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ABSTRACT 

 

In this contribution, a Bayes Ying-Yang(BYY) harmony based approach for on-line signature verification is 

presented. In the proposed method, a simple but effective Gaussian Mixture Models(GMMs) is used to 

represent for each user’s signature model based on the prior information collected. Different from the early 

works, in this paper, we use the Bayes Ying Yang machine combined with the harmony function to achieve 

Automatic Model Selection(AMS) during the parameter learning for the GMMs, so that a better 

approximation of the user model is assured. Experiments on a database from the First International 

Signature Verification Competition(SVC 2004) confirm that this combined algorithm yields quite a 

satisfactory result. 
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1. INTRODUCTION 

The on-line signature verification task can be expressed as follows: given a complete on-line 

signature �and a claimed user c , decide whether cindeed produced the signature � [1]. To 

implement this procedure mathematically, a model Θ�  for the user c and Θ�  an antithetical 

model need to be learnt so that a score function S(�,Θ�,Θ�) can be calculated, which will later be 

used to compare against some pre-set threshold T to finally determine the authenticity of the 

signature �: 

S��,Θ� ,Θ�� 	≥ �����������������
< ������������������ �																																																																																															(1) 

 

Based on the above theory, selecting a good model is the most important step in designing a 

signature verification system. Despite the most commonly used, distance based Dynamic 

Warping(DW)[2], or the feature-based statistical method, Hidden Markov Modeling(HMM)[3][4], 
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in this paper, we propose a new BYY based GMMs to build the signature models for the users. The 

GMMs based recognizers are conceptually less complex than HMM, which leads to significantly 

shorter training time as well as less parameters to learn[5]. Distinguished from the earlier works 

with the cluster numbers pre-settled and same for all the users[6], the BYY based GMMs can 

decide the optimal cluster numbers automatically according to the data distribution of different 

users in the process of parameter leaning, such that improves the performance of the algorithm. 

 

This paper is structured as follows: the introduction involves some definitions, and the brief 

description of the main idea in this work. In Section 2, the subset of the BYY based GMMs method 

we focused on is detailed. Section 3 presents the feature select and data processing used in our 

work, followed by the model training and similarity score computation in Section4. And the 

experiment result as well as the performance evaluation of this method proposed is explained in 

section 5. 

2. BYY BASED GMMS FOR SIGNATURE VERIFICATION 

2.1 Gaussian Mixed Models 

 

GMMs are such well known and so much referenced statistical models in many pattern recognition 

applications. Based on the representation of a weighted linear combination of Gaussian 

probabilistic function, as shown in the following equation (2),they are versatile modeling tools to 

approximate any probability density function(pdf) given a sufficient number of components while 

impose only minimal assumptions about the modeled random variables. 

���|Θ� =� !�"�#Θ!$
%

!&'
 

 

�"�#Θ!$ = ("�#�! , σ!$ 
= '

�*+�,/.#/0#1/.
��1."2�30$4/051"2�30$  (2) 

Where � ∈ 78 are the feature vectors that represent a handwritten signature, Θ =  ∪ :θ!;<&'
= ，

 = > ', … ,  =@A, θ< = "�! , σ!$,  ! is the mixing weight for the �th component with each  ! ≥ 0 

and ∑  !%!&' = 1, and ("�#�! , σ!$ denotes a Gaussian density with a mean �! and a covariance 

matrix σ! . Each �"�#Θ!$ is called a component, and k refers to the component number, i.e. the 

cluster number. 

 

To learn the unknown parameter Θ , the EM algorithm has been used in an iterative mode. 

However, one defect bothering in this method is that the component number k needs to be set 

manually, which when not consist with the actual data distribution, will leads to local optimum and 

further impact the accuracy of the verification. Some prior works would pick several promising 

values to run and choose the best one as k. In addition to the additional time cost, the discontinuity 
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of the values in such method can also miss the best choice for k. The BYY, on the other hand, can 

choose the optimal cluster number automatically during the parameter learning. 

 

2.2 The Bayes Ying-Yang theory and harmony function 

 

A BYY system describes each data vector � ∈ � ∈ 78 and its corresponding inner representation 

� ∈ E ∈ 78  using two types of Bayesian decomposition of the joint density ���, �� =
���|������  and ���, �� = F��|��F��� , named as Yang machine and Ying machine, 

respectively[7]. Given a data set �G = H�IJI&'K , where N is the total number of the sample, from the 

observation space�, the task of learning on a BYY system is mainly to specify each of ���|�G�, 
���G� , F��G|�� , F���  with a harmony learning principle implemented by maximizing the 

functional[8]: 

 

L��||F� = M���|�G����G� ��>F��G|��F���@ ��G�� − ��OP 																																																							(3) 

 

where OP is a regulation term. 

 

As a matter of fact, the maximization of the harmony function L��||F� can push to get best 

parameter match as well as the least structure complexity, thus to produce the favorite property of 

AMS as long as k is set to be larger than the true number of components in the sample data �G . 

Based on this algorithm, it can be applied on the GMMs learning to strive for better accuracy. 

3. FEATURE SELECT AND DATA PROCESSING 

The signature sample data employed in our work are sampled by the pen tablets, which can detect 

the horizontal position(QI), vertical position(�I), pressure(�I) and azimuth(�I) of the pen point, as 

well as the elevation of the pen. Besides, the sensor also records the pen-up(�I = 0) (OI)points. So 

the raw signature vector can be expressed as follows: 

 

�IR = >QI , �I , �I , �I , OI@                                (4) 

 

Referring to former experimental examples[2], as well as considering the practical application, we 

restricted the investigation to horizontal position, vertical position and pressure data. Besides, to get 

more discriminative, two dynamic features, trajectory tangent angle SI  and instantaneous 

velocitiyTI, which two are difficult to reproduce based only on visual inspection[9], are computed 

as follows: 

SI = ����� UVW
XVW TI = YQIW * + �IW *                                            (5) 

 

where QIW , �IW  represent the first derivatives of QI and �I with respect to time. Finally, we get the 

basic feature vector for each sample: 

 

�I ′ = >QI , �I , �I , TI , SI@                                               (6) 
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Figure 1 gives an example of the signature date from one user. 

 

To eliminate the dynamic ranges of the different features and ensure a better learning result, each 

individual feature �8I ′ ∈ HQI , �I , �I , SI , TIJ with �=1,...,5 is transformed into a zero-mean, unit 

variance normal distribution using: 

�8I � 2,V′�2,′
[,′                                                             (7) 

Where �8 ′ is the mean value of the ��\ dimension vectors, and]8 ′the corresponding variance 

value. After the transformation, we can get the unified signature vector�I: 
 

�I = >QÎ , �Î , �Î , TÎ , SÎ@                                   (8) 

 

And the final complete observation comes as 
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� = >�' … ,�G … ,�_@                                                      (9) 

 

where M is the total number of the users. 

The complete verification process is described in the following flow chart: 
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Figure 2 The complete verification follow chart 

4 MODEL TRAINING AND SIGNATURE SCORE COMPUTING 

4.1 Model training 

 

The main task of the model training is to maximize the harmony function L��||F�. And in our 

work, we chose annealing learning algorithm proposed in [10], which sets the regulation term OP 

in equation (3) to one, and �(�G� to some empirical density estimation: 

 

�(�G� � '
K∑ `(� − �I�KI&' 																																																																																																																											(9) 

 

where K(.) is a prefixed kernel function[8], and further converge to the delta function: 

 

`(� − �I� � 	+∞,								� = �I0,													� ≠ �I �																																																																																																																		(10) 

.According to Bayes’ law and the definition of GMMs: 

��� = �|�G� � b0P"cd#e0$
P(cd|Θf� ,  F��G|Θ%� = ∑  !F"�G#S!$%!&' 																																																															(11) 

 

Θ� 

(QÎ, �Î , �Î , TÎ , SÎ) 

(QÎ, �Î , �Î , TÎ , SÎ) 

Θ� 

(QI , �I , �I) 
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where F"�G#S!$ = F��G|� = ��,S!  represents the unknown parameters in each component and 

Θ% = :�! , S!;!&'
%

 represents all the parameters. 

Substituting (9)-(11) into (3), can we get : 

 

h�i%� = L��||F� � '
K∑ ∑ b0P"2V#e0$

∑ bjP(2V|ej�fjk1
��l�!F"�I#S!$m%!&'KI&' 																																																									(12) 

 

As we consume the components as Gaussian functions, so: 

F"�I#S!$ � F"�I#�! , σ!$ = '
�*+�,/.#/0#1/.

��1."2V�30$4/051"2V�30$																																																			(13) 

with the Θ%  changed into Θ% = :�! ,�! , σ!;!&'
%

, while the ���|�I�  is a free probability 

distribution under the basic probability constrains.In this situation, the harmony function can be 

rewritten as 

L(Θ%� � '
K∑ ∑ �(�|�I���l�!F"�I#�! , σ!$m%!&'KI&' 																																																																														(14) 

with the parameters Θ% = :�! ,�! , σ! , � = 1,… ,o;!&'
%

. 

However, one problem here to learn directly on the equation (14) is that the learning result makes it 

the hard-cut EM algorithm[11], which can be easily trapped in a local maximum while the 

component number k set bigger than the true one during the training as stated earlier. To get an 

optimum k, the annealing algorithm attaches a soften item to L�Θ%� in (15): 

 

Lp�Θ%� = '
K∑ ∑ ���|�I���l�!F"uI#�! , σ!$m%!&'KI&' + rΟK"���|�G�$																																												(15) 

where  

ΟK"�(�|�G�$ � − '
K∑ ∑ �(�|�I����(�|�I�%!&'KI&'                                (16) 

 

By controlling r → 0 from rt � 1, the maximum of Lp(Θ%� can lead to the global maximum of 

the harmony function L(Θ%�. 
 

The annealing learning algorithm can be realized by alternatively maximizing L(Θ%�  with 

Θ' � H�(�|�I�, � = 1,… ,oJ!&'%  and Θ* = Θ%, as shown follows: 

���|�I� � lb0P"uV#30,/0$m
1
v

∑ >bjP�uV|3j,/j�@
1
vfjk1
																																																																																																																							(17) 

�!∗ = '
K∑ ���|�I�																																																																																																																																				KI&' (18) 

�!∗ � '
∑ x(!|2V�yVk1

∑ �(�|�I�KI&' �I                                       (19) 
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Σ!∗ � '
∑ x(!|2V�yVk1

∑ �(�|�I�KI&' "�I −�!∗$"�I −�!∗$z                       (20)  

 

At last, we will get the optimum models for each user, which will be used in the following steps. 

 

4.2 Signature score computation 

 

As we can get access to both genuine and forgery signature data, the test model for the signature 

score computation we use here is the ratio of the posterior probabilities. Suppose the prior 

probability of a forgery is�{, then 1 − �{ is a genuine one’s prior probability. Let G(�,Θ� denote 

the Gaussian density of the model Θ evaluated at u. Thus the signature score can be expressed in 

equation (20). 

S��,Θ�,Θ�� = }"c	,Θ~$"'�x�$
}�c,Θ5�x� 																																																																																																																				(20) 

And according to the Bayes-optimal classification rule, when S��,Θ� ,Θ�� < 1, which means the 

probability of the test signature U belonging to Θ� is bigger than that of Θ�, so we decide it to be 

forgery, otherwise genuine[12].However, as the sample users are limited in our work, so we adjust 

the threshold to 2 to get a better recognition rate. 

5 EXPERIMENT RESULTS 

5.1 The performance of the BYY based GMMs 

 

The data used in our experiment is derived from the First International Signature Verification 

Competition(SVC 2004)[13]. In this experiment, we use 1600 signatures from 40 users, consisting 

of 20 genuine ones and 20 forgeries of each, which means the �{ in equation (20) to be 0.5. During 

the experiment, the first 5 out of 20 genuine signatures from each user were used to build the model 

Θ
�, and the first 5 forgeries were used for the model Θ�.  

 

As stated above, the BYY based GMMs is able to choose the optimal cluster number k 

automatically, so different users can have different component number in his/her GMMs Θ�. Even 

more, according to our experiment results, the component number for Θ� and Θ� of the same user 

can also be different, as shown in the following table 1. 

 

Table 1 The component numbers (k) in �� and �� of each user 

 

 k in Θ
�
 k in Θ

�
  k in Θ

�
 k in Θ

�
 

User1 15 23 User21 8 8 

User2 5 5 User22 8 8 

User3 18 20 User23 26 34 

User4 21 18 User24 8 8 

User5 8 8 User25 18 16 
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User6 16 16 User26 8 8 

User7 30 17 User27 8 8 

User8 8 8 User28 16 12 

User9 24 24 User29 30 28 

User10 19 12 User30 22 22 

User11 20 18 User31 8 8 

User12 24 23 User32 16 16 

User13 32 32 User33 14 6 

User14 16 16 User34 22 8 

User15 24 24 User35 8 8 

User16 32 32 User36 32 32 

User17 16 16 User37 10 18 

User18 32 32 User38 16 16 

User19 5 5 User39 32 32 

User20 14 12 User40 13 22 

 

Based on the models built in table 1, along with the threshold chosen, we can finally get the 

signatures recognized. In order to get a whole vision of the recognition results, Figure 1 shows two 

examples of the logarithm of the similarity scores computed against the threshold in our experiment 

for User1 and User 5, respectively. 
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Figure3 The verification results of User 1 and User 5 

Table 2 The FAR, FRR and verification rate of each user by BYY based GMMs 

 

 FAR(%) FRR(%) 

Verification 

 Rate(%)  FAR(%) FRR(%) 

Verification 

 Rate(%) 

User1 10.0000 10.0000 80.0000 User21 0.0000 0.0000 100.0000 

User2 2.5000 5.0000 92.5000 User22 0.0000 0.0000 100.0000 

User3 2.5000 0.0000 97.5000 User23 0.0000 0.0000 100.0000 

User4 5.0000 0.0000 95.0000 User24 0.0000 2.5000 97.5000 

User5 0.0000 0.0000 100.0000 User25 2.5000 0.0000 97.5000 

User6 0.0000 0.0000 100.0000 User26 0.0000 5.0000 95.0000 

User7 0.0000 10.0000 90.0000 User27 15.0000 0.0000 85.0000 

User8 5.0000 12.5000 82.5000 User28 0.0000 2.5000 97.5000 

User9 0.0000 0.0000 100.0000 User29 0.0000 0.0000 100.0000 

User10 2.5000 0.0000 97.5000 User30 0.0000 0.0000 100.0000 

User11 0.0000 5.0000 95.0000 User31 0.000 0.0000 100.0000 

User12 0.0000 2.5000 97.5000 User32 20.0000 0.0000 80.0000 

User13 0.0000 0.0000 100.0000 User33 12.5000 0.0000 87.5000 

User14 0.0000 0.0000 100.0000 User34 0.0000 2.5000 97.5000 

User15 7.5000 5.0000 87.5000 User35 7.5000 0.0000 92.5000 

User16 0.0000 12.5000 87.5000 User36 0.000 12.5000 87.5000 

User17 7.5000 0.0000 92.5000 User37 15.0000 5.0000 80.0000 

User18 0.0000 0.0000 100.0000 User38 5.0000 7.5000 87.5000 

User19 0.0000 0.0000 100.0000 User39 0.0000 0.0000 100.0000 

User20 0.0000 0.0000 100.0000 User40 0.0000 0.0000 100.0000 

 

And the False Reject Rate(FRR), the False Accept Rate(FAR) as well as the recognition rate are 

listed in the following table 2. From table 2 we can see that the BYY based GMMs can achievean 

average recognition rate of 94.5000%, with FAR at 3.0000% and FRR at 2.5000%. 

 

5.2 Comparison with the traditional GMMs and DTW 
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To evaluate the performance of the BYY based GMMs, we use two other recognition methods, the 

traditional GMMs and DTW, based on the same signature data base. 

 

In the traditional GMMs experiment, the feature vector, the computation of the similarity score as 

well as the threshold are the same as used in the BYY based GMMs experiment, except that the 

models are learnt by the EM algorithm. As the component number has to be settled before hand, so 

we set the k to 8, 16, 24 and 32, respectively, to get the best result. The average FAR, FFR and 

verification rate are listed in Table 3. 

 

Table 3 The average FAR, FRR and verification rate of the 40 users by normal GMMs 

 

 k=8 k=16 k=24 k=32 

FAR(%) 6.4375 7.7500 12.9375 14.9375 

FRR(%) 6.5625 4.0625 5.2500 9.1875 

Verification Rate(%) 87.0000 88.1875 81.8125 75.8750 

 

From Table 3 it can be concluded that the normal GMMs achieves the best performance with an 

average verification rate of 88.1875%, FAR at 7.7500% and FRR at 4.0625% when k is set to 16. 

As to the method of DTW, the feature vector is extracted by way of interpolation and wavelet 

function, including total sample time, the ratio of height and width, standard deviation in horizontal 

and vertical direction, standard deviation of pressure, rotation and azimuth, average velocity in 

horizontal and vertical direction, average pressure, azimuth and rotation, pressure, rotation and 

azimuth energy extracted by wavelet function, adding up to 36 features altogether. 

 

Among the first 5 genuine signatures, the smallest values in each of the 36 features form a new 36 

feature vector��; and the biggest values in each of the 36 features form another 36 feature vector��. 

��is used as the model and the matching distance between �� and �� calculated by DTW is used as 

the threshold. The average recognition rate is 68.9375%, the FAR is 17.6875% and the FRR is 

13.3750%. 

 

5.3 Conclusion 

 

Comparing with the experiment results of traditional GMMs and DTW can we find that the BYY 

based GMMs has a significant better performance, which proves that the BYY based GMMs can 

build relatively accurate models for the users, and its application in signature verification produces 

satisfactory results based on the data samples. So it can be a promising solution in this field. 
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