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ABSTRACT 
 

Overhead Crane experimental model using Simmechanic Visualization is presented for the robust antisway 

LQR control. First, 1D translational motion of overhead crane is designed with exact lab model 

measurements and features. Second, linear least square system identification with 7 past inputs/outputs is 

applied on collected simulation data to produce more predicted models. Third, minimize root mean square 

error and identified the best fit model with lowest RMSE. Finally, Linear Quadratic Regulator (LQR) and 

Reference tracking with pre-compensator have been implemented to minimize load swing and perform fast 

track on trolley positioning.  
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1. INTRODUCTION 
 

In modern industrial system, shipyard, warehouse, and construction, tower cranes are widely used 

for the heavy loads transfer. The crane operates hoist up-down motion, trolley forward-backward 

motion, and flat-top rotation causing unexpected load swing. In those working aspects, 

transferring load at a shorter time, perfect safety with no load swing or damage, and low 

operational cost are the main concerns. The cranes use open loop system to control position while 

anti-swing control is done manually by skilled operators using joysticks with analog control, [6]. 

Since, skilled operator always needs to focus on the operational trajectory map back and forth to 

carry the load, it creates fatigue problem and eventually affect the whole operation. Higher 

running costs, operational delay, and environmental damages have to be taken into account. 

Therefore, minimizing the load swing with proper control action during operation would be 

essential to avoid several risks. Even though researchers worldwide have been proposing many 

forms of anisway approaches, yet using manual joy stick with human operators are inevitable.  
 

2. PROBLEM STATEMENT 
 

Conducting live research on the real operating crane on site is usually impossible and therefore, 

most of the researches derived mathematically assumed crane model for simulations purpose. 

Furthermore, to simplify the crane modeling, assumptions were sometimes taken on the factors 

such as; (frictions, noises and disturbances, actuators, and sensors, etc.). Linearization also plays 

vital role in getting better accurate model however considering certain range of small load swing 

angle to be zero would have impact on linear approximation of the model and subsequently the 

controller design.  
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Therefore in this research, having a reliable model to represent real crane is the initial focus 

followed by linearization and suitable controller development. Experimental model visualization 

of the crane system has been developed based on real crane parts/parameters, which include 

trolley cart, rail jib, steel cable, load, sensors and actuators, actual mass-moment of inertia-

densities, and frictions. Visual appearance of this crane design would not only feature the real 

crane but also be flexible enough to assemble parts and assign real time parameters. It is the 

landmark for researchers to do real time research without having trouble in dealing with real 

cranes on site. The raw data collected from model simulation are used by linear least square 

approach to maximize better approximation model for further LQR with reference tracking. In 

order to compare the performances, normal mathematical model derivation is first developed in 

the following session. 
  

3. FREE BODY DIAGRAM OF 2D X-MOTION 
 

Simple free body diagram, Fig (1), below is developed to represent 2D crane model. A trolley 

cart is mounted on a jib (rail) along x direction, [9]. Trolley cart mass (M), payload mass (m), and 

load length (l) are assigned certain values while ( ) is considered load swing angle in XY plane. 

For 2 dimensional (2D) simple motion, payload length is initially considered unchanged and 

frictionless between trolley and jib. Since certain amount of applied force F pushes trolley to 

move along X direction, large swing angle   appears which needs to be minimized to as small as 

possible. In order to get mathematical model of the crane, kinetic energy, potential energy, 

Lagrange equation are derived to form equations of motions (nonlinear).  

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Mathematical Modeling of Trolley cart and load swing 
 

From free body diagram of the system, nonlinear equations, Equ.(1) and Equ.(2), have been 

derived as follow; 

 

                                                                        (1) 

                                                                                 (2) 

 

3.2 Linearization using simple assumption  
 

Several assumptions such as; (  

have been made from nonlinear model by the researchers in the past to linearize nonlinear 

equations of crane model. Even though that assumption makes a model simpler, the linearized 

model could not be close enough to actual crane model, [5]. In this research, at equilibrium p oint 

of load swing, both  are considered as small and assumed as 

, ,[12]. Using these approximations, the mathematical model 
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Figure (1): Simple 1D free body diagram 
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linearized around the unstable equilibrium point of load swing has been obtained, Equ.(3) and 

Equ.(4).  Final linerized equations and state-space form of the overhead crane free body diagram 

are; 
 

                                                                 (3)    

                                          

                                                                   (4)   

                                                           

Linearized State Space model is;     ,  
 

 
 

4. SIMMECHANIC VISUALIZATION OF OVERHEAD CRANE  
 

This simmechanic-based experimental model is based on Physical Modeling blocks which 

represents physical components, geometric, and kinematic relationships directly. This is not only 

more intuitive, it also saves the time and effort to derive the equations of motion. In this research, 

simple 2D Overhead crane mechanical model is designed using MATLAB Simmechanic visualization. 

First of all, 5 meter long jib bar frame was mounted above the ground using two fixed revolute joints. 

Trolley cart with certain measurement has been mounted on top of jib frame,[4],[8]. At this stage, low 

friction prismatic joint is considered in order to minimize constraints. A steel cable type body with payload 

was attached to the trolley using revolute joint,[11],[13]. Certain measurements were assigned to appear 2D 

crane model, Fig (2). Signal builder produces applied force (step input signal) which actuates the trolley 

cart, Fig (2), for X-directional motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (2,a): Mechanical Visualization of Overhead Crane 
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5. LINERIZATION OF 2D OVERHEAD CRANE USING LEAST 

SQUARE APPROACH  
 

To linerize the model, adaptive perturbation approach with “linmod” command is used in Matlab 

simulink.  That command will search equilibrium point (operating point) of the system where the 

net force is zero. Then, it generates linear time-invariant (LTI) state-space models. However, a 

simple step of creating model using “linmod” command without the details would make difficulty 

in analyzing the model. Therefore, instead of direct linearizing by MatLab, the mathematical 

model would be developed from collected dataset. The following steps have taken; model the 

input signal, collect the data set, and determine denominator/numerators using Least Square 

System Identification. 
 

5.1 Modelling Input Signals Design 
 

For x, y, and z motions, the system uses 3 different motors and therefore, different input designs 

have to be performed. Initially, other higher frequencies were tested but since, the frequency 

content of the input too high, the system does not have enough time to respond to changes in the 

input. In results, the response produced averaging effect. In current x-directional motion 

simulation, pseudo-random binary signal (PRBS) with 10 Hz sampling frequency and [1,-1] 

upper-lower bounds was designed, Fig (3). By varying the input signal and adjust longer pulse, it 

will enhance the statistics of the data, optimize the effectiveness of system identification as well 

as have visual respond to each input state. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2,b): Mechanical Visualization of Overhead Crane 

Figure (3): Input Signal at Frequency 10, range -1 to 1 

 

xprod:../../../../toolbox/simulink/slref/linmod.html
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5.2 Linear Least Square System Identification 

 
Once the input/outputs dataset is collected, Least Square System Identification is applied to 

determine the number of parameters required for the system transfer function and find those 

parameters ( ), Equ.(5), [1]. 

                                                                                     (5)                                                                              

 

The output of the system represents the linear combination of past inputs and outputs, where, 

 are the states of the system, Equ.(6), [1]. 

 

              (6)  

              

 

 
       

 

                                                                                         (7)    
  

5.3 Denominator and Numerator Coefficients consideration 
 

To compute 2 Denominator and 2 Numerator Coefficients, least square approach uses two 

simultaneous past inputs/outputs data to form  Matrix and therefore the following matrix would 

be formed, [10].  

 

 
 

5.4 Training and Checking Model 
 

Initially, the collected dataset is divided into two parts, training and checking, Fig(4). The reason is, the 

developed model from the training part would be tested against checking output in order to verify how well 

the model matches. In this system, first half training dataset, 

,  and  have been developed to calculate Denominator and Numerator Coefficients,   and 

produce Model Transfer Function. 
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Figure (4): Training and Checking Data separation 
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Considering 2 Denominator and 2 Numerator Coefficients case,  Matrix is identified and  is 

computed using Equ.(7).  The coefficients are estimated   to form the 

following Model Transfer Function, [2].    

    

                                     

 
 

 
 

 
 

5.5 Root Mean Square Error Calculation  
 

Root-mean-square error (RMSE) is used to measure the differences between estimated values by 

the developed model, and actual outputs such as;    and     . 

Minimizing RMSE could produce better fit of the model and enhance approximation. RMSE is 

calculated in the following form, Fig(5); 

 

Least Square General Form, [3]:  

 

                                                                                (8) 

 

 
 

                                                                                                         (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Least Square System Identification; Den2Num2, Den3Num3, Den4Num4,   Den2Num3, 

Den3Num2, Den4Num3, and Den3Num4 models are computed then followed by their respective 

RMSE. After comparing all RMSEs, lowest RMSE and its respective model would be picked up 

as the best linearly approximated model of the system. The following table shows, each model 

adjustment and calculated RMSE for both Training and Checking parts.   Least Square System 

Identification with past consecutive inputs-outputs, Table (1); 
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Figure (5): RMSE Comparison between actual and predicted models 
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Since 1D overhead crane has Trolley cart’s translational motion and load’s swing angle outputs, 

the Least Square calculation produce two models for Trolley and load swing while each model 

has training RMSE and checking RMSE. After generating all RMSEs, lowest RMSE would be 

picked up from Trolley model and load swing model considering the best linear approximation. 

The following Table (2.a) and Table (3.a) show each computed RMSE(Training), 

RMSE(Checking), as well as its total RMSE for models  (22,33,44,23,32,43,34) while Table (2.b) 

and Table (3.b)  show lowest to highest computed RMSE in which Den 2 Num 2 model appears 

to have lowest RMSE not only in Trolley model but also in Load Swing model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Trolley model, Den3 Num3, with lowest RMSE shows how well the linear approximation 

matches the actual output graph, Fig (6.a) in which, residuals are less than 0.08 and RMSE is only 

Den Num Data  

Start 

from 

Past data start from 

2 2 
 

[-y2   –y1    u2     u1] 

3 3 
 

[-y3  -y2   –y1    u3  u2     u1] 

4 4 
 

[-y4  –y3 -y2  –y1   u4   u3  u2  u1] 

2 3 
 

[-y3  -y2   0    u3  u2     u1] 

3 2 
 

[-y3  -y2   –y1    u3  u2     0] 

4 3 
 

[-y4  –y3 -y2  –y1   u4   u3  u2  0] 

3 4 
 

[-y4  –y3 -y2  0   u4   u3  u2  u1] 

Table(1): Least Square System Identification 

Table(2.b): from lowest to highest 

RMSE for Trolley Model 

 

Table(2.a): RMSE(Training) and 

RMSE(Checking) for Trolley 

 

Table(3.a): RMSE(Training) and 

RMSE (Checking) for Load Swing 
Table(3.b): from lowest to highest 

RMSE for Load Swing 
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0.095499.  For the load swing model, Den3 Num2, with lowest RMSE produces residuals which 

are between (-0.4 to 0.4) while its RMSE is only 1.6366, Fig (6.b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

6. LINEARIZATION OF THE CRANE USING MODIFIED LEAST 

SQUARE WITH 7 PAST INPUTS/OUTPUTS  
 

To represent the X-translational motion of the load-attached trolley cart, the collected dataset is 

used to develop linear least square form of linearization. Usually, Linear Least Square approach 

uses linear combination of the past inputs/outputs dataset, for instant, [y3]=[ –y2  –y1  u2  u1] 

and it can achieve only one Root Mean Square Error (RMSE) by comparing actual and estimated 

outputs. And that would be hard to analyze whether the model provides better approximation 

from the processed past inputs/outputs 4 dataset. Therefore, up to 7 past inputs/outputs dataset in 

the matrix X (mentioned below) have been applied in the linear least square which would produce 

more models, develop many RMSEs and eventually get better approximation of the model. The 

following X matrix shows how the 7 past inputs/outputs dataset are organized.  

 

 
 

6.1 Den and Num Coefficients consideration with Least Square modified approach 
 

Selecting every possible combinations of the columns from a large matrix with 7 past inputs and 7 past 

outputs according to the model needs and forming X matrix to compute estimated states, are some of the 

essential tasks to look for better approximated model. For instance, to get Den 2 Num 2 model, X 

matrix with 2 outputs columns  and 2 inputs columns  are required.  

 

 

 
 

From available 7 outputs columns, every possible 2 columns are picked at each time and same as 

every possible 2 from 7 inputs columns.  That is, all possible 21 pairs of outputs/inputs columns 

can be picked to form 21 possible models. In previous session, y3=[-y2 –y1 u2  u1] with only one 

Figure (6.a): Den 2 Num 2 Trolley model Figure (6.b): Den 2 Num 2 Load Swing model 
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model could be formed  while in this case there would be 21 models with Den2 Num2 

coefficients which may produce better approximation 

. 

 
 

For each X1, X2,…,X21, estimated states are calculated to form estimated Models which would 

be compared against actual output. From, X1 matrix; 

 

 

 
 

Overall steps from selecting pairs, calculating estimated states and RMSEs for each case to 

computing lowest one from 21 RMSEs are shown in the following algorithm figure, Fig (7). For 

the Den2Num2 Model, the Algorithm could generate 21 RMSEs and respective models. After 

comparing all RMSEs, the lowest one and its related model would be picked up for further 

analysis. Figure, Fig(8), shows all  highest to lowest RMSEs and their columns combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Columns 
X=[1  2  3  4  5  6  7  8  9  10   11  12  13  14] 

[1  2  8  9] 

X1 

 

 

Pick up lowest RMSE 

Figure (7): Algorithm to compute lowest RMSE  

[1  3  8  10] 

X2 

 

[3  2  10  11] 

X20 

 

[6  7  13  14] 
X21 

 

   

Figure (8):  RMSEs comparison for all 21 generated models 
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For the other modeling cases such as; (Den 3 Num 3, Den 2 Num 3, Den 3Num 2, Den 4Num 3, 

Den 3 Num 4, Den 4 Num 4), the above-mentioned Algorithm is applied in which, all possible 

combination of columns pairs are first established  then calculate estimated sates, generate Model 

Transfer Functions and compute RMSEs for all to pick up lowest RMSE with best 

approximation. The following Table (4,a) and Table (5,a)  provide details of RMSE (Training 

part), RMSE (Checking part), and total RMSE each model for both Trolley and Load Swing 

simulations. Table (4,b) and Table (5,b) show the lowest RMSEs such as; RMSE=0.014485 for 

Trolley model Den 4 Num 4, and RMSE=1.616 for Load Swing Model Den 3 Num 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Using modified Linear Least Square with 7 past inputs/outputs data, Den 4 Num 4 trolley model 

provides lowest RMSE 0.046732, Fig (9,a) and while load swing model Den3 Num4; appeared to 

have better approximation with RMSE 0.08021, Fig (9,b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table(4.b): from lowest to highest RMSE 

for Trolley Model 
Table(4.a): RMSE(Tr) and 

RMSE (Ch) for Trolley Model 

Table(5.a): RMSE(Tr) and 

RMSE (Ch) for Load Swing 

 

Table(5.b): from lowest to highest 

RMSE for Load Swing 

Figure (9,a): Den 4 Num 4 Trolley model Figure (9,b): Den 3 Num 4 Load Swing model 
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6.2 Model Structure and RMSE comparison 

 
From a simple Linear Least Square approach, trolley model sturcture with 3 Denominator 3 

Numerator Coefficeints appeared to have lowest RMSE=0.0.095495 while 3 Denominator 2 

Numerator Coefficeints load swing model has RMSE= 1.6366 respectively. Likewise in Least 

Square using 7 past inputs/outputs data aproach, model sturctures with 4 Denominator 4 

Numerator Coefficeints appeared to have lowest RMSE (0.014485) while 3 Den 4 Num  Load 

Swing model has lowest RMSE (1.616), as shown in Table (6). Those developed models from 

both approaches would be transformed into continuous state-space for control and performance 

comaprison purposes.  

 

According to the above simulation results, Linear Least Square with 7 past inputs/outputs data, 

produced lower RMSE than using simple linear least square approach which uses immediate past 

inputs/outputs data. Those selected models from both approaches would be implemented in 

controller designs and analyzed their responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. LQR CONTROLLER IMPLEMENTATION AND REFERENCE 

TRACKING  
 

Linear quadratic regulation method is implemented for this overhead crane to determine the state-

feedback control gain matrix K. LQR needs two parameters, Q and R wighting matrices which 

will balance the relative importance of the control effort (u) and error (deviation from 0), 

respectively, in the cost function J. Initially,  with  and  were assumed,[2]. 

The cost function corresponding to this and Q and R places equal importance on the control and 

the state variables outputs (cart's position , and the pendulum's angle ). 

 

7.1 Q, R weighting matrices and Cost function J 
 

Q and R matrices are considered as diagonal,  Matrix is positive-definite (  for 

every nonzero vector, ) and were adjusted by hit and trial method to obtain the desired 

responses. The element in the (2, 2) position of Q represents the weight on the cart's position and 

the element in the (5,5) position represents the weight on the pendulum's angle. The input 

weighting R will remain at 0.001. In order to reach faster stabilization, it has been put more 

weights on the states as;   while R=0.001 to produce good controller gain K 

matrix. The following cost function J, Eq.(10), is considered to define the tradeoff between 

regulation performance and control effort of x-directional motion with the states :         

 

Table(6): Model Structure and RMSE comparison 
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                                                                                      (10) 

 

 
 

The plant state equations can be written as follow; 

 

 and   

7.2 Linear Quadratic Regulator (LQR) Design 

After Q, R weighting matrices are established and controller gain K values are computed, LQR 

Controller design, Eq.(11), with step response would run for the system performance, Fig (10). 

Initially, the system use Q (2,2)=Q (5,5)=1 and R=1 and it showed the plot was not  satisfactory.  

Both cart and pendulum responses overshoot. To improve their settling times and reduce rise 

time, Q (2,2)= 30, Q (5,5)=20 and R=0.001 are selected after several trials. 

 

  and   

                                                            (11) 

 

 
 

Whereby, the optimal feedback gain is, . 

 

In the following Riccati Equation in which P is the steady state solution that yields a unique 

optimal control to minimize the cost function, J, [2]. 

 

 
 

 

 

 

 

 

 

In this overhead crane system, LQR performance of Trolley cart models, Den3 Num3 and Den4 

Num4, are compared. The following figure, Fig(11) shows, Den4 Num4 model of modified 

Linear Least Square using 7past inputs/outputs dataset appeared to have shorter rise time and 

reach stability before 3 seconds while Den3 Num3 model of simple Least Square approach still 

fluctuating with longer rise time though the same Q and R weighting matrices have been applied.  

 

 

 

 

 

 

 

Figure (10): LQR Controller Design 
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For Load swing performance, again Den3 Num4 from Linear Least Square using 7past 

inputs/outputs data appeared to reach zero swing angle in less than 3 seconds with less rise time 

and shorter settling time compared to Den3 Num2 model from simple least square. Besides, 

Linear Least Square using 7past inputs/outputs data produce more models, in this case up to 35 

models have been analyzed before selecting the best fit model for control purpose. In this specific 

case of up to 600 data points, Den4 Num4 and Den3 Num4 models with lowest RMSEs have 

been picked for further reference tracking performance analysis. Though the controller response 

is better, steady-state errors still appear and therefore reference input tracking has been 

implemented to achieve desired inputs. 

 

7.3 Reference Point tracking with full state feedback control 
 

Adding the reference input to the system, u=-Kx+r can lead to steady state errors. Pre-multiply r 

by carefully chosen matrix . In order to create pre-compensation , there are two possible ways 

such as; full-state feedback, and full-state feedback with full-order observer, [7]. In this case, full-

state feedback reference input tracking would be used. The following equations, Equ(12) and 

Equ(13), and figures, Fig (12,a) and Fig(12,b) explain the pre-compensation  calculation. Full-

state feedback controller form is; 
 

                                                                            (12)    
                         

And therefore, full-state regulating input is;                         

                                                               

                                                                                                           (13) 
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Full-state feedback would regulate steady-state output   to desired steady-state value . In 

this trolley cart X directional motion, to track a constant desired position,  (ss=steady-state) 

with control, , the control equation is; 

 

 

 
 

By substituting                        , and , 

 

 
 

When  in the steady-state       

,  

 
 

The above equations can be formed as state-space; 

 (or)    

However, when computing the large matrices inverse, , it gives error. To be able to 

solve for larger matrices, this research applies the following way, Equ (14). 

 
                                                                                                 (14) 

     

 
where K is the controller gain. 

 

The established full-state feedback pre-compensators Nu and Nx are then applied in LQR-

controlled, Fig (13),  to achieve the desired input. The robustness of reference tracking produces 

perfect control stability on both trolley motion and pendulum load swing. Each Trolley desired 

position has been achieved in less than 3 seconds while load swing could be suppressed in 2 

seconds time compared to nonlinear high fluctuating pendulum output, Fig (14).  It shows that, 

the developed trolley and load swing linear models using modified linear least square with 7 past 

inputs/outputs are more reliable and LQR with pre-compensator just make the whole system 

perfect. 
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8. CONCLUSION 
 

The main objective of this work is to design Overhead Crane experimental model using 

Simmechanic Visualization aiming not only to achieve real crane-like model feature but also to 

implement robust, fast and practical controller. Furthermore, it would also be a major milestone 

to deliver better crane modeling and control for the real operation instead of relying on lab-scaled 

model work. This development would close the gap between pure mathematical sketch with real 

time operation.  
 

Throughout this work, trolley translational motion with attached pendulum is designed which 

represents exact lab model measurements and features. Practical considerations, such as joints 

actuation, moment of inertia, and the gravity, are taken into account. In addition, friction effects 

are included in the design using a friction-compensation technique. 
 

To accomplish the objective, collected simulation data are then used in linear least square system 

identification to produce predicted models. To have better estimated model, 7 past outputs and 7 

past inputs dataset matrix Algorithm was designed to produce more models. Root Mean Square 
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Figure (14): LQR Controlled response and Non-linear output 

Figure (13): Reference Input Tracking with Full-state feedback 
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Errors checking has then been implemented to compare  predicted models against the actual 

output. 
 

Once the best fit linearized models have been established,  those were implemented in reference 

input tracking-LQR controller design. The simulation result shows proposed control scheme 

guarantees both rapid damping of load swing and accurate control of crane position. 

Since the major milestone of physical modeling using simmechanic visualization was achieved, 

the future step is to design 3D Tower Crane physical model which would have Trolley 

translation, Jib rotation, and Hoist up/down motion. Furthermore, jib oscillation would be 

thoroughly analyzed to suppress payload swing during the operation. 
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