best first search is a combination of breadth and depth first search. Depth first search has an

advantage of arriving at solution without computing all nodes, whereas breadth first arriving at

solution without search ensured that the process does not get trapped. Best-first search, being

combination of these two, permits switching between paths. At every stage the nodes among the

generated ones, the best suitable node is selected for further expansion, may be this node belong

to the same level or different, thus can toggle between depth-first and breadth-first. This method

involves OR graph, avoids node duplication, and also requires two separate lists for processing.

OPEN list keeps the nodes whose heuristic values are determined, but yet to be expanded.

CLOSE list have the nodes which have been already checked, further these nodes are kept in this

list to ensure no duplications. It implies that the OPEN list has the nodes which need to be

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

67

considered for further processing and the entries in CLOSE list indicate the nodes which may not

be re-required in further steps [6,7].

Let us look at the best first search algorithm for finding shortest path:

bfs_sp (s, g)

{

// s is start node & g is goal node

// let OPEN and CLOSE be the two lists.

// let current_w indicates current working //node.

// path_cost indicates cost of reaching to a // node x.

path_cost=0;

OPEN=NULL;

CLOSE=NULL;

do

{

add_node (OPEN, s); //add S to

 //OPEN list;

current_w= first element of OPEN;

determine f(n) for successor nodes of current_w;

add these new nodes to OPEN based on their f (n) values;

movecurrent_w to CLOSE;

current_w= first node of OPEN;

path_cost=path_cost + f(n) of current_w;

}

while (current_w is not g and OPEN is not empty);

If (current_w=g) then

printpath_cost;

else

print failure;

}

In this case f (n) a heuristic function is an actual edge cost function.

5. A* ALGORITHM FOR SHORTEST PATH FINDING

We know that the various search techniques are designed, tested and are being used for various

purposes whatever it is for system software or application software. But the base for this is

however mainly because of the problems in planning domain. Classical approaches to heuristic

search algorithm work on assumption of the existence of deterministic model of sequential

decision making leading to the solution. The research work focused on solving planning

problems under uncertainty [1]. Heuristic algorithms have given a new looked into the problems

belonging to this domain [6,10].

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

68

 The shortest path problem can be solved by A* algorithm. The heuristic function needs to

evaluate two costs, g and h. Let g(n), in shortest path problem, represent cost of choosing the path

from starting node to node n; and h(n) represents optimal cost of node n to the goal node. Now

the cost of node n is given by: f*(n) =g(n)+ h*(n). However the value of h*(n) will be unknown

in most of the situations, which results in unknown value of f*(n). A* algorithm, however makes

a best approximation for h*(n)[16,17].

The A* algorithm to solve the shortest path problem can be written as: [10]

Step 1: Start from the start node; place it in OPEN list. This will be current working node.

Step 2: Explore all the nodes adjacent to the one in OPEN list.

Step 3: Determine the cost function for all the nodes obtained in step 2; and place them in OPEN

list in increasing order of cost function values.

Step 4: Move current working node, from OPEN list to CLOSE list.

Step 5: Now the first node in OPEN List will be the current working node (which is having least

cost function due to insertion criteria in step 3).

Step 6: If this current working node is not the goal state (final node), then repeat step 2 to step 5.

Step 7: The CLOSE list gives the shortest path and the value of last cost function obtained gives

the optimal cost.

6. EXPERIMENTAL RESULTS

All the algorithms discussed in previous sections were implemented in C++ and run on 2.4 GHz

Intel C2D system with 2GB RAM. The random data sets were created for varying number of

input nodes and saved in separate files. While testing these algorithms stored data was given as

input data and processed. The algorithms were tested for the number nodes and edges

explored/visited were compared. The Number of nodes and edges considered during the process

for various algorithms are given in Table 1 and Table 2 respectively.

Note: HC –Hill Climbing, ST_AC --Steepest Ascent

Hill Climbing,BFS—Best First Search and A*.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

69

Table 1: Number of nodes considered.

Table-1 shows that there is significant amount of improvement on number of nodes being

considered in A* algorithm compared to the rest of the methods.

Table 2: Number of edges considered

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

70

Table-2, as a consequence of nodes expanded or considered results in varying number of edges.

In BFS and A* the edge count reduces, as we make proper heuristic estimation. Where as in Hill

climbing or in Steepest Ascent, we try to choose the immediate best node, which will ultimately

result in exploring more number of edges.

The resulting graphs of the two algorithms are given in Fig 1 and Fig 2.

Figure 1: Comparison of number nodes considered against total nodes in graph.

Figure 2: Comparison of number edges considered against total nodes in graph

One may also observe here that certain unexpected variations in the values. This is mainly due to

the fact that these algorithms were executed till they find the solution and were not run for fixed

number of iterations.

7.BEST FIRST SEARCH USING MLL AS DATA STRUCTURE

Now let us look at the variations to the algorithms presented in section 4 and 5. Here let us make

use of multi-level linked list as data structure for implementation [8,18,20].

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

71

In section 4, we discussed the conventional approach of Best first search for finding shortest path.

In this section we present slightly modified approach for solving the problem of shortest path

finding. We store the current working node in parent list of MLL and all the adjacent nodes in its

successor list. The best node as determined by f(n), will be chosen for further expansion.

f(n) = min(cost(n,i)), ∀i, where i is an adjacent node of n.

The skeleton of the algorithm is given below:

Best First method with multi-level linked list:

bfs_mll_sp (s, g)

{

 // s is start node & g is goal node

 // begin the process from s; this will be the

 //first node in MLL, let it be current //working node call it current_w

 //path_cost indicates cost of reaching to a

 // node x.

path_cost=0;

do

{

determine f(n) for successor nodes of current_w; add these new nodes to

successor link S based on their f (n) values for the current parent node;

current_w= first node of S;

path_cost=path_cost + f(n) of current_w;

}while (current_w is not g and S

of current parent node is not empty);

If (current_w=g) then

printpath_cost;

else

print failure;

}

In this case f (n) a heuristic function is an actual edge cost function.

8. A* ALGORITHM USING MLL AS DATA STRUCTURE

As stated earlier, shortest path problem aims at finding minimum cost path between pair of nodes

cumulatively and then find the final path between start and goal nodes[9,21]. A* algorithm with

MLL, resultin pruningthe search space [8,17]. The approach which has been followed in our work

makes use of an exact accurate function. The evolution function f(n) is given as:

f(n)=g(n) +h(n); where g(n) is the cost of an edge between the currently explored node or current

working node and the node n being examined, h(n) is the best edge cost value from the set of

edge costs going out from the node n to the all possible adjacent nodes.

Let us look at the algorithm.

Step 1: Start from start state; this will become the first node in MLL, call it as current working

node. Since this is the first node this will be the first node of parent list.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

72

Step 2: Explore all the nodes adjacent to the one in the current parent node list.

Step 3: Determine g value of the current working node.

Step 4: Obtain the h values for all the nodes obtained in step 2.

Step 5: Find the f values for the expanded nodes; keep them according to their values in successor

list for the current parent node (this will result in the list maintained in increasing order of the f

values, which will be the cost function).

Step 6: Pick up the first node from the successor list obtained in step 5 which will be the next

working node.

Step 7: If this current working node is not the goal state, then attach this node to parent list and

repeat step 2 and step 6.

Step 8: The set of nodes belonging to parent list gives the shortest path and the cost function

determined in the last step will be the optimal cost.

9. EXPERIMENTAL RESULTS OF BFS AND A* WITH MLL:

The BFS and A* algorithms discussed in previous sections were implemented in C++ and run on

2.4 GHz Intel C2D system with 2GB RAM. The random data sets were created for varying

number of input nodes and saved in separate files. While testing these algorithms stored data was

given as input data and processed.

The algorithms were tested for the number nodes and edges explored/visited were compared. The

Number of nodes and edges considered during the process for various algorithms are given in

Table 3 and Table 4 respectively.

Table 3: Number of nodes considered.

[Existing approach indicates the conventional approach that is being implemented and in MLL we used

new method]

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

73

Table 4: Number of edges considered.

[Existing approach indicates the conventional approach that is being implemented and in MLL we used

new method]

10.CONCLUSION

We have presented major class of heuristic algorithms. The comparison shows that though all

these algorithms can be applied to find the shortest path, but should not be used unless there is a

real- time, event driven actions are anticipated. The comparison gives us clear idea that best-first

search and A* algorithms are very well suitable when goal node cannot be reached from all

nodes. However there may be interesting scenarios that may come out when these algorithms are

applied with different data structures.

The results clearly indicate that hill climbing or steepest ascent hill climbing algorithms are not

suitable for problems such as shortest path finding. This is due to the fact that there is no

assurance of getting final optimal solution for all the cases. Best first and A* algorithms on the

other hand ensure optimal solution for limited graph size. For larger number of nodes these

algorithms not only tend to take more time but the optimality factor may be of concern.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

74

There are number of factors for using different data structure approach, in heuristic algorithm – as

special case study we implemented Best First Search and A* algorithm with multilevel linked

list as data structure is the main reason of the increased speed in determining the shortest path.

One can easily figure out the fact that both these algorithms with multilevel lined list results in

reduced area that is to be searched, which eventually gives us the better way of handling the

nodes at runtime. Since the number of nodes or edges considered in the process is less, the time

taken to find the optimal solution will also be less which are shown in the results section.

One may even work on eliminating the already explored nodes in subsequent levels, which may

further reduce the space requirement.

REFERENCES

[1] BlaiBonet and Eric A. Hansen, (2010)“Heuristic Search for Planning under Uncertainty”, Chapter in

Heuristics, Probability and Causality: A Tribute to Judea Pearl College Publications. pp 3-22

[2] Eric A Hansen, Rong Zhou, (2007) “Anytime Heuristic Search”, Journal of Artificial Intelligence

Research 28, pp 267-297

[3] G.Cornuejols and G L Nemauser, (1978) “Tight bounds for christofides” travelling salesman

heuristic* Short Communication Mathematical Programming, Vol. 14, Issue 1, pp 116-121

[4] Anne L. Gardner, (Sept 1980) “Search: An Overview”, AI magazine, Vol. 2, Number 1

[5] R. Korf, (1990) “Real time heuristic search”, Artificial Intelligence ACM Digital Library, Vol. 42,

pp189-211

[6] RinaDechter and Judia Pearl, (July 1985) “Generalized Best-First Search Strategies and the

Optimality of A*.”, Journal of the Association for Computing Machinery, Vol. 32, No. 3, pp 505-536

[7] L. Fu, D. Sun and L. R. Rilett, (2006) “Heuristic shortest path algorithms for transportation

applications: State of the art”, Elsevier Computer and Operations research 33, pp 3324-3343

[8] Girish P. Potdar andDr.R.C.Thool, (2013) “An Alternate way of implementing Heuristic Searching

Technique” International Journal of Research in Computer andCommunication Technology, Vol. 2,

No 9, pp-793-795

[9] Hen-Yong Pang, Alicia Tang Y.C., (2006) “A Route Advisory System (RAS) For Travelling

Salesman Problem”, Journal of Applied Sciences Research 2(1), pp 34-38

[10] C.H. Peng, J.S. Wangand R.C.T. Lee, (1994)“Recognizing Shortest Path Trees in Linear Time”,

Information Processing Letters, Vol. 57, pp 77-85

[11] R.C.T. Lee, S.S. Tseng, R.C. Chang, Y.T. Tsai., (2012) “Introduction to Design and analysis of

algorithms –A strategic approach”, Tata McGraw Hill edition 2012

[12] P.P.Chakrabarti,S. Ghose, A. Acharya and S.C. de Sarkar, (1989) “Heuristic search in restricted

memory”, Artificial Intelligence, 41(2), pp 197-221,

[13] Herman Keindl, Angelika Leeb and Harald Smetana,(1994) “Improvements on linear space search

algorithms”, in proceedings ECAI-94, pp 155-159,

[14] Richard E. Koff, (1993) “Linear space best-first search”, Artificial Intelligence, 62, pp 41-78

[15] A.Martelli, (1977) “On the search complexity of admissible search algorithms”, Al, Vol. 8, pp 1-13

[16] D. Dreyfus, (1967) “An appraisal of some shortest path algorithms”, Journal of the Operations

Research Society of America,Vol. 17 Issue 3, pp 395-412

[17] A.V. Goldberg, (2001) "A simple shortest path algorithm with linear average time", In proceeding 9th

ESA, Lecture notes in computer science LNSC 2161, pp 230-261

[18] B.V.Charkassy,A.V. Goldberg, T.Radzik, (1996) “Shortest Path Algorithms: theory and experimental

evaluation”, Mathematical Programming, 73(2) pp 129-74.

[19] J.W.Lark, C.C.White III, K. Syverson., (1995) “A best first search algorithm guided by a set- valued

heuristic”,IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, pp 1097-1101

[20] R.K.Ahuja, K. Mehlhorn, J.B.Orlin and R.E.Tarjan, (April 1990,) “Faster algorithms for shortest path

algorithms”, Journal of the Association for Computing Machinery,Vol. 37, No. 2, pp 213-223

[21] D.P.Bertekas, (1991) “The auction algorithms for shortest paths”, SIAM J. Opt, Vol. 1, pp 425-447

