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ABSTRACT 
 

This study illustrates presents a set of the Long – Term Geoelectric Potential (LTGP) measurements that 

are collected for experimental investigation in Western Greece during a five–year period (1993 – 1997). 

During this period, many major destructive earthquake events occurred that caused human casualties and 

extended material damages. The collection and processing of geoelectric measurements was done by an 

automated data acquisition system at the Seismological Laboratory of the University of Patras, Greece. 

This novel study considers seismic activity of this area as a typical linear dynamic system and the dynamic 

relationship between the magnitude of earthquakes and Long – Term Geoelectric Potential signals is 

inferred by the Recursive Least Square algorithm. The results are encouraging and show that linear 

dynamic systems, which are widely used in modern control theory, can describe efficiently the dynamic 

behavior of seismic activity and become a useful interpretative tool of seismic phenomenon. 
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1. INTRODUCTION 
 

Earthquakes’ disastrous effects on human lives has motivated scientists putting more effort on 

earthquake prediction based on precursor events than on earthquake forecasting in a probabilistic 

manner. A great variety of precursor signals have been proposed through years, among which 

geoelectromagnetic ones, captured through geoelectrical measurements over a broad frequency 

spectrum, have been promising on an eventual prediction of damaging earthquakes [1], [2], [3]. 

Earthquake event occurrence can be considered as the outcome of preseismic geotectonic 

variations reflected on the geoelectric potential. In this way, the behavior of Long-Term 

Geoelectrical Potential (LTGP) signals can be correlated to an upcoming earthquake event of 

great importance. Research on this direction has given interesting results. 
 

The chaotic behavior of the LTGP as a seismic event precursor signal has been explored and 

confirmed using Lyapunov exponents and Takens estimator [4], [5]. The fractal analysis of the 

Ultra-Low Frequency LTGP has revealed that strong earthquakes are shown to be preceded by a 

decrease of the spectral power law exponent approaching unity [6], [7]. Also, in an experimental 

analysis of seismic activity in Western Greece, a possible positive correlation of the Hurst 

exponent of LTGP difference signal to the changes of the spectral power-law exponent of the 

seismic activity has been found prior to major events [8]. 
 

LTGP power spectrum features relation to seismic activity has also been extensively investigated. 

Initially, the Short Time Fourier Transform has been used [9]. The encouraging results motivated 

scientists to deploy other advanced time-frequency analysis tools, such as [10] and Teager Huang 

Transform [11].   
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In this paper, a linear dynamical system is used to model the dynamic relation between the 

magnitude of an earthquake and LTGP signals. This type of modeling has been broadly adopted 

in modern control theory for many different fields, e.g., electrical or mechanical systems, 

computer and network systems [18], robotics etc. Raw LTGP data were collected at the 

Earthquake Prediction Section of the University of Patras Seismological Laboratory (UPSL) [12] 

during a five–year period, 1993–1997, in which significant events occurred close to the 

observation station. To the best of our knowledge this is the first study that considers the seismic 

activity as a dynamical system. The produced results are encouraging and show that a linear 

dynamical system can be an accurate mathematical model of an earthquake. 
 

The rest of this paper is structured as follows; in Section 2 the acquisition system along with the 

data are described. Section 3 provides the algorithm for identifying the dynamic model of an 

earthquake. Results are presented in Section 4. Finally, conclusions are drawn. 
 

2. DATA ACQUISITION AND MEASUREMENTS 
 

The geological procedures prior to an earthquake event include the application of stress on rocks, 

which causes the redistribution of pore fluids, fluid flow, and the piezoelectric effect of quartz. 

These explain the generation of electrical signals precursor to earthquake events. The 

measurement of the LTGP signals is done using two pairs of Pb-PbCL2 electrodes, perpendicular 

to each other, in NS (ch0) and EW (ch1) direction. In each dipole pair, electrodes are placed in a 

100m distance. Dipole electrotelluric signals are directed to an electronic VAN device, converted 

to digital with a sampling rate of 3 samples/min. Channel signals are in further anti-alias filtered 

using a Butterworth low-pass filter sampled with a 32-bit resolution and transferred to a PC in the 

control room via a dedicated line for further monitoring and processing. Also, a pen recording 

system is used for reliability and illustration purposes. The structure of the data acquisition 

system is presented in Figure 1.   
 

 
 

Figure 1. Data Acquisition System 
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Figure 2. Observed LTGP signals 
 

In order to observe long term variation, the sampling (digitization) rate was in further decreased 

to 1sample/hr. Thus, for the examination period of 1993-1997 in Western Greece a data set of 

43824 points was obtained. The relevant signals of ch0 and ch1 are depicted in Figure 2. 

Additionally, for the same period, the major earthquake events with magnitude Ms ≥ 4.8 close to 

our recording station, as provided by the Institute of Geodynamics of National Observatory of 

Athens [13], are recording for the exploration of their correlation to the precursor electrotelluric 

signals. Figure 3 shows the exact location of these events, while Table 1 contains all the 

necessary information about these major earthquakes. 
 

 
 

Figure 3. Epicenter of major Earthquakes in Western Greece (1993-1997) 
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Table 1. Major Earthquakes occurred in Western Greece during the period 1993-1997 
 

 
 

3. LINEAR TIME-INVARIANT STATE SPACE MODEL 
 

In control theory, the dynamic evolution of a process is defined mathematically by a state–space 

model. This kind of modeling is suitable for both continuous and discrete systems. In both cases, 

a vector of inputs u consists of all control variables and the vector of states x contains all variables 

that describe the dynamic evolution of the system. Generally, a state-space model is linear or non-

linear function of the state and input vectors f(x,u). In the case of discrete state-space model, a 

difference equation denotes how the state variables of the next time interval evolve from the 

current values of input and state vector, x(k + 1) = f(x(k),u(k)). A discrete model can be derived 

directly from difference equations if they are available. On the contrary, the complexity, linear or 

not, and the parameters of function f(x, u) can be selected so that an identification method 

produce an explicit model from measurements of input and state variables. System identification 

is an important area of systems theory [14] that provide black box methods for deriving state–

space model form system’s measurements. In this study, a Linear Time-Invariant (LTI) model is 

chosen to describe the earthquake as a dynamic system, which mathematically defined by, 

 

                              (1) 
 

 
 

where  is the state vector that contains ch0 and ch1 signals and  is the input 

vector that is the magnitude of the earthquake in every kth time interval respectively. The order of 

the model is the number of the elements of vector xk. In order to increase the accuracy of the 

model, past values of the input variables and states can be used. However, this increases the 

complexity of the model. There is always a trade–off between the accuracy and complexity of the 

model as the order of the model varies. The Recursive Least Square (RLS) algorithm [15] is the 

most common identification algorithm for identifying linear model of processes in industry. In 

this paper, this algorithm is chosen to compute the elements of matrices A and B of the LTI model 
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due to its simplicity and accuracy. Furthermore, it can be implemented online and does not 

require significant computational resources. 
 

4. VALIDATION AND RESULTS 
 

In order to validate whether an LTI model can effectively capture the dynamics of an earthquake, 

the acquired data set is separated geographically. In Figure 3, it is obvious that the major 

earthquakes can be separated in three geographical areas. The first area, named Area1, is around 

Lefkada island in North-Western Greece (Longitude: 20-21, Latitude: 38-39.5). The second area, 

called Area2, lies on the North coast of Peloponnese (Longitude: 21.5-22.5 Latitude: 38-39), 

which is closest to the data acquisition system. The marine area west of Peloponnese (Longitude: 

20-22, Latitude: 37-38) is the third area of interest, called Area3.  
 

The effectiveness of RLS algorithm is tested under two different scenarios. Initially, the RLS 

algorithm is fed with the whole data set to produce a unique LTI model for the whole region of 

Western Greece and an LTI model for each geographical area. Secondly, we focus on the major 

earthquakes of Table 1. For each geographical area, a local data set is created by concatenating 

measurements one week before and after a major earthquake. Then RLS algorithm used these 

data sets to produce three LTI models for the week before the major earthquake, for the week 

after the earthquake and for both weeks together for each geographical area. All derived models 

are evaluated using the Best Fit Rate (BFR) [16], [17], that is a well-known metric of system 

identification process. In order to produced unbiased results, different data were used for the 

training and the evaluation process. For both scenarios, we derive second and four-order LTI 

models. Higher order models do not improve the accuracy of the model. More specifically the 

second and fourth order LTI models are given by Eq. (3)-(4) respectively,  
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The RLS algorithm uses time-series of inputs and state variables in order to derive the 

corresponding models. The recorded measurements of ch0 and ch1 with digitization rate one 

sample per hour are the values of state variables. The input measurements are derived by the 

earthquakes data set with digitization rate of 1 sample per hour. If more than one earthquake took 

place during the one-hour interval, the magnitude of the strongest earthquake is used. If there is 

no earthquake, the measurement of this time interval is set to zero. 
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As mentioned earlier, at the first scenario a single model corresponds to the whole data set and an 

LTI model for each area respectively. Eq. (2) is the simplest LTI model that it can be used. A  

set of 30000 measurements is used for training and the rest data are used for the evaluation of the 

model.  

 

Figure 4 shows that the RLS algorithm converges quickly to the final values and Figure 5 

illustrates that the produced models are very precise. The results for the produced fourth order 

LTI model are similar and they are omitted for brevity.  
 

 
 

Figure 4. Convergence of Second Order LTI Model 

 
Figure 5. Real Measurements and Produced Data by LTI Model 
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Table 2. First Scenario: BFR Score of the RLS Algorithm 

 

Data Set Second Order Model BFR (%) Fourth Order Model BFR (%) 

Entire 85.02 85.11 

Area1 85.66 85.79 

Area2 87.96 88.13 

Area3 86.48 86.57 
 

Table 2 presents the BFR score of the second and fourth order LTI model for the entire data set 

and each geographical area respectively. For each area the accuracy of the LTI model is high and 

independent of the distance from the data acquisition system. As it was expected, the fourth order 

LTI model is slightly improved than second order model. 
 

At the second scenario, our work investigates the accuracy of LTI model for the major 

earthquakes. The entire data set for Area1 and Area2 consists of 1685 measurements and the set of 

Area3 includes 2022 samples. The produced models are derived from a portion of two third of the 

entire data set for each area and the rest measurements are used for validation. Figures 6-7 present 

the final value of the elements of matrices A and B of the four order LTI model of Area3. Figure 8 

depicts the difference between real measurements and the produced values by the derived LTI 

model. Although that the training sets are relatively small, the algorithm converges quickly to the 

final values of the models (Figures 6-7) and its precision is still very high (Figure 8). 
 

Table 3 presents the BFR score of the second and fourth order LTI model for the major 

earthquakes of each geographical area. The columns of this table correspond to models for one-

week period before the earthquake, one week after the earthquake and for both weeks 

respectively. The upper part of the Table 3 corresponds to second order LTI model and the lower 

part corresponds to the fourth order model. It is worth-mentioned that models corresponding after 

the major earthquake or for the two-week period are the most accurate. Also, the fourth order 

model is slightly precise than the second order model. 
 

 
 

Figure 6. Fourth Order LTI Model’s Parameters (Matrix A) 
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Figure 7. Fourth Order LTI Model’s Parameters (Matrix B) 

 

 
Figure 8. Real Measurements and Produced Data by LTI Model 

 
Table 3 – Second Scenario: BFR Score of the RLS Algorithm 

 

 
 

This study is a “reverse-engineering” method compared with [4]; because the magnitude of the 

earthquake is the cause and the LTGP signals are the results. From the results of both scenarios, it 

is inferred that LTI models can satisfactorily describe the dynamic relationship between LTGP 
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signals and the earthquake’s magnitude. It is validated that the produced LTI models are accurate 

independent of the presence of major earthquakes and the distance from the data acquisition 

system. This study can be used to simulate the seismic activity of a specific area. Furthermore, it 

can be combined with other prediction tools from modern control theory in order to predict 

destructive earthquakes using historical data. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

To the best of our knowledge this is the first study that investigates the dynamic relation between 

the magnitude of major earthquakes and LTGP signals. The widely used RLS algorithm is used to 

derive 2
nd

 and 4
th
 order discrete-time LTI models and tunes their parameters. The initial results 

show that the derived models are precise independent of the presence of major earthquakes and 

the distances from the data acquisition location. This kind of modeling combined with prediction 

methods from modern control theory seems promising in order to extract useful information 

about seismic activity of an area and the forecasting of destructive earthquakes. 
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