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ABSTRACT 
 

This work studies the dynamics, control and synchronization of hyperchaotic Lorenz-stenflo system and its 

application to secure communication. The proposed designed nonlinear feedback controller control and 

globally synchronizes two identical Lorenz-stenflo hyperchaotic systems evolving from different initial 

conditions with unknown parameters. Adaptive synchronization results were further applied to secure 

communication. The numerical simulation results were presented to verify the effectiveness of the designed 

nonlinear controller and its success in secure communication application. 
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1. INTRODUCTION 
 

Chaotic systems are characterized by their complex dynamical behaviuor particularly their 

extreme sensitivity to initial conditions and parameters variation which make their behaviour 

long-term unpredictable. Therefore, the idea to control and synchronize two chaotic systems has 

been considered as illogical and impossible [1]. The year 1990 marked a turning point in the 

study of chaotic dynamics when the idea of chaos control and synchronization was first proposed 

by Pecoral and Carrol [2], and it was shown that synchronization is not only possible but it has 

wide potential application in secure communication, engineering, physical, chemical, biological 

and financial systems, and information science [3-5]. 
 

Synchronization involves the linking of one system trajectories to the corresponding trajectories 

of the other such that both systems remain in step with each other (mimics) through the 

transmission of signal [6]. The coupling of these systems is usually called drive (master) and 

response (slave) systems [7]. Its numerous applications in secure communication has been one of 

the main motivating factor, where the basic idea is to mask the information bearing signal to be 

transmitted with chaotic signal that exhibits broad band feature [8-10]. 
 

A wide variety of approaches have been developed and reported in the literature to achieve chaos 

synchronization in the couple chaotic and hyperchaotic systems such as; time-delay feedback 

method [11], active control method [12-13], impulsive method [14], linear state error feedback 

method [15], adaptive control method  [16-19]), backstepping technique [20-23] (see the 

references there in). Most of these approaches are based on exactly knowing the system structure 
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and parameters. But in many practical situations, some or all of these systems’ parameters are 

unknown. Also, these parameters can change from time to time. Therefore, the derivative of 

adaptive controller for control and synchronization of chaotic system in the presence of unknown 

parameters is an important issue [24], that made adaptive control method more advantageous in 

practice over the other approaches mention above. Though the adaptive control method is easy to 

manipulate, it still has the following limitation; the controller designed by this method usually 

have high or fixed signals strength and too large. As we know, the actual transmission of the 

signals is always associated with the signals’ amplification and reduction. Also, one always 

expected to achieve the final synchronization by using the relatively smaller signals. Thus the 

adaptive control can be improved by reducing the signal strength and the complexity in controller 

to minimize the energy consumption.In view of this, the present work is focused on the 

following: the dynamics and qualitative properties of hyperchaotic Lorenz-Stenflo system, 

designing of adaptive control method for controlling hyperchaoticLorenz-Stenflo system with 

fully unknown parameters to control to equilibrium point, design via adaptive nonlinear extended 

scheme control feedback input that capable of synchronizing two identical hyperchaotic Lorenz-

Stenflo systems evolving from different initial conditions and its application to secure 

communication. The control and synchronization based on this technique are simple and easy to 

implement in practical applications in some real systems. 

 

2. DESCRIPTION OF LORENZ-STENFLO SYSTEM 

 
The mathematical interest in this work is the hyperchaotic Lorenz-Stenflo system described by 

the first order differential equations of the form given in equation (1) below; 
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Where 321 ,, xxx  and 4x  are the state variables of the system and cba ,, and d  are the real 

constant parameter of the system.  
 

System (1) exhibits hyperchaotic behavior when 0.26,5.1,0.1 === cba and 7.0=d and the 

phase portraits of the attractor is given in Fig.1. 
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(c) 
 

Figure1. Phase portraits of Loren- Stenflo hyperchaotic system attractor with the parameter 

values; 0.26,5.1,0.1 === cba and 7.0=d  
 

3. BASIC DYNAMICS OF LORENZ-STENFLO HYPERCHAOTIC SYSTEM 
 

To derive the equilibrium point for Lorenz-Stenflo hyperchaotic system (1), when 0≠a , 0≠b , 

0≠c  and 0≠d , we solve the sets of equations in system (1). By solving system (1), we let; 
 

01 =x& , 02 =x& , 03 =x& and 04 =x& (condition for stability) 

 

Hence; 

0)( 412 =+− bxxxa                                                                                                            (2) 

0)( 231 =−− xxcx
                                                                                                             

(3) 

0321 =− dxxx
                                                                                                                    

(4) 

041 =−− axx
                                                                                                                    

(5) 

Solving equations; (5), (3), (4) and (2) respectively we get; 
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3.1 CONDITION FOR EQUILIBRIUM 
 

For hyperchaotic Lorenz-Stenflo system (1) to be in equilibrium, the following condition must be 

satisfy; .04321 ==== xxxx  But solving the sets of equations in system (1) {i.e., equations, 

(2), (3), (4) and (5)}, 4321 xxxx ≠≠≠ , provided that 0≠≠≠≠ dcba , which is a 

contradiction. Thus, there is no equilibrium point for hyperchaotic Lorenz-Stenflo system (1). 
 

Hence, control to equilibrium point E0 (0,0,0,0) and synchronization of hyperchaotic Lorenz-

Stenflo system (1) in the presence of system’s disturbances and unknown parameters is quiet 

interesting that needed to be address. 
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4. ADAPTIVE CONTROL OF HYPERCHAOTIC LORENZ-STENFLO (LS) 

SYSTEM 
 

4.1 DESIGN OF THE ADAPTIVE CONTROLLER 
 

In order to design the control function )(tui , ( 4,3,2,1=i ) using adaptive control method, we 

assume that the real parameters cba ,,  and d in equation (1) are unknown. 
 

We now consider the controlled system as follow; 
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(6) 

Where )(tui , )4,23,1( =i  are the control function to determined. 
 

According to the Lyapunov stability theory, we choose the following Lyapunov function; 
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Where dddcccbbbaaa
~~

,~,
~

,~
−=−=−=−=  and dcba ,,,  are the estimated values of 

these unknown parameter respectively. 
 

The time derivative of equation (7) is given in equation (8) below. 
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In order to ensure that the controlled system (6) converges at the origin )0,0,0,0(  asymptotically 

at a desire time, the controllers )(tui  are choosing as follows: 
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The following parameter update laws were chosen; 
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Substituting equation (11) into equation (10) yields; 
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(12) 

According to the Lyapunov stability theory, the above condition ensures that the controlled 

system (6) stabilizes at the origin )0,0,0,0( at a chosen time with the designed controllers in 

equation (9) and the parameter update laws given by equation (11). 

 

4.2 NUMERICAL SIMULATION RESULTS 

 

Appling fourth-order Runge-Kutta algorithm with the initialcondition 8.0)0(1 =x , 6.0)0(2 =x , 

9.0)0(3 −=x , 8.0)0(4 −=x , a time sizes of 0.001 and fixing the parameter values as in figure 

1. 
 

The result obtained show that the state variables move hyperchaotically with time when the 

controllers are deactivated and when the controllers are switched on at 50=t the state variables 

are converges or stabilized at the origin )0,0,0,0( according to the Lyapunov stability theory. The 

results are display in Figure 2. 
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(c) 

 

(d) 

Figure2. Time responses of the state variables ( 4321 ,,, xxxx ) for hyperchaotic Loren-Stenflo 

system when the controller is activated at 50=t  to stabilize at the origin.   
 

5. ADAPTIVE CONTROL FOR SYNCHRONIZATION OF HYPERCHAOTIC 

LORENZ-STENFLO (LS) SYSTEM 
 

5.1 DESIGN OF ADAPTIVE CONTROLLER FOR SYNCHRONIZATION OF HYPERCHAOTIC 

LORENZ-STENFLO SYSTEM 

 
 

In this section, we synchronized two identical hyperchaotic Loren-Stenflo systems evolving from 

two different initial conditions. 

 

In order to obtain a partial strict- feedback, system (1) is rearranged as follows; 
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 We let 322114 ,, xxxxxx ===  and 43 xx = , then equation (13) takes the following forms; 
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Equation (14) is called the drive (master) and equation (15) is the response (slave). 
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Where )(tui )4,3,2,1( =i  are the control functions to be designed with the assumption that the 

parameters cba ,,   and d  are unknown constant. 
 

Our objective is to design an appropriate adaptive control inputs vector )(tui  to stabilize the 

errors vector of the state variables at the origin )0,0,0,0(   and also to make the state variables of 

the response (slave) system (15) to track the ones of the drive (master) system (14) with the 

parameter update laws at any chosen time. 
 

We define the synchronization errors vector between the drive (master) system (14) and the 

response (slave) system (15) as follows;   
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Where 4,3,2,1=i  

The subtraction of equation (14) from equation (15) is the result of the following errors vector: 
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We consider the Lyapunov function as follows;  
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Where aaa −=
~ , bbb −=

~
, ccc −=

~  and ddd −=
~

 are the estimate values these unknown 

parameters cba ,,  and d  respectively. The time derivative of equation (18) along the trajectories 

of the errors vector and estimate values of the constant parameter gives equation (19) below. 
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We substituted equation (17) in equation (19) to give equation (20) below. 
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cba ,,  and d  takes the place of cba ,,  and d  respectively. 
 

To ensure that the errors vector converges to equilibrium point )0,0,0,0(0E asymptotically, the 

condition 0<V&  must be satisfied. From equation (17), we selected the controllers as follows: 
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And the parameter update estimation laws as; 
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Substituting equation (22) into equation (20) yield; 
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In order to minimize energy consumption and controller complexity, we introduce the weight iε

to the designed controller in equation (21) as follows; 
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Where iε  ( 4,3,2,1=i ) are the weight added to the designed controllers. For simplicity, 

εεεεε ==== 4321  was chosen. 
 

The errors vector converges to the origin )0,0,0,0(  asymptotically in line with the Lyapunov 

stability theory. Also the drive (master) system (14) is synchronized with the response (slave) 

system (15) with the controllers (21) and (24)and the parameter update law (22). 
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5.2 NUMERICAL SIMULATION RESULTS 
 

To verify the feasibility and effectiveness of the designed controllers (21) and (24) and the 

parameter update laws (22), we simulate the dynamics of the drive (master) system (14) and the 

response (slave) system (15) by employing fourth-order Runge-Kutta integration method to solve 

the systems of differential equations given by equations (14) and (15) respectively with the 

following initial conditions )8.0,6.0,6.0,5.0(),,,( 4321 =xxxx , 

)0.9,2.0,0.1,0.9(),,,( 4321 −=yyyy , a time size of 0.001 and fixed the real parameter values of 

the system as in figure 1. The results obtained shows that the error vector variable moves 

hyperchaotically with time when the controllers are switched off and when the controllers are 

activated at 50=t as shown in figures 3 and 4, the error vector variables converges to the origin 

)0,0,0,0(   and thereby guaranteeing the synchronization of systems (14) and (15). This is 

confirmed by the synchronization norm e  given by; 
 

2

4

2

3

2

2

2

1 eeeee +++=
                                                                                                     

(25) 

We observed from the numerical simulation results that the control strength and its complexity 

are reduced by 30% ( 7.0=ε ) when the proposed extended adaptive control approach is applied 

(Figure 4), i.e. only about 70% of the strength of the usual adaptive control is needed to achieve 

complete synchronization. Thus this new method proposed in this work is an evident that the 

control strength weight ε is important by produces economics controllerswith low energy 

consumption which may be useful for practical application. 
 

However, the initial values of the parameter update laws (22) are chosen as follows; 0.4)0(1 =a , 

0.6)0(1 =b , 0.18)0(1 =c  and 0.31 =d . The parameter estimation values a , b , c  and d  

converges to 0.1=a , 5.1=b , 0.26=c  and 7.0=d respectively (see Fig. 5) as ∞→t .   
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(c) 

 

 

(d) 
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Figure 3: Error dynamics between two identical hyperchaotic Loren-Stenflo systems when the 

controller is activated at 50=t . 
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(b) 
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(d) 

 

 
 

(e) 

 

Fig. 4: Error dynamics between two identical hyperchaotic Loren-Stenflo systems when the 

controller is activated at 50=t with 7.0=ε . 
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(a) 

 

 

                                                                                  (b) 

 

 

(c) 

 

 

(d) 
 

Figure 5: Time responses of the state variables of drive (master) and response (slave) systems 

when the controller is switch on at 50=t  
 

Note: Red is the drive (master) system and Green is the response (slave) system. 
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Figure 6: The time responses of the parameter estimation errors. 

 

6. APPLICATION TO SECURE COMMUNICATION 
 

One of the most important applications of chaos synchronization in engineering is in secure 

communication, where the basic idea is to mask or modulate (encrypt) the information bearing 

signal to be transmitted with chaotic signal that exhibits broad band feature (see references [8-

10]).The information signal is added i.e. masked to the output of a chaotic oscillator to produce 

unpredictable signal which is transmitted from the transmitter to the receiver. At the receiver the 

pseudo-random is generated through the inverse operation, original message is retrieved. In order for 

this scheme to properly work, the receiver must synchronize robustly enough so as to admit the small 

perturbation in the drive signal due to the addition of the message [25-26]. The power of information signal 

must be lower than that of chaotic signal to effectively bury the information signal. The signal from the 

master controls the slave system so as to synchronize it with the master and to carry the information 

signal, just like any other communication scheme. The purpose of chaos secure communication is 

to hide message during transmission. 
 

In this chaotic masking scheme, encryption is achieved by combing the information signal with 

the chaotic carrier signal using mixing algorithm which is simply a function of information and 

chaotic carrier signals [27]. Here we demonstrate our secure communication scheme using the 

additive encryption masking scheme. The information signal is chosen to be a periodic function

tti 3.0sin5)( = , with this choice the chaotic carrier 1x  remain chaotic. The encrypted 

information is given by the masking algorithm 1)()( xtitie += .  Consequently, the decrypted 

information )(tid is given by the inverse function 1)()( ytiti ed −= . The chaotic signal  1x  of the 

master is transmitted to the slave via a coupling channel for synchronization between the master 

and the slave, the information signal tti 3.0sin5)( =  is masked in the encrypted signal )(tie and 

transmitted to the receiver. The decrypted information )(tid is extracted by inverse function. The 

numerical simulation results of the communication scheme are displayed in Figure 6. 
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(d) 
 

Figure7: (a) information signal )(ti ; (b) encrypted signal )(tie ; (c) decrypted signal (t=50), )(tid  

(d) decrypted error )()( titier e−= . 
 

7. CONCLUSION         
 

In this work the adaptive control method has been applied to control and synchronize Lorenz-

stenflo system with fully unknown parameters in the presence of system’s disturbancesand further 

extended the synchronization results to secure communication. The designed adaptive nonlinear 

controllers control Lorenz-stenflo system to equilibrium point )0,0,0,0(0E according to the 

Lyapunov stability theory and globally synchronized two identical Lorenz-stenflo systems 

evolving from different initial conditions. The presence of the weight (ε  i.e., the control signal) 

introduced to the controllers play a major role in the synchronization by overcomes the 

limitations of large signals and controller complexity in the normal adaptive control. This 

approach suggested that only about 70% ( 7.0=ε ) of the strength of the usual adaptive control is 

enough to achieve complete synchronization. We also observed from the numerical simulation 

results that the speed of synchronization depend on the value ofε , for large value of ε , the speed 

for achieve  synchronization is high and to minimize the expenses, small value of the control 

strength ε should be adopted. In addition, one can easily change the value of ε  according to the 

actual requirement. Hence, the introduction of weight to the usual controller as a signal control is 

of economic benefit that is suitable for practical implementation. Numerical simulations were 

given to demonstrate the effectiveness and efficiency of the proposed scheme. Thus, practical 

implementation of the proposed scheme shall be very useful and the future work shall focus on 

addressing this problem.  
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