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ABSTRACT 

Most natural populations experience fluctuations in biological and environmental factors which causes 

carrying capacity variation. In this paper, we have introduced a diseased prey-predator model with peri- 

odically varying carrying capacity. We have studied the effects of different amplitudes of oscillaton as 

well as different frequencies of oscillation on the dynamics of the model. We have done bifurcation 

analysis of the model with respect to the amplitude of oscillation and frequency of oscillation of the 

carrying capacity. We observe limit cycle, low periodic orbits, high periodic orbits and chaos in the 

model. We observe the existence of critical frequency and amplitude of oscillation of carrying capacity 

for which the prey population extinct. Through bifurcation analysis we observe oscillatory coexistence of 

species in the model. Our results confirm that amplitude and frequency of oscillation of carrying 

capacity are key parameters together with the force of infection and body size of intermediate predator in 

a diseased prey-predator model. 
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1. INTRODUCTION 

One of the most exciting modern applications of mathematics are modelling and analysis of 

biological and ecological systems. There are many two dimensional models eg. Lotka [1] and 

Volterra [2] predator- prey model, Rosenzweig-MacArthur [3] model, Murray [4] model etc. 

But a two dimensional model is very poor to capture the dynamical complexity of real food 

chain. That is why, three dimensional model is more appropriate to study the food chain 

system. There is a large literature on these models. Researchers have modified the food chain 

model introducing various factors and various types of functional responses. Hastings and 

Powell [5] introduce a continuous time model of a food chain incorporating nonlinear 

functional responses. Hsu et al. [6] analyze a tritrophic ratio dependent food chain model and 
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discuss the extinction dynamics of the model. Maiti et al. [7] study a tritrophic food chain 

model with mixed selection of functional responses. Lobry and Mazenc [8] discuss the 

dynamical nature of a chemostat model with an arbitrary number of species. Wen [9] examine 

the sufficient conditions for existence of periodic solutions of a food chain model with Holling 

type-II functional response on time scales. Mandal et al. [10] analytically investigate the local 

qualitative temporal behaviour around inner equilibrium point of a three species model. Kooi et 

al. [11] study the ability of top predator to invade the food chain in a chemostat. Hsu and 

Waltman [12] discuss the dynamics of a chemostat model with an external nutrient and with an 

external inhibitor using theory of monotone flows. 

Again harvesting technics, omnivory criteria, toxin factors etc. are used in the progress of 

ecological system. Mukhopadhyay [13] study the autotroph-herbivore food chain model with 

Holling type-II harvest function in the presence of decomposers. Kar and Matsuda [14] analyze 

the effect of harvesting efforts on the prey-predator system with Holling type-III functional 

response. Tanabe and Namba [15] discuss the chaotic nature of a tritrophic food web model 

with omnivory and show that intraguild predation can destabilize food webs and induce chaos. 

Diehl and Feibel [16] reported that how enrichment affect coexistence of the species on three 

level food chain model with omnivory. Upadhyay [17] investigate dynamic nature of a three 

dimensional food chain model with Holling type-II functional response of toxin liberation 

process and suggest that toxic substences may act as bio-control by changing the state of chaos 

to order. By including the effect of toxin Zhu et al. [18] prove the existence of limit cycles in 

the 3-D system. S. Vaidyanathan [22] describes chaotic nature of a system using hybrid 

synchronization. Ghosh et al. [23] dicuss the reliability of a system through Monte-Carlo 

simulation. Again Mishra and Mankar [24] discuss a model using chaotic map. 

Introducing disease in ecological system, a new branch eco-epidemiology studies are in 

progress. Mukhopadhyay and Bhattacharyya [19] investigate the role of predator switching on 

the dynamics of a diseased eco-epidemiological model. Arino et al. [20] prove that introduction 

of an infected population in the classical ratio-dependent predator-prey model may act as a 

biological control to save the population from extinction. Das et al. [21] modified Hastings and 

Powell’s[5] model by introducing disease in the prey population. They show that disease in 

prey population and body size of intermediate predator can control the chaotic dynamics. They 

have assumed carrying capacity of the model as constant. 

Fluctuations in biological and environmental factors in natural populations causes carrying 

capacity variation. As far as our knowledge goes none of the studies was done on diseased prey 

population with periodically varying carrying capacity. But variation in carrying capacity is 

important in managing harvest of species and for planning carrying capacity research. In this 

paper, we investigate the effects of periodically varying carrying capacity on diseased prey 

population model. We have done bifurcation analysis of the model with respect to the 

amplitude of oscillation and frequency of oscillation of the carrying capacity. We have 

discussed the effects of different amplitudes of oscillatons and different frequencies of 

oscillation of carrying capacity on the dynamics of the food chain. 

This paper has been organized as follows. In Section 2, we dicuss our model, in Section 3, we 

discuss the simulation results and in Section 4 we concluded the main results of our model. 
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2. MODEL 
 

Recently, Das et al.[21] proposed predator-prey model with disease in prey population 

as 
dS

dT
  = RS(1 – 

S

K
 ) - αIS – C1A1

P1S

(B1+S)
  

dI

dT
  = αIS – A2P1I – D1I                                                                (1) 

dP1

dT
  = A1

P1S

(B1+S)
  + C2A2P1I – A3

P1P2

(B2+P1)
  - D2P1 

dP2

dT
  = C3A3

P1P2

(B2+P1)
  - D3P2 

 

Here S, I, P1, P2 are respectively the susceptible prey population, infected prey population, the 

intermediate predator population, top predator population. A1 and A2 are the maximal predation 

rate of intermediate predator for susceptible and infected prey respectively; A3 is the maximal 

predation rate of top predator for intermediate predator; B1 and B2 are the half saturation 

constant for functional response of intermediate and top predator respectively; C1
-1

 is the 

conversion rate of susceptible prey to intermediate predator; C2 is the conversion rate of 

infected prey to intermediate predator; C3 is the conversion rate of intermediate predator to top 

predator. D1, D2 and D3 are respectively the rates of death of infected prey population, 

intermediate predator and top predator, K is the carrying capacity of the system. 

 

Introducing the dimensionless parameters as  s = 
S

K
 , i = 

I

K
 , p1 = 

P1

K
 , p2 =  

P2

K
  and t = TR, the 

model (1) becomes: 
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A2K
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dp2
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A3K

R
 

p1p2
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Since carrying capacity of an ecological system is season dependent, we assume that the 

carrying capacity of the system vary sinusiodally with time. Mathematically this means 

carrying cpacity K of the system will be replaced by K = K0(1 + qsin(wt)). Here q is the 

amplitude of oscillation, w is the frequency of oscillation and K0 is a dimensionless number, q 

can take any value between 0 to 1. With this modification we obtained the following model: 
ds

dt
   = s(1 - s) - a(1 + qsin(p3))si - b(1 + qsin(p3)) 

p1s

 1 + cs(1 + qsin(p)3)
  

di

dt
  =  a(1 + qsin(p3))si - d(1 + qsin(p3))p1i − ei                                                                                           

(3)                                                                                                       
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dp1

dt
  = f(1 + qsin(p3)) 

sp1

(1 + cs(1 + qsin(p3)))
  + g(1 + qsin(p3))p1i - h(1 + qsin(p3)) 

p2p1

(1 + mp1(1 + qsin(p3)))
  - jp1 

dp2

dt
  = k(1 + qsin(p3)) 

p2p1

(1 + mp1(1 + qsin(p3)))
  - lp2 

dp3

dt
  = w 

Where a = 
αK0

R
 , b = 

A1C1K0

RB1
 , c = 

K0

B1
 , d = 

K0A2

R
 , e = 

D1

R
 , f = 

A1K0

RB1
 , g = 

A2C2K0

R
 , h = 

A3K0

RB2
 , m 

= 
K0

B2
 , j = 

D2

R
 , l = 

D3

R
  , k = 

A3C3K0

RB2
 , p3 = wt. 

3. SIMULATION RESULTS 

We have solved numerically the system (3) using fourth order Runge-Kutta method with a 

hypothetical set of parameter values most of which are taken from Das et al. [21] model. The 

following parameter values are kept fixed throughout the numerical simulations, we have 

choosen a = 1.3, b = 5.0, c = 2.3, d = 3.0, e = 0.5, f = 5.0, g = 2.5, h = 0.1, m = 2.0, j = 0.4, k = 

0.1, l = 0.01. 

We draw the phase diagram of total prey population vs. intermediate predator for different 

values of amplitude of oscillation q of carrying capacity in Figure-1 and Figure-2 keeping 

frequency of oscillation w = 0.1 fixed. From the figures we observe that for constant carrying 

capacity as well as for small amplitude oscillating of carrying capacity the total prey population 

vs. intermediate predator population has period-2 oscillation. But for higher amplitude of 

oscillation of carrying capacity the phase diagram of total prey population vs. intermediate 

predator population shows period-4 orbit, high periodic orbit, chaotic orbit, period-3 and 

period-6 orbits etc. But interestingly enough for q = 1 this phase diagram shows period-2 orbit 

again. We have also investigated the effects of variation of frequency of oscillation w of 

carrying capacity keeping the amplituide of oscillation q = 0.25 fixed in Figure-3. From the 

figure it is observed that for frequency of oscillation w = 0.4 we obtain limit cycle, for w = 0.6 

we obtain chaotic behaviour, for w = 0.8 again limit cycle and for w = 1.0 again chaotic 

behaviour in the phase space of total prey vs. intermediate predator. 

We have done bifurcation analysis of the system with respect to the bifurcation parameter q, 

keeping frequency of oscillation fixed at w = 0.1 taking different values of force of infection a. 

From the bifurcation diagram (Figure-4) we observe that total prey population varries 

significantly with respect to the amplitude of oscillation of the carrying capacity. Taking the 

force of infaction a = 1.3, a = 2.0 and a = 3.2 we observe that there exist some critical frequncy 

and critical amplitude of oscillation of carrying capacity for which prey species extinct as seen 

from Figure-4 to Figure-6. We have also done bifurcation analysis of the system with respect to 

the frequency of oscillation w as bifurcation parameter keeping the amplitude of oscillation 

fixed at q = 0.25 in Figure-7 for a = 1.3, in Figure-8 for a = 2.0 and in Figure-9 for a = 3.2. We 

observe limit cycle, period-2, period-6 and chaotic orbit of the system. 
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Figure 1: Phase diagram (a) for q = 0 and w = 0, (b) for q = 0.01 and w = 0.1, (c) for q = 0.05 and w = 0.1 

and (d) for q = 0.1 and w = 0.1. 

 

Figure 2: Phase diagram (a) for q = 0.25 and w = 0.1, (b) for q = 0.5 and w = 0.1, (c) for q = 0.86 and w = 

0.1 and (d) for q = 1.0 and w = 0.1. 

 

Figure 3: Phase diagram (a) for q = 0.25 and w = 0.4, (b) for q = 0.25 and w = 0.6, (c) for q = 0.25 and w 

= 0.8 and (d) for q = 0.25 and w = 1.0. 
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Figure 4: Bifurcation diagram of total prey population with respect to amplitude of oscilation ‘q’ varying 

from 0 to 1. 

 

Figure 5: Bifurcation diagram of total prey population with respect to amplitude of oscillation ‘q’ varying 

from 0 to 1 taking a = 2.0 and w = 0.1. 

 

Figure 6: Bifurcation diagram of total prey population with respect to amplitude of oscillation ‘q’ varying 

from 0 to 1 taking a = 3.2 and w = 0.1. 
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Figure 7: Bifurcation diagram of total prey population with respect to frequency of oscillation ‘w’ 

varying from 0 to 1 taking a = 1.3 and q = 0.25 

 

Figure 8: Bifurcation diagram of total prey population with respect to frequency of oscillation ‘w’ 

varying  from 0 to 1 taking a = 2.0 and q = 0.25.

 
Figure 9: Bifurcation diagram of total prey population with respect to frequency of oscillation w varying 

from 0 to 1 taking a = 3.2 and q = 0.25. 
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4. CONCLUTION 
 

We have introduced a diseased prey-predator model with periodically varying carrying 

capacity. We have studied the effects of different amplitudes of oscillatons and different 

frequencies of oscillation on the dynamics of the diseased food chain. We observe that the 

dynamics of the model is highly sensitive to variation of carrying capacity. Therefore improved 

food chain model must have the carrying capacity variation to capture the actual dynamics of 

real food chain. Under considering seasonal variation of carrying capacity we obtained 

oscillatory coexistence of predator-prey system. The variation of amplitude and frequency of 

oscillation of carrying capacity in the model is sufficient to obtain period-2, period-4, period-6 

oscillation and chaos keeping the force of infection fixed. From the bifurcation diagrams we 

observe that there exist some critical frequency of oscillation as well as critical amplitude of 

oscillation of carrying capacity for which the prey population is going to extinct. Therefore it is 

observed that oscillation in the carrying capacity can cause species extinction. With constant 

carrying capacity Das et.al.[21] predicted stable coexistence for force of infection a in 2.0 ≤ a ≤  

3.2 but with periodically varrying carrying capacity we have shown the possibility of species 

extinction there. There exist some frequency and amplitude of oscillation of carrying capacity 

for which stable oscillatory coexitence is also possible in 2.0 ≤ a ≤  3.2. Therefore the dynamics 

of our model is qualitatively distinct from the model [21]. Our results demonstrate that not only 

disease in prey population and body size of intermediate predator are the key parameters for 

controlling the chaotic dynamics but also the amplitude and frequency of oscillation of carrying 

capacity play an important role diseased prey-predator model. Temporal variation in carrying 

capacity is important in managing harvesting of species and for planning carrying capacity 

research. Carrying capacity as a function of not only time but also many ecological parameters 

must be understood in future. 
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