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ABSTRACT

This paper presents hyperchaos anti-synchronization of different hyperchaotic systems using Active
Generalized Backstepping Method (AGBM). The proposed technique is applied to achieve hyperchaos anti-
synchronization for the Lorenz and Lu dynamical systems. Generalized Backstepping Method (GBM) is
similarity to Backstepping and more applications in systems than it. Bckstepping method is used only to
strictly feedback systems but GBM expand this class. The hybrid active control method and generalized
backstepping method forces the system error to decay to zero rapidly that it causes the system to have a
short setteling time, overshoot.
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1. INTRODUCTION

An interesting phenomenon of nonlinear systems is chaos. In recent years, studies of chaos and
hyperchaos generation, control and synchronization have attracted considerable attentions, laser,
nonlinear circuit and neural network, etc [1-13]. Therefore, various effective methods have been
proposed one the past decades to achieve the control and stabilization of chaotic system, such as
Robust Control [1], the sliding method control [2], linear and nonlinear feedback control [3],
adaptive control [4], active control [5], backstepping control [6] and generalized backsteppig
method control [7-9], ect. Hyperchaotic system has more complex dynamical behaviors than
chaotic system. Historically, the more well know hyperchaotic systems are the 4D hyperchaotic
Rossler system [14], the 4D hyperchaotic Chua’s circuit [15], the generalized Lorenz system [16],
Chen system [17] and Lu system[18]. Synchronization of chaotic systems has become more and
more interesting topics to engineering and science communities [19-27]. The concept of
synchronization has been extended to the scope, such as phase synchronization [28], lag
synchronization [29] and even anti-synchronization (anti-phase synchronization) [30-32].

This paper is organized as follows: in Section 2, studies the Generalized Backstepping Method. In
Section 3, involves the basic properties for the Hyperchaotic systems. In Section 4, studies the ani-
synchronization of the two diferent hyperchaotic system with an Active Generalized Backstepping
Method. In Section 5, numerical simulation  of output presented. Conclusion are given in final
section.
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2. THE GENERALIZED BACKSTEPPING METHOD

Generalized Backstepping Method [7-9] will be applied to a certain class of autonomous nonlinear
systems which are expressed as folloẇ = ( ) + ( )̇ = ( , ) + ( , ) (1)

In which ℜ and = [ , , , ] ℜ. In order to obtain an approach to control these
systems, we may need to prove a new theorem as follow.
Theorem : suppose equation (1) is available, then suppose the scalar function ( ) for the
state could be determined i a manner which by inserting the term for , the function ( )
would be a positive definite equation (3) with negative definite derivative.( ) = ∑ (2)

Therefore, the control signal and also the general control lyapunov function of this system can be
obtained by equation (3),(4).

= ( , ) ∑ ∑ [ ( ) + ( ) ]− ∑ ( ) − ∑ [ − ( )] − ( , ) , > 0 , = 1,2, , (3)

( , ) = ∑ + ∑ [ − ( )] (4)

3. SYSTEM DESCRIPTION

The hyperchaotic Lorenz system [16] is described bẏ = ( − ) +̇ = − + −̇ = − (5)̇ = − +
Where , , and are constants. When parameters = 10, = , = 28 and = 1.3, the

system (5) shows hyperchaotic behavior. See figure 1.
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Figure 1. Phase Plane of hyperchaotic Lorenz system.

The hyperchaotic Lu system [18] is described bẏ = ( − ) +̇ = − +̇ = − (6)̇ = +
Where , , and are state variables and , , and are real constants. When = 36, =3, = 20, −0.35 < ≤ 1.3, system (6) has hyperchaotic attractor. See fig 2.

Figure 2. Phase Plane of hyperchaotic Lu system.
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4. ANTI-SYNCHRONIZATION OF TWO DIFFERENT HYPERCHAOTIC SYSTEMS

In this section, the hybrid active control method and generalized backstepping method is applied to
anti-synchronize between the hyperchaotic lorenz system and the hyperchaotic lu system.
Suppose the drive system takes the following froṁ = ( − ) +̇ = − + −̇ = − (7)̇ = − +
And the response system is given as followṡ = ( − ) + + ( )̇ = − + + ( )̇ = − + ( ) (8)̇ = + + ( )
Where ( ), ( ), ( ) and ( ) are control functions to be determined for achieving anti-
synchronization between the two systems (7) and (8).
Define state errors between system (7) and (8) as follows= += += + (9)= +
We obtain the following error dynamical system by adding the drive system (7) with the response
system (8).̇ = − + + ( − )( − ) + ( )̇ = − (1 + ) + − − + ( )̇ = − + ( − ) + + + ( ) (10)̇ = + ( − ) + − + ( )
Define the following active control functions ( ), ( ), ( ) and ( ).( ) = −( − )( − ) + ( )( ) = (1 + ) − + + + ( )( ) = −( − ) − − + ( ) (11)( ) = −( − ) + − + ( )
Where ( ), ( ), ( ) and ( ) are control inputs.
Substituting equation (11) into equation (10) yields.̇ = − + + ( )̇ = + ( )̇ = − + ( ) (12)̇ = + ( )
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Thus, the error system (12) to be controlled with control inputs ( ), ( ), ( ) and ( ) as
functions of error states , , and . When system (12) is stabilized by control inputs( ), ( ), ( ) and ( ), , , and will converage to zeroes as time tends to
infinity. Which implies that system (5) and (6) are anti-synchronized.
To achieve this purpose, we choose control inputs by using generalized backstepping method such
that( ) = 0( ) = − − ( + )( ) = − (13)( ) = − − ( + )
Now, using the gradient optimization of neural network coefficients controllers suitable for use
relationship (13) let’s examine. In this case, the coefficients ; = 1,2,3 benefit obtained from
the following relationship will come.( + 1) = ( ) −( + 1) = | ( ) − | (14)( + 1) = | ( ) − |
Where the learning rate is would be equal to 0.01. Initial value of ; = 1,2,3 are equal to 50.

5. NUMERICAL SIMULATION

This section presents numerical simulations anti-synchronization of hyperchaotic lorenz system
and hyperchaotic lu system. The Active Generalized Backstepping Method (AGBM) is used as an
approach to anti-synchronize hyperchaotic lorenz and lu system, eventually the result of this
method would be compared with the anti-synchronization result of Nonlinear Control Method

(NCM) [32]. We select the parameters of the hyperchaotic lorenz system as = 10, = , =28, = 1.3 and for the hyperchaotic lu as = 36, = 3, = 20, = 1.3, so that these
systems exhibits a hyperchaotic behavior. The initial values of the the drive and response systems
are (0) = 5, (0) = 8, (0) = −1, (0) = −3 and (0) = 3, (0) = 4, (0) =5, (0) = 5 respectively. The time response of , , , states for drive system (hyperchaotic
Lorenz) and the response system (hyperchaotic Lu) via active generalized backstepping method
shown in order figure 3 until figure 6. Anti-Synchronization errors , , , in
hyperchaotic lorenz system and hyperchaotic lu system shown in order figure 7 until figure 10.

Figure 3. The time response of signals and for hyperchaotic Lorenz and Lu systems.
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Figure 4. The time response of signals and for hyperchaotic Lorenz and Lu systems.

Figure 5. The time response of signals and for hyperchaotic Lorenz and Lu systems.

Figure 6. The time response of signals and for hyperchaotic Lorenz and Lu systems.

Figure 7. Anti-Synchronization in hyperchaotic Lorenz and Lu systems.
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Figure 8. Anti-Synchronization in hyperchaotic Lorenz and Lu systems.

Figure 9. Anti-Synchronization in hyperchaotic Lorenz and Lu systems.

Figure 10. Anti-Synchronization in hyperchaotic Lorenz and Lu systems.

6. CONCLUSIONS

This study demonstrated that anti-synchronization can coexist in two different hyperchaotic
systems ratchets moving in different asymmetric potentials by active generalized backstepping
method. Hyperchaotic Lu system is controlled to be anti-synchronized with hyperchaotic Lorenz
system. In the Active Generalized Backstepping Method in relation to the Nonlinear Control
Method [32], control will be accomplished in a much shorter time and overshoot. The simulations
confirm that Anti-Synchronization of two systems operates satisfactorily in presence of the
proposed control method.
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