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Abstract

In this paper, new types of synchronization and inverse synchro-nization are proposed for some diderent
dimensional chaotic dynamical systems in discrete-time using scaling matrices. Based on Lyapunov
stability theory and nonlinear controllers, new synchronization results are derived. Numerical simulations
are used to verify the edectiveness of the proposed schemes.
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1.Introduction

Dynamical systems in discrete-time play an important role in chaos theory and mathematical
modelisation of many scienti.c problems [1, 2, 3, 4]. Re-cently, more and more attention has been
paid to the synchronization of chaos(hyperchaos) in discrete-time dynamical systems, due it.s
applications in se- cure communication and cryptology [5, 6]. Many synchronization types have
been found [7, 8, 9] and diderent methods are used to study synchronization of discrete-time
chaotic systems [10, 11, 12].

In this paper, the proplems of synchronization with scaling matrix and it.s inverse type are studied
between drive-response chaotic systems in discrete-time. Based on Lyapunov stability theory, we
would like to present a con-structive schemes to investigate synchronization and inverse
synchronization between some typical chaotic dynamical systems with respect to scaling matri-
ces in discrete-time with diderent dimensions. Because in real world all chaotic maps are
described by plane equations or space systems, we restrict our study about the new chaos
synchronization types to 2D and 3D discrete chaotic sys-tems and this restriction does .n lose the
generality of our main results. Firstly, anew schemes are proposed to study synchronization and
inverse synchronization between the drive 2D Lorenz discrete-time system and the response 3D
Wang map. Secondly, the 3D generalized Hénon map is considered as the drive system and the
controlled Fold map as the response system to achieve synchronization and inverse
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synchronizationThe remainder of this paper is organized as follows. In Section 2, de.n-itions of
synchronization and inverse synchronization for discrete systems via scaling matrices are
introduced. In section 3; synchronization and inverse syn-chronization are applied to 2D drive
system and 3D response system and new synchronization results are derived. In Section 4,
synchronization and inverse synchronization are studied between 3D drive system and 2D
response system.Finally, the paper is concluded in Section 5.

2.Definitions of synchronization and inverse syn-chronization via
scaling matrices

Consider the following drive chaotic system described by

Congider the following drive chaotic gyatem described by
Xk +1) = f(X(k)), (1)

where X(k) = (z1(k),., za(k))T € R™ i the state vector of the drive gystem
and f :E"™ — B As the response system, we conzider the following chaotic
gyetem deacribed by

Yik+ 1) =g(Y(k) + 1, (2)

where Y(2) = (y1(&), ., ym(&))7T € B™ in the atate vector of the response ays-
tem, g - R™ — E™ and U = (w)y;.,, € E™ iz the vector controller to be
determined. S

We prezent the definition of aynchronization via acaling matrix for coupled
chaotic gyatems given in Eqaz. (1) and (2).

Definition 1 The drive sysiem (1) and the reponge system (2) are satd fo be
synchronized, with respect o the seoling mobriz A, i there avisis o condroller
U =) e;0m ER™ and a given mabriz A, m xn, such ol the synehronizalion
BTToT o

e (k) =1 (k] —AX (&), (3)

satisfies that im . o0 |2 (B)]| =0

The definition of Inverse synchronization wia acaling matrix for coupled
chaotic gyatems given in Eqa. (1) and (2) .1z given next.

Definition 2 The drive syetem (1) ond the response system (2) are said fo
be inverse synehrondeed, with respect fo e sealing mobrie #, o fhere arisls o
condroller U = (wlyo,o,, € B™ and o given mairic &, n x m, such fhol fhe
gynehrorszaiton ervor

e(k) = X (k) — 8V (k), (4]
sattsfies thot lim e yes |2 (B)]| = 0.
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3.Synchronization and inverse synchronization of 2D drive system and
3D response system

In this section, we consider Lorenz discrete-time system and as the drive system the controlled
Wang system. Lorenz discrete-time system can be described as
z1(k + 1) =1L+ ab)zy (k) —bxy (k) xz (&), (5)
xy (& + 1) = (1 — b) mg (k) + bai (k) ,

which hasz a chaotic attractor, for example, when {a,b) = (1.25, 0.Y8) [L2]. The
Lorenz dizerete-time chaotic attractor 1z shown in Fig 1.

Fig. 1 The chaotic attractor of Lorene discrete-time
gyaterm.

The controlled Wang ayatem can be deacribed aa

al U‘E-l- ].:I = ﬂgayg UG:I + (Gd_a + ].:l 41 Uﬂ:l 414,
y(k+1) = a1dya (k) +y2 (k] + aadys (k) +uz, (&)
Ya (b + 1) = (apd + L) ya (k) + aedyy (8) y2 (k) + agd +ug,

where U' = (uy, ug, ung I# the wector controller. The Wang diacrete-time

gyatem haz a chaotic attractor, for example, when (a1, 0z, as, G4, 05, 6§, G, 0) =
(-1.8,02,05,-23,2, -08, —1.8,1) [L2]. the chaoctic attractor of Wang dizcrete-
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Fig. 2 The chactlc attractor of Wang dizcrete-time ayatem .

3.1.Synchronization of Lorenz discrete-time system and Wang system

According to de ntion 1, the synchronization errors between the drive system (5) and the

response system (6) can be derived as

er(k+ 1) =(aud+1—l)e (k] +Lz+ Np4ug,
eg(k+ 1) =eaik)+Lz+ Nz +ug,
Eglili’-:-l-l:l Z(ﬂr?a-l-l—ﬂgj Eg“ﬂ) + L34+ N 4+ g,

where Iy, I3 are real control conatanta to be detrmined,

Ni=Aqibey (k) za (k) — ﬂ:lz'&'fﬂ% (&),
Ny = Agpbaq (k) wz (k) — Agabad (&),
N3 = agdyz (&) yz (k) + ard + Aa1be (k) xz (k) — Asebai (&),

Ly = iy () + aadyz (k) + 25—y wiga; (k)
Ly = ai1dy1 (k) + azdy: (k) + Ej:ﬂdzj w (k)
Ly=3i_qwym k),

(7)

(8)

(9)
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11 = 11 Iiadﬁ — b — 31) .
Wiz = g (@ed +6 —11],
wz1 = —ihaiab,
izz = fhazh,

Wa1 = Ay (ard —ab — i3],
gy = f!l.gg (aﬁ + &L — Egj,l ,

(10]

and A = (Ay;) € B**F & the scaling matrix.
Theorem 3 [fl1 andl; ore chozen such Aol
[ad +1 — 1| < 1 and |apd + L —iz| < L. (11)

Then, the drive system (&) and e response system () are globally synchronized,
with respect fo the arbsbrary scaling mabrir A, wnder ke following conérollers

w,=—L; =N, l<i<3a (12)

Froof. By substituting the control law {12 into (7], the aynchronization error
can be written aa

g1l +1) =(mad +1 —I1)e1(k).
ezl 4+ 1) =ez (k). (1a)
23 Iik-'-l) =|:ﬂ-75+1—33j€3(|i3).

We take ag a candidate Dyapunoy function:

Vie(k) =3 el (k), (14)
=1
we get:
AV {e(k)] = Vie(k+1)) —V(e(k)
= D e (k1) =D el (k)
i=1 =1

= ((w‘i +1—1)" —1) ei (k) + ((Mé +1 - 1) —1) es (k)

and by uazing (11), we obtain: AV{e(k)) < 0. Thusa, by Lyapuncy atability it iz
immediate that lime_epe(k) =0, (i = 1, 2), and from the fact limg .0 ||e(k)]| =
0. We conclude that the ayzstems (5) and (6) are globally generalized synchro
nized. N
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The error functionz evolution are shown in Fig. 3.
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Fig. 3 Time evolution of aynchronization errora between the
drive Lorens digcrete-time system and the response Wang
gyaterm.

3.2.Inverse synchronization between Lorenz discrete-time system and
Wang system

According to de ntion 2, the synchronization errors between the drive system (5) and the
response system (6)), can be derived as
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{ o1+ 1) = (L4+ab—i1)es (k) + By — 500 4 815,

15
EQ(F’J-I—]_):(]_—EJ—E::IE: IiliE:I—I—Rg—Zj:lﬁgjuj, ( j
where {7, Iz are real consgtanta to be detrmined,
=L 4+, =12, (16)
where
Ny = —bwy(k)wg (k) — f1aaedys (k) ya (k) — 13050, (17)
Ng = EJ:L"-% (FG:I — l?gga-ﬁéyg (FG:I Y2 (FG:I — 5'330:-55,
L= Z:%:lwi.?y.? (&), (18}
Ly =20 1wy (&),
where
Wit = f11 (ab — agd — 1) — f1za1d,
wig = f1z (@b — 1) + #1380,
i1z = f12 (a&—ayﬁ—h)-l—t?naﬁ, (].9)

g1 = —fa1(mad + b+ Iz) — faaed,
gy = —f35 (b +l3) + fagaqd,
wyz = —fazlard + b4+ {3) + #raaad,
and § = (#;;) € B**? iz the scaling matrix.
To achieve gynchonization between the drive gystem (5) and the responze
gyatem (6), we azsume that

#1182z # 1z a1, (20)
and we chooge the controllera wy, (1 £4 £ 3), az follow

_ fzRy — il _ Bz —fFRs

Ul = , Uz =
#1185 — #1231 #1183z — #1282y

and wp = 0. (21)
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Theorem 4 If{; and iz are ciosen such thal
[L+eh—i| =1 and |[L -0 —I;] <1 (22)

Then, the drive syeiem (&) and the response system [€) are globelly dnverse
gynichiro dzed, with respect to the sealing mabriz § which verifies (20), wnder the
confrollers [21).

Froof. By subsatituting the contrellers [ 21) ints (15), the synchronization errom
can be written az

e1(k4+1) = (14 ab —i) e (¥).
{ elzl:(sc + L:I} =l:(1 —b— .a;;.)e;((sc;.)_ (23)

We take ag a candidate Lyapuncvy function:

Vie(k)) => e (k), (24)
=1
we get:
AV (e(k)) = V{e(k+1)) -V (e(k))

2

= ey -3
i=1

= ((l+ab—£1 l)e(F: (1—&—52)2—1)’3%("5):

and by using (22}, we obtain: ATV (e(k)) < 0. Thua, by Lyapunov atability it iz
immediate that limg_weg e(&) =0, (8 = 1, 2), and from the fact limy_.oq ||e(&)]| =
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0. We conclude that the systema (B) and (8) are globally inverse synchronized.

|
The error functions evolution are ghown in Fig 4.
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Fig. 4 Time evolution of inverae synchronization errora between the
drive Lorens dizcrete-time ayatem and the regponze Wang ayatem.

4.Synchronization and inverse synchronization of 3D drive system and
2D response system

Now, we consider 3D generalized Hénon map as the drive system and the con- trolled Fold map
as the response system. The 3D generalized Hénon map can be described as

w1 (% + 13 = —Baz (&),
@z (k4 1) = wa (k) + 1 — axi (&), (28}
Tz (k4 1) = z1 (k) + Sxa (&),
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which has a chaotic attractor, for example, when (@, §) =(1.07, 0.3) [L1]. The
30 generalized Hénon chaotle attractor 1z shown in Fig. 4.

Fig. B The chaotic attractor of 3D generalized Henon.

The controlled Fold map can be deacribed az

y1(k + 1) = ayy (k) + y2 (k) +uy,
i (26)
ya(k+ 1) = yi (k) + b +ua,
where IV = (ug, ung g the vector controller. The Fold map haz a chaotic

attractor, for example, when (a, &) = (—0.1,—1.7) [L2] . the chaotic attractor of

10
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Fold map =2 shown in Fig. 6.
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Fig. & The chaotic attractor of Fold map.

4.1.Synchronization between 3D generalized Hénon map and Fold map

According to de ntion 1, the synchronization errors between systems (25) and (26), can be
derived as

{ e1(f+1) =(a—i1)e1 (k) + N + Ls +ua, (27)

ez(f+ 1) =ez (k) + M + Ly +uz,

where ! 1z a real conatant to be detrmined,

Ny = —hyg (1 —aaf (k)
{ Ny = yi (k) + b — Az (l—cu:ng [F::j:l: (28)

{ L=y (k) + X1 71555 (k) (29)

2
Ly = —yz (k) + 20501 7% (K,

where

11
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T11 = faa (e — 1) — Aas,
Tiz = Az (o + 8 — i) — A1a8,
T12 = A1z (o —i1) — Agg,
a0
a1 = Az — Ags, (80)
Tog = Mgz + A1 — Agaf,
T2z = thaz — Agz,

and & = ({A;;) € R*™? iz the zealing matrix.
Theorem & If the condrol constant ! & chosen such haob
|6 —i] = 1. (31)

Then, the drive system (28] and the response system (26) are globally synchio-
nized, respect fo fhe arbitrary scaling mabrir A, wnder e following condvoliers

=N, —L;, 1<i=2 (32)
Proof. By aubstituting Eq. (32) into (27), the aynchronization errora can be

written as
ek +1) =(a—1Ie (k).
{t (22

We take ag a candidate Dyapunov function:

Vie(k)) = JZE;E? (kj, (34}
e gt
AV (e(k)) = Vie(k+1)) -V (e(k))
- %&mu—iem

= (0" -1)etm),

and by uaing (31), we obtain: AV{e(k)) < 0. Thua, by Lyapunov stability it iz
immediate that litng ., e;(&) =0, (i =1, 2), and from the fact limy_.., ||e(k)| =
0. We conclude that the syatems (28) and (26) are globally synchronized. m

12
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We get the numeric result that iz gshown in Fig 7.
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Fig. T Time evolution of gynchronization erro betwesn
the drive 300 generalized Henon map and the responae
Fold map.

4.2.Inverse synchronization between 3D generalized Hénon map and
Fold map

In this case, the synchronization errors between the drive system (25) and the response system
(26) can be derived as

13
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e1{k +1) = (—F+ Dea (k) + R1 — 325_; b1y,
e (k+ 1) = ey (k) + Ry — Zg— 1 Bate, (35)
ey (k4 1) =eq (k) + Ry — 2054 Payuy,

where ! iz a real control conatant to be determined,

R=MN+L, i=123, (36)
where

Ny = —'91:; (i (k) +8),
Ny =1—az (k) — (?h (&) + '5:' : (37)

Ny=—ta(yi(k)+8),

£y = E-=1 Hai Ty (%),
£y = Ej:] ."-"*g;,im:.i (%), (38)

Ly = g (k) 4+ 20520 pams (),
where

L

p1n =0l -5 —a),
piz = (=8 + 1) #1z — f11,
Loy = #31 —fz1a, (39)
thay = 3z — a1,
ttay =11 —fa1a,
fhag = #1z — #a1,

and § = (f;;) € R**? Is the scaling matrix.

To achieve aynchonization between the drive aystem (28) and the responae
gyatem (26), we assume that

f1z021631 — 20118 31822 + F11021032 £ O, (40)

and we chooze the controllers ay, (1 <& < 2), a follow

1

—f1zfa1 1 + 2gpf a1 Ay — fz1f 3z Fig
B130z1891 — 2011031855 + 1105185

W = (41)

and

_ —fgifa1 Ry + 28110 1 flp — #1161 Fa
Ug = . 1:42:1
F1zfz1fa1 — 201102102z + F11d 2183z

14
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Theorem 6 If the conbrol consland ! & chozen sueh thal
|5 —i| <1 (43)

Then, the drive system [28) and the response sysfem (26) wre globally inverse
synchronized, with respect fo the sealing malrie A wich verifies {{0), under the
condrol lows (§1) ond ({2)

Proof. By substituting Eqa. (41) and (42) into (35), the ynchronization errom
can be written aa
e1lk+1)=(—F+1ez(k).
gz (k4 1) =ea(k). (44)
ezl +1) =e1(k).
We take az a candidate Dyapunov function:

2

Vi(e(k) = Zl ef (&), (45)
we gel: i
AV (elk)) = V{e{k+1)) =V (efk))
_ ie?(kﬂ)—ie?(k}

= ((6-9* -1) ek (x)

15
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and by using (41), we obtain: AV{e(k)) < 0. Thua, by Lyapunov atability it s
immmediate that lme_eo ei(k) =0, (i =1, 2), and from the fact lime ..o |le(k)] =
0. We conclude that the ayatems (28) and (26) are globally inverse generalized
gynchronized. m

Finally, we get the numeric reault that iz shown in Fig. 8.
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Fig. 8 Time evalutlon of inverse gynchronization errora
between the drive 30 generalized Henon map and the
rezponze Fold map.

5.Conclusion

In this paper, we analysed the synchronization and the inverse synchronization problems using
scaling matrices for some typical diderent dimensional chaotic systems in discrete-time. A new
control schemes are derived and new synchro-nization controllers are proposed. Numerical
simulations are used to verify the edectiveness of the derived results.

16
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