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Abstract 
 
Recently, we introduced a simple adaptive control technique for the synchronizationand stabilization of 
chaotic systems based on the Lasalle invariance principle. The method is very robust to the effect of noise 
and can use single-variable feedback toachieve the control goals. In this paper, we extend our studies on 
this technique tothe nonlinear gyroscopes with multi-system parameters. We show that our 
proposedadaptive control can stabilize the chaotic orbit of the gyroscope to its stable equilibrium and also 
realized the synchronization between two identical gyros even whenthe parameters are assumed to be 
uncertain. The designed controller is very simple relative to the system being controlled, employs only a 
single-variable feedbackwhen the parameters are known; and the convergence speed is very fast in all 
cases.We give numerical simulation results to verify the effectiveness of the technique andits robustness in 
the presence of noise. 
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1 Introduction 
 
Chaotic dynamics has been studied and developed with much interest since the work of Lorenz in 
1963 [1,2] which has led to the observation of chaotic behaviour in many systems. A chaotic 
system generally has complex dynamical behaviour arising from the unpredictability of the long-
term future behaviour and irregularity. 
 
Two prominent and leading applications in the development of chaos theory are chaos 
suppression or control and chaos synchronization. The emergence of these two areas in the study 
of nonlinear systems is traceable to the pioneering classical chaos control theory by Ott, Grebogi 
and Yorke[3] and the seminal work by Pecora and Carroll [4] respectively. Indeed, there are 
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practical situations where it is desirable to control chaotic behaviour so as to improve the 
performance of a dynamical system, eliminate undesirable behaviour of power electronics [5-7], 
avoid erratic fibrillations of heart beating, and so on.  As a result, different techniques and 
methods have been proposed to achieve chaos control [8- 13] - which is stabilizing a desired 
unstable periodic solution or one of the systems equilibrium points. On the other hand, for 
synchronization, two systems are required to co-operate with each other, of which many potential 
applications abounds in secure communication systems, laser, biological systems and other areas 
[10,11,14,15].  For this reason, the study of chaos synchronization has grown and a wide variety 
of approaches have been proposed for the synchronization of chaotic systems [4,9-11,16-21].  
 
Gyroscopes, from a purely scientific viewpoint show strange and interesting properties, and from 
engineering viewpoint, they have great utility in the navigation of rockets, aircrafts, spacecrafts 
and in the control of complex mechanical system. In the past years, the gyroscope have been 
found with rich phenomenon [22 – 24 ]for example, the symmetric gyroscope, when subjected to 
harmonic vertical base excitations, exhibit a variety of interesting dynamic behaviours that span 
the range from regular to chaotic motions [23,24]. The gyro is one of the most interesting and 
everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such 
as sub-harmonic and chaotic behaviours. 
 
Several attempts have been made to control and synchronize the gyroscope system.  The delayed 
feedback control, addition of periodic force and adaptive control algorithm have been utilized to 
control chaos in a symmetric gyro with linear-plus-cubic damping [24] and in Ref. [25] we used a 
technique that is based on backstepping approach that interlace the appropriate choice of 
Lyapunov function.Notwithstanding the success recorded by these methods, some drawbacks 
associated with their applications have been identified. 
 
On the other hand, the synchronization of the symmetric gyroscope model presented in Ref [24] 
has been achieved using different methods.  In Ref. [24] for instance, synchronization was 
achieved using four different kinds of one way coupling. The stability of the synchronization is 
subject to the verification that the conditional Lyapunov exponents of the subsystem is negative. 
This condition has however been proved not to be a sufficient condition for chaos 
synchronization due to some unstable invariant sets in the stable synchronization manifold 
\cite{manifold}. However, whether or not this condition is a necessary or/and sufficient condition 
remains unresolved (see Refs. [27]and references therein).  
 
In Ref. [28] the active control method was utilized. It is important to note that in practice it is 
difficult to find  appropriate or threshold values for the feedback gains in the approaches used in 
Ref. [24] and this is also a topical issue and also the analysis in Ref.[24] were based on numerical 
simulations only. Similarly, the experimental design of nonlinear control inputs such as proposed 
in [25,28-32] are very difficult, due to the complexity of the control functions, especially when 
the system parameters are unknown due to inevitable perturbation by external inartificial factors. 
Although in [30-34] the sliding mode control was proposed that could be applicable to the above 
situations in the presence of parameter uncertainty [31]; however there were many assumptions to 
be made in the construction of the controllers.  For example, in [30] the exact values of the 
functions are unknown due to parameter uncertainty; some upper bounds of uncertainties are 
necessary and also assumed that all the state variables of the master and slave systems are 
available for control design.  
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Whereas in [31] where the adaptive sliding mode (ASMC) is used for synchronizing the state 
trajectories of two chaotic gyros with unknown parameters and external  disturbance, a switching 
surface is first proposed, thereafter an ASMC is derived, thus, if the switching surface is in error, 
the ASMC derived will be ineffective.  Also, in this method, the controller demonstrates a 
discontinuous control law and the phenomenon of chattering will appear - this undesirable and 
has to be eliminated. In [32] the sliding mode controller was extended to achieve generalized 
projective chaos synchronization (GPS) for the gyroscope system subjected to dead-zone 
nonlinear inputs, where the drive-response system synchronized up to a constant scaling factor. 
Similar to other sliding mode approaches, two suitable sliding surfaces were proposed to ensure 
the stability of surfaces even when the control inputs contain dead-zone nonlinearity. The method 
also allows to arbitrarily direct the scaling factor onto a desired value. Similarly, it was reported 
that synchronization and anti-synchronization may co-exist in projective chaos synchronization of 
a dissipative gyroscope excited by a harmonic force with control input nonlinearity [35]. 
 
The synchronization for above situations is complex and not straightforward due to the problems 
associated with sliding surface design. More importantly, the design of simple controllers is very 
relevant for both theoretical research and practical applications, which we intend to achieve in our 
proposed method. 
 
Recently, in ref [36] they studied the chaos suppression of the chaotic gyros in a given finite time, 
where they considered the effects of model uncertainties, external disturbances and fully 
unknown parameters. They designed a robust adaptive finite-time controller to suppress the 
chaotic vibration of the uncertain gyro. In similar manner, in [37], the problem of the finite-time 
synchronization of two uncertain chaotic gyros is discussed.  
 
In year 2000, new experimental results demonstrate that chaos control can be accomplished using 
controllers that are very simple relative to the system being controlled [38]. For this reason, 
theoretical studies of chaos control and synchronization with simple adaptive control emerged 
[39-49]. In [45] a novel adaptive controller for achieving chaos and hyperchaos synchronization 
was proposed. This adaptive control method was used to realize the synchronization of coupled 
RCL-shunted Josephson junctions [50] the reduced-order synchronization of time-varying 
systems [51] and extended to realize the stabilization of the unified chaotic system [52].This 
adaptive control method has better advantages than the linear feedback method, since the 
feedback gain k1 is automatically adapted to a suitable gain k0 depending on the initial values. It 
is not only simple in comparison with other previous methods, but also suitable for all chaotic 
systems and hyperchaotic systems. In most cases, the controller can include only one feedback 
gain ݇ଵand the convergence speed is very fast. 
 
In this paper, we first apply the method for stabilizing the chaotic orbits to the equilibrium point 
of the system.  Secondly, we used our adaptive control method to synchronize two identical 
nonlinear gyroscopes and thirdly we extend the method to achieve synchronization in the gyros 
with unknown parameters, which configures a real-life situation.  Fourthly, as a further 
advancement, the robustness of the method is verified by adding noise, and the synchronization in 
this situation was achieved. The designed simple controller ensures stable controlled and 
synchronized states for the nonlinear gyros. Finally, numerical simulations are implemented to 
verify the results. 
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2 Theory 
 
2.1 Adaptive control for chaos synchronization 
 
In this section, we introduce the adaptive control method [45] briefly. Let a chaotic (master) 
system be given as, 
ݔ̇ =  (1)          (ݔ)݂

Where  ݔ = , ଵݔ) ⋯, ଶݔ , ்( ݔ ∈ ܴ (ݔ)݂     , = ( ଵ݂(ݔ), ଶ݂(ݔ),⋯ , ݂(ݔ))் ∶  ܴ  →  ܴ    is a 
nonlinear vector function. Without loss of generality, let   Ω ∁ ܴbe a chaotic bounded set of (1) 
which is globally attractive. For the vector ݂(ݔ)݂ ݊݅ݐܿ݊ݑ we give a general assumption. 

Assumption 1.∀= ⋯,ଶݔ,ଵݔ) , ்(ݔ  ∈ ݕ ݀݊ܽ ߗ ⋯ଶݕ,ଵݕ) = ∋ ்(ݕ,  there exists a constant  ߗ 
݈ > 0   satisfying 

| ݂(ݔ) −  ݂(ݕ)| ≤ ݔ |݈  − ,ஶ|ݕ ݅ = 1, 2,⋯ ,݊      (2) 

where  |x - y||ݔ − ݔ ݂ ݉ݎ݊-∞ ℎ݁ݐ ݏ݅  ஶ|ݕ − .ݕ ݅. ݁., ݔ| − ஶ|ݕ =
ݔܽ݉
ݔ| ݆ − ,|ݕ ݆ = 1,2,⋯ ,݊. 

Remark 1. This condition is very loose, and in fact, holds as long as ߲ ݂/߲ݔ(݅, ݆ = 1,2,⋯ ,݊) are 
bounded. Thus, the class of systems in the form of (1) and (2) include almost all well-known 
finite-dimensional chaotic and hyperchaotic systems.               

 The corresponding slave system to system (1) is as follows, 

ݕ̇ = (ݕ)݂ + ݇ଵ(ݕ −  (3)        (ݔ

where the controller  ݑ = ݇ଵ = ( ݇ଵ݁ଵ,݇ଵ݁ଶ,⋯ ,݇ଵ݁)், ݁ = ݕ  − .ݔ   Unlike the usual linear 
feedback control, the feedback gain ݇ଵis duly adapted according to the following update law, 

݇ଵ̇ = ∑ߛ−  ݁ଶ
ୀଵ ,         (4) 

Where ߛ  is an arbitrary positive constant. The controller ݑ = ݇ଵ݁ can realize the synchronization 
of the master and slave chaotic systems (1) and (2). 

Remark 2. The feedback gain ݇ଵ  is automatically adapted to a suitable strength ݇  depending 
on the initial values, which is significantly different from the well known linear feedback. 

Remark 3. The controller ݑ =  ݇ଵ݁  can employ only one feedback term ݁  for some chaotic 
systems, the feedback term ݁   is selected by the condition: if ݁ = ℎ݁݊ ݁ݐ 0 = 0, ݆ =

1,2,⋯݊, ݆ ≠ ݅,  so that the set ܧ = ൜(݁,݇ଵ)  ∈  ܴାଵ⃒ ݁ = 0, ݇ଵ =  ݇ൠand the above conclusion 
is obtained. 
 
2.2  Adaptive control for chaos synchronization with unknown parameters 
 
In our previous paper [51], we obtained a novel adaptive controller for chaos synchronization 
with unknown parameters. This is introduced in brief herein. Consider a nonlinear dynamical 
system 
 
ݔ̇ = (ݔ)݂ +  (5)         ,(ݔ)݃
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Where ݔ = ,ଵݔ) ⋯,ଶݔ , ்(ݔ  ߳ Ɍ  denotes the state variables,  = ⋯,ଶ,ଵ) ∋ ்(, Ɍ  denotes 
the uncertain parameters,  ݂(ݔ) = ( ଵ݂(ݔ), ଶ݂(ݔ),⋯ , ݂(ݔ))்   and  ݃(ݔ) = ௫[(ݔ)݃]   represent 
differential nonlinear vector function and matrix function respectively. The vector function ݂(ݔ)  
meets the Assumption 1. 
We consider model (5) as the master system and introduce a controlled slave system 
 
ݕ̇ = (ݕ)݂ + +(ݕ)݃  (6)          ,ݑ

Where  ݕ = ⋯,ଶݕ,ଵݕ) ,ݕ, )் ∈  Ɍ denotes the state variables, and  ݑ = ଶݑ,ଵݑ) ,⋯ ்(ݑ,   is a 
controller. The main goal is to design a suitable controller ݑ to synchronize the two identical 
systems in spite of their uncertain parameters. We denote the synchronization error between the 
two systems as  ݁ = ݕ − ݔ ∈ Ɍ and subtract system (5) from system (6) and thus obtain the error 
dynamical system 

݁̇ = (ݕ)݂ − (ݔ)݂ + (ݕ)݃] − [(ݔ)݃ +  .(7)      ,ݑ

We can introduce the control function 
 
ݑ = (ݕ)݃]− − [(ݔ)݃ ܲ + ݇ଵ݁,   (8). 

Where  ̂   is the estimate of  ,  and  ݇ଵ݁ = (݇ଵ݁ଵ,݇ଵ݁ଶ,⋯ ,݇ଵ݁)் ∈  Ɍ is the linear feedback 
control with the updated gain ݇ଵ ∈  Ɍଵ   Thus, the synchronization error system is reduced to 
 
݁̇ = (ݕ)݂] − [(ݔ)݂ + (ݕ)݃] − [(ݔ)݃ + ݇ଵ݁,      (9) 

Where   =  −  is the parameter estimation mismatch between the real value of the unknown ̂
parameter and its corresponding estimated value. Then the above discussion can be summarized 
in the following theorem. 
 
Theorem 1 If the estimations of the unknown parameters and the feedback gain contained in the 
adaptive controller (8) are updated by the following laws 
 

ቊ
̂̇ = (ݕ)݃] − ,்݁((ݔ)݃

݇̇ଵ = ்݁݁ߛ− = ∑ߛ− ݁పଶ,
పୀଵ

̇         (10) 

then, the synchronization between system (5) and (6) will be achieved. 

Remark 4. The control term ݇ଵ݁  can include only one feedback term ݁  for some chaotic 
systems. The feedback term ݁  is selected based on the condition:  if  ݁ = 0  then  ݁ = 0, ݆ =
1, 2,⋯݊, ݆ ≠ ݅,  therefore the set ܧ = {݁, (ଵ݇,̂ ∈  Ɍାାଵ|݁ = 0, ̂ = 0, ݇ଵ = −݇∗  so that the 
conclusion in (10) is obtained. 
 
2.3Adaptive control for stabilization of chaotic system 
 
Here, we extend our adaptive control method [52]to stabilize a chaotic orbit. Given a chaotic 
system (1), for the vector function ݂(ݔ), we give a general assumption which is similar to the 
assumption 1. 
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Assumption 2.∀ݔ = ଵݔ) , ⋯,ଶݔ , ்(ݔ ∈ ݈ there exists a constant ,ߗ > 0 satisfying 
 
| ݂(ݔ)| ≤ ,ஶ|ݔ|݈  ݅ = 1,2,⋯݊,           (11) 

Where  |ݔ|ஶ ݅ݐ ݏℎ݁ ∞-norm of ݔ, ݅. ݁. , ஶ|ݔ| =     
௫ |ݔ|,   ݆ = 1,2,⋯ ,݊ 

Remark 5.  This condition is easily met, and in fact, holds as long as డ
డ௫ೕ

  (݅, ݆ = 1,2,⋯ ,݊)  are 

bounded. Therefore the class of systems in the form of (1) and (11) include almost all well-known 
finite-dimensional chaotic and hyper-chaotic systems. 
 
In order to stabilize the chaotic orbits in (1) to its equilibrium point ݔ∗ = 0 we introduce the 
adaptive feedback controller to system (1): 
 
ݔ̇ = (ݔ)݂ + ݑ = (ݔ)݂ +  ݇ଵ(ݔ − 0) = (ݔ)݂ +  (12)      ݑ

where the controller ݑ = ݇ଵݔ = (݇ଵݔଵ,݇ଵݔଶ,⋯ ,݇ଵݔ)் .    The feedback gain ݇ଵ  is adapted 
according to the following update law, 
 
݇̇ଵ = ∑ߛ− − ݔ ) 0)ଶ = ∑ߛ− ଶݔ

ୀଵ

ୀଵ        (13) 

Where  ߛ   is a positive constant. System (12) and (13) are assumed to be the augment system and 
by introducing a positive  definite Lyapunov function, 
 
ܸ = ଵ

ଶ
∑ ଶݔ
ୀଵ + ଵ

ଶ
ଵ
ఊ

(݇ଵ +  ଶ,        (14)(ܮ

Where ܮ is a sufficiently large positive constant, i.e.,ܮ ≥ ݈݊.  Then, we give the following result. 
 
Theorem 2.  Starting from any initial values of the augment system, the orbits ((ݐ)ݔ,݇ଵ(ݐ)்  
converge to (ݔ∗ ,݇)் ܽݐ ݏ →  . is a negative constant  depending on the initial value݇, ݁ݎℎ݁ݓ,∞
That is, the adaptive feedback controller stabilizes the chaotic orbits to its equilibrium point ݔ∗ . 
 
Proof.  By differentiating the Lyapunov function ܸ along the trajectories of the augment system, 
we obtain 

ܸ̇ = ݔݔప̇



ୀଵ

+
1
ߛ

(݇ଵ + ̇ܮ )݇̇ଵ 

= ݔ( ݂(ݔ)


ୀଵ

+ ݇ݔ) − (݇ଵ + ଶݔ(ܮ


ୀଵ

 

 = ݔ ݂(ݔ)


ୀଵ

− ଶݔܮ


ୀଵ

 

Obviously, ܸ̇ = 0  if and only if ݅ݔ = 0, ݅ = 1,2,⋯ ,݊,then the set  
 
ܧ = (ଵ݇,ݔ)}  ∈  ܴାଵ|ܸ̇(ݔ) = 0 is the largest invariant set for the augment system. According to 
the well known LaSalle invariance principle, the Theorem 1 is obtained. 
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Remark 6. If ݔ∗ ≠ 0 is an equilibrium point of the chaotic system, this method is also easily 
applicable by means of a coordinate transformation. 
 
Remark 7. The feedback gain kଵ  is also automatically adapted to a suitable strength ݇  
depending on the initial values. 

Remark 8. The controller ݑ = ݇ଵ ݔ = ൫݇ଵ ݔଵ ,݇ଵݔଶ , ⋯ ,݇ଵݔ൯ܶ can include only a single-variable 
feedback term ݔ ,  which is selected based on the condition: if ݔ = ݔ ℎ݁݊ݐ 0 = 0, ݆ =
1,2⋯݊, ݆ ≠ ݅ , therefore the set ܧ = (ଵ݇,ݔ)} ∈  ܴାଵ|ݔ = 0,݇ଵ = ݇ଵ|  and the above conclusion 
is reached. 
 
3 Applications to gyroscopes 
 
The model system which we study is the gyroscope which has attributes of great utility to 
navigational, aeronautical and space engineering [24], and have been widely studied. Generally, 
gyros are understood to be devices which rely on inertial measurement to determine changes in 
the orientation of an object. Gyros are recently finding application in automotive systems for 
Smart Braking System, in which different brake forces are applied to the rear tyres to correct for 
skids, for sensing angular motion in airplane automatic pilots, rocket-vehicle launch guidance, 
etc. Recently, Chen, presented the dynamic behaviour of a symmetric gyro with linear-plus-cubic 
damping, and subjected to a harmonic excitation. Based on Lyapunov analysis, sufficient 
conditions for the stability of the equilibrium points of the system were derived. 
 
The equation governing the motion of the symmetric gyro with linear-plus-cubic damping is 
governed by the following equation in term of the angle  [24]  ߠ: 

̈ ߠ + ⍺ଶ
(1 − cos ଶ(ߠ

ߠ ଷ݊݅ݏ
− ߚ  sinߠ + ܿଵ̇ߠ + ܿଶ̇ߠଷ = (݂ sin߱ߠ݊݅ݏ (ݐ 

Where ݂ sin߱ݐ    is a parametric excitation, ܿଵ̇ߠ ܽ݊݀ ܿଶ̇3ߠ  are linear and nonlinear damping, 
respectively and ߙଶ (ଵିୡ୭ୱ ఏ̇)మ

௦య ఏ
− ߚ sinߠ  is a nonlinear resilence force. After necessary 

transformation, the gyroscope equation in non-dimensional form can be written as         
ଵ̇ݔ =  ଶ  (16)ݔ 

ଶ̇ݔ = (ଵݔ)݃ − ଶݔܽ − ଶଷݔܾ + ଵݔ ݊݅ݏ ߚ  + ( ݂ sin߱ݐ)  , ଵݔ݊݅ݏ 

where the function 

(ଵݔ)݃ = ଶߙ−  (ଵିୡ୭ୱ௫భ )మ

௦య௫భ
        (17) 

The gyro undergoes the period-doubling bifurcation leading to chaotic behaviour when the 
parameter ݂  is used as the bifurcation parameter. In particular, a chaotic attractor is observed for 
the following system parameters: ߙଶ  = 100, ߚ = 1, ܽ = 0.5,߱ = 2, ݂ = 35.3.  Figure 1 show 
the phase trajectory for these parameters with initial conditions of (ݔଵ ,ݔଶ ) = (1,−1). 
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3.1 Stabilization of the nonlinear gyroscope 
 
According to section 2.3, let ܸ(ݔ,݇ଵ) =  ଵ

ଶ
ଵଶݔ)  + ଶଶݔ  + (݇ଵ + ,(ଶ(ܮ (ݔ)ܸ̇ ℎ݁݊ݐ = 0,      

i.e. 

∗ܩܩ + (ଵݔ)݃ ଶݔ +ଶݔ ଵݔ = ܮ ∑ ଶଶݔ
ୀଵ ଶଶݔܽ + + ଶସݔܾ , (18)                            

Where ܩܩ∗ = ଶݔߚ  sin ଵݔ + ଶݔ݂) sin߱ݐ ) sin ଵݔ ଵ.  Obviously, ifݔ = 0  (the left hand side of the 
above equation), then ݔଶ = 0  (according to the right hand side of the above equation), thus 

ܧ = ൜(ݔଵ, (ଶ,݇ଵݔ ∈ ܴଷ⃒ܸ̇(ݔ) = 0ൠ = , ଵݔ)} (ଶ,݇ଵݔ ∈ ܴଷ⃒ݔ = 0,݇ଵ = ݇ 

So, we can select the controller ݑ =  ݇ଵݔ = (݇ଵݔଵ, 0)் ଵ̇݇ ݐ݁ݏ ݀݊ܽ  = ߛ ݃݊݅ݐ݈ܿ݁݁ݏ)ଵଶݔ−  =
1 ).   Then the controlled system is as follows, 
ଵ̇ݔ = ଶݔ  +  ݇ଵݔଵ ,         (19) 

ଶ̇ݔ = (ଵݔ)݃ − ߚ + ଶଷݔܾ - ଶݔܽ sinݔଵ + ݂ sin߱ݐ sin  , ଵݔ

 Therefore the gyroscope system is stabilized to its equilibrium state with the controller ݑ =
 ݇ଵ ݔ = (݇ଵݔଵ, 0)். 
 
In what follows, we  give numerical  verification of the above theoretical results. We select the 
values of the initial states of the chaotic system (16) as ݔଵ(0) = 1, ଶ(0)ݔ   = 2  with the initial 
value of the controller ݇ଵ(0) =  −1  and selecting ߛ = 1.  Figure 2 shows that the gyros system 
stabilized to the zero solution while Figure 3 shows how the feedback gain ݇ଵ  tends to a negative 
constant as ݐ →  ∞ . 
 
3.2 Synchronization of the nonlinear gyro with known system parameters 
 
The corresponding slave system to (16) is as follows 
ଵ̇ݕ = ଶݕ   ଵ ,          (20)ݑ +

ଶ̇ݕ = (ଵݕ)݃ − ଶݕܽ  − ଶଷݕܾ  + ଵݕ݊݅ݏ ߚ  + ( ݂ sin݊݅ݏ ( ݐݓ ଵݕ  ,ଶݑ +

where the controller ݑ =    is to be determined. According to section 2.1, let்(ଶݑ,ଵݑ)
 
ܸ൫݁,݇ଵ൯ =  ଵ

ଶ
(݁ଵଶ + ݁ଶଶ + (݇ଵ + (݁)ଶ),  theṅܸ(ܮ = 0, i.e., 

݁ଵ݁ଶ +  ݁ଶ൫݃(ݕଵ)− ൯(ଵݔ)݃ + ௫௫ܩ = ௬௬ܩ + ଵଶ݁)ܮ + ݁ଶଶ)     (21) 

Where ܩ௫௫ = 2 sinቀభ
ଶ
ቁ cos(௬భశ௫భ

ଶ
ߚ)( + ݂ sinݐݓ ) ݁ଶ 

ଶ ௬௬ܩ ݀݊ܽ  =  ܽ݁ଶଶ + ܾ݁ଶଶ(ݕଵଶ   . (ଵଶݔ+ ଵݔଵݕ +

Obviously, if e1 = 0 (from the left hand side of eq. (21)), then e2 = 0 (according to the right hand 
side of eq. (21)). Thus; ܧ = (݁ଵ,݁ଶ,݇ଵ) ∁ ܴଷหܸ̇(݁) = 0 = (݁ଵ, ݁ଶ,݇ଵ)  ∁  ܴଷห݁ = 0, ݇ଵ = ݇.  
So, we can select the controller ݑ = ݇݁ = (݇ଵ݁ଵ, 0)் and set ݇̇ଵ = −݁ଵଶ  (selecting  ߛ = 1 ). 
Therefore the chaos synchronization between the system (16) and (20) is realized. 
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To numerically verify the above, we select the initial state values of the master system (16) as 
ଵ(0)ݔ = 1, ଶ(0)ݔ = 2  and that of the slave system (20) as ݕଵ(0) = ଶ(0)ݕ, 1−  = 2,   with the 
initial value of the controller  ݇ଵ (0) =  −1 ; and setting   ߛ = 1.0 n application of the controller, 
Figure 4 shows that the error system is asymptotically stable to zero  while Figure 5 shows how 
the feedback ݃ܽ݅݊ ݇ଵtends to a negative constant as ݐ tends to ∞. 
 
3.3 Synchronization of the nonlinear gyro with unknown system parameters 
 
If the parameters ܽ,  of the master system (16) are unknown, we can still realize the full  ߚ ݀݊ܽ,ܾ
synchronization.   According to section 2.2, the corresponding slave system is as follows 
 

ଵ̇ݕ = ଶݕ  ଵݑ + ,          (22) 

ଶ̇ݕ = (ଵݕ)݃ − ଶݕܽ  − ଶଷݕܾ  + ߚ  sinݕଵ + ݂ sin߱ݐ ଵݕ +  ,ଶݑ 

where the parameters ܽ, ݑ  are unknown and  the controller ߚ,ܾ = ்(ଶݑ,ଵݑ)  is to be determined. 

According to the general framework given in Section 2.2 and the remark 4, the adaptive 
controller is designed as follows: 
 

ଵݑ = ݇ଵ݁ଵ         (23) 

ଶݑ = ଶݕ) − (ଶݔ ොܽ + ଶଷݕ) − (ଶଷݔ ܾ − (sinݕଵ − sinݔଵ)ߚመ  

The updated laws for the parameter estimations ොܽ, ܾ,ߚመ   and the feedback gain ݇ଵ in the above 
controller are given by 

⎩
⎪
⎨

⎪
⎧ ො̇ܽ = ଶݕ) − ,ଶ )݁ଶݔ 

ܾ̇ = ଶଷݕ) − ,ଶଷ)݁ଶݔ 

መ̇ߚ = (sin ଵݕ − sin  ଵ )݁ଶݔ

݇ଵ̇ = ଵଶ݁ߛ− 

        (24) 

With (23) and (24), chaos synchronization between the system (16) and (22) is realized. 

We verify the above numerically by selecting the initial states values of the master system (16) as 
ଵ(0)ݔ = 1, ଶ(0)ݔ = 2   and that of the slave system (21) as  ݕଵ(0) = ଶ(0)ݕ,1−  = 2.  The 
parameter estimations ൫ ොܽ, ܾ ,ߚመ൯ = ( 0.4, 0.01, 0.5)and feedback gain݇ଵ(0) =  −1.   For ߛ = 1,  
Figure 6 shows that the error system approaches zero asymptotically as ݐ →  ∞ ;while Figure 7 
shows how the feedback gain  ݇ଵ tends to a negative constant as ݐ →  ∞. 
 
Finally, we verify the robustness of this method by adding noise to the slave system (20), which 
then becomes, 
 

ଶ̇ݕ = ଶݕ  + ݇ଵ݁ଵ +  ,݀݊ܽݎ

ଶݕ̇ = (ଵݕ)݃ − ଶݕܽ − ଶଷݕܾ  + ߚ  sinݕଵ + ݂ sin߱ݐ sinݕଵ, (25) 
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where݀݊ܽݎ is a stochastic random number uniformly distributed in the interval (0,1). 
 
Using the same initial values and parameters as in Figure 2, Figure 8 shows the asymptotic 
convergence to zero of the error system as ݐ →  ∞ in the controlled state and the feedback gain 
݇ଵ   tends to a negative constant as ݐ →  ∞ ; implying that the gyro system are synchronized 
despite the presence of noise. Also, in Figure 9 and Figure 10 the error system is also 
asymptotically stable to zero  and the feedback gain ݇ଵ tends to a negative constant as ݐ →  ∞  
when noise is added to the slave system for the gyroscope systems with unknown parameters, 
respectively. 
 
4 Conclusion 
 
In conclusion, we investigated the control and synchronization of chaos in nonlinear gyros. 
Firstly, we obtained a simple adaptive control law for stabilizing chaotic orbits of the gyros to its 
equilibrium point. Secondly, we extend our adaptive control method to synchronize a drive-
response system of nonlinear gyros, with known and unknown parameters. The designed simple 
controller ensures stable controlled and synchronized states for two identical nonlinear gyros. In 
addition, the synchronization is efficient in the presence of noise for the three cases mentioned 
above. The controller designed is very simple relative to the system being controlled, it includes 
only one feedback gain and the convergence speed is very fast; and we have employed numerical 
simulations to verify the results. 
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Fig. 1. The phase portrait of the chaotic gyro attractor described by Equation (16);initial values 
are ݔଵ = 1, ଶݔ = −1. 
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Fig. 2. The gyros system is asymptotically stable to zero as t tends to in thecontrolled state, 
where the initial values are ݔଵ = 1, ଶݔ = 2 and the controller gain݇ଵ = −1, selecting ߛ = 1. 
 

 
 
Fig. 3. The feedback gain k1 tends to a negative constant asݐ → ∞ in thecontrolled state and initial 
values as well as parameters are as in Figure 2. 
 



International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.2, June 2013 

40 

 
Fig. 4. The error system is asymptotically stable to zero as t tends to whensynchronization of 
identical gyros with different initial conditions is achieved forݔଵ = 1, ଶݔ = 2 for the master 
system and ݕଵ = ଶݕ,1− = 2for the slave system. 
 

 
 
Fig. 5. The feedback gain k1 tends to a negative constant as t tends to ∞whensynchronization of 
identical gyros with different initial conditions is achieved andall initial values are as in Figure 4. 
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Fig. 6. The error system is also asymptotically stable as t tends to ∞when synchronization of 
gyros with unknown parameters is achieved for initial values as inFigure 4 and parameter 
estimation൫ ොܽ, ܾ,ߚመ൯ = (0.4, 0.01, 0.5). 
 

 
 

Fig. 7. The feedback gain݇ଵtends to a negative constant as t tends to ∞whensynchronization of 
gyros with unknown parameters is achieved and parameters areas in Figure 4. 
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Fig. 8. The gyro system is asymptotically stable to zero as ݐ → ∞  in thecontrolled state and the 
feedback gain ݇ଵ tends to a negative constant as t tends to∞when noise is added. Initial values are 
as in Figure 2. 
 

 
 
Fig. 9.The case where noise is added to the system. The error system is alsoasymptotically stable 
asݐ → ∞   when synchronization of gyros with differentinitial values as in Figures 4 and 5 is 
achieved. The feedback gain k1 also tends toa negative constant as ݐ → ∞  . 
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Fig. 10. The error system is also asymptotically stable as ݐ → ∞   when synchronization of gyros 
with unknown parameters and noise is added is achieved for initialvalues as in Figures 6 and 7. 
The feedback gain k1 also tends to a negative constantas ݐ → ∞  when synchronization of the 
gyros with unknown parameters andnoise is added is achieved. 


