
International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

DOI : 10.5121/ijccsa.2012.2404 39

PRIVACY PRESERVATIONALGORITHM
USINGEFFECTIVEDATA LOOKUP

ORGANIZATION FOR STORAGECLOUDS

Amar More1 and Sarang Joshi2

1Department of Computer Engineering, Pune Institute of Computer Technology,
Maharashtra, India

amarmore2006@gmail.com
2 Department of Computer Engineering, Pune Institute of Computer Technology,

Maharashtra, India
sarang.joshi2002@gmail.com

ABSTRACT

In the era of cloud computing, many cloud service providers like Amazon, Microsoft, Google, etc are
offering cloud storage as a service. We can migrate our data to the storage offered by them and can
retrieve it back at any point of time or can share it with other people by making it available publicly
thought Internet. Since the size of the data stored in storage clouds could be very huge, searching and
retrieving a desired data by maintaining its privacy is one of the important issues. In this paper, we
present a new data storage organization for storage clouds which would be helpful for faster data lookup
through privacy preservation.

KEYWORDS

Cloud Computing, Storage Clouds, Storage Organization, Data Privacy

1. INTRODUCTION

Storage clouds allow users to upload the data on their servers and offer high availability, security
and reliability services. At its most basic level, a cloud storage system needs just one data server
connected to the Internet. A client (e.g., a computer user subscribing to a cloud storage service)
sends copies of files over the Internet to the data server, which then records the information.
When the client wishes to retrieve the information, he or she accesses the data server through a
Web-based interface. The server then either sends the files back to the client or allows the client
to access and manipulate the files on the server itself. Amazon S3 [1], Microsoft Windows Azure
Blob Storage [2], Nivranix [6], EMC Atmos [4], Mezeo [7], Google Storage [3], Rackspace
Cloud Files [8], and Eucalyptus[5] are some of the cloud storage providers.

Since the data stored in cloud storage could be very large, retrieving a data to which a user is
authorized to is a major challenge. Even though the client can specify the list of people who are
authorized to access the data, all the cloud storage providers provide direct access to the private
data (the data owned and stored by the client) only. But even if the client is authorized to access
the data stored by some other client, access to such data is not provided directly.

mailto:amarmore2006@gmail.com
mailto:joshi2002@gmail.com

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

40

If a client wants to access a data which is not a private data but is authorized to access it, then he
or she either has to know the detailed information like name, location of such data or the data
access URL should be available with that client. The data access URL is a URL about the data to
which an authorization is provided to some client or group of clients by the owner of the data.
Hence owner of the data has to perform an additional task of generating and managing URLs of
the data. Also there is no search facility available to the client locating the non private data to
which he or she is authorized to access.

In this paper, a new data storage organization for storage clouds is proposed, which would be
helpful for effective data lookup. It would not only help the users to locate the private or non
private data in a more efficient manner, but also maintain the privacy of the data. We have used
Walrus storage service provided by Eucalyptus [10] an open source cloud platform for the
deployment of cloud storage infrastructure and implementation of new storage organization.

The remainder of the paper is organized as follows. In Section II, we describe Eucalyptus Walrus
architecture and challenges in current Walrus implementation in Section III. Mathematical model
for the algorithm is described in Section IV. Section V provides Implementation Details and
finally we conclude in Section IV.

2. EUCALYPTUS WALRUS ARCHITECTURE

Walrus is a storage service included with Eucalyptus which is interface compatible with
Amazon's S3 [9], [11], [12]. Walrus allows users to store persistent data, organized as buckets and
objects. It supports REST, SOAP and Bit Torrent protocols for data access [13], [14]. Figure 1
shows the internal architecture of Walrus. The Walrus storage is organized as a group of buckets.
User can create the buckets and the data would be stored inside those buckets. Every storage
cloud provider will have limitation on the number of buckets those could be created by every
user. For example Amazon S3 allows maximum hundred buckets per user.

2.1 Walrus Buckets and Objects

A bucket is a container for data objects. Along with the objects it contains, a bucket has a name,
owner, access control policy, logging information and a location as shown in Figure 1. Nesting of
buckets is not allowed as buckets cannot contain other buckets. Each bucket within Walrus must
have a unique name and it cannot be changed after it is created, but we can make a new bucket
and copy the contents of new bucket into it.

A Walrus object is a container for data. Walrus has no knowledge of the contents of the objects. It
just stores it as a bunch of bits. As shown in Figure 1, every object has key, value and access
control policy attributes. Every Walrus object must belong to a bucket. There is no limit on the
number of objects that can be placed in a bucket.

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

41

Figure 1: Eucalyptus Walrus Architecture

2.2 Walrus Access Control Policy

The access control policy could be set for each bucket and object stored in Walrus. By default the
owner of the bucket or object will get the full permission to store, read, delete and modify the
data. Owner can set the access control policy for his own bucket or object according to which all
other users will be given an access to it. We can set READ, WRITE, FULL CONTROL, READ
ACP, WRITE ACP permissions to any bucket or object:

The permission can be granted to three different categories of users as follows:

1. Group Grantees: In this category, we can grant the permission to the group of users. The
groups can further be classified into three different types viz. AllUsers, AuthenticatedUsers and
LogDelivery.
2. Canonical User Grantees: If the owner wants to give the permission to some known users to
access the data, and these users do not belong to the same group, then it can be done by setting
the permission to each user id (also called as canonical id). In this case we can assign different
permissions to different users, which is not possible in case of group grantees.
3. Email Address Grantees: In this category, users with specific email address will be granted the
permissions.

3. CERTAINTY ANALYSIS OF DATA ACCESS BEHAVIOR IN
WALRUS STORAGE

The buckets stored in Walrus are classified into three categories viz. private, public and protected
buckets. For the owner the bucket is a private bucket. If the permission for accessing the bucket
is granted by owner to some other user then the bucket would be treated as a protected bucket for
that user and if the permission is given to all users then the bucket would be treated as a public
bucket.

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

42

When the user tries to fetch the list of accessible buckets using existing tools like s3cmd, s3fs,
s3curl, or jets3t which are used to access Walrus Storage Service; always the list of private i.e.
certain buckets is provided. But the list of non private buckets will not be provided directly since
Walrus do not maintain such list separately like private buckets. In this case Walrus expects the
user to provide identity of the bucket like its name or access URL.

Suppose user U wants to access a set of buckets B. If B is a set of private buckets of U then the
query would always be certain since the probability P (B Є U) = 1 and hence no searching would
be required to check whether U is authorized to access B. On the other hand, if B is a set of non
private buckets then P (B Є U) ≤ 1 since the bucket may not belong to the user. This yields an
uncertain decision and hence access control list of the bucket would be searched to check whether
U is authorized to access B.

3.1 Challenges Identified In Existing Implementation

The existing Walrus implantation by default provides the list of private buckets of the users. The
access to protected or public buckets would be provided on demand. For accessing protected or
public buckets, the user has to either know the name of the bucket or the access URL for the
bucket in advance. This imposes an additional overhead of generation, maintenance and deletion
of bucket access URLs.

When the access URL is generated for the bucket, one of the parameters to be provided is the
time in hours for which the URL will be valid. In this case, revoking the access before the
specified time is not possible. In such circumstances even after revoking the access the bucket
may be accessible to the user. This may compromise the privacy of the buckets.

The time required to locate the private buckets is less than that of protected or public buckets.
When an attempt is made to access a protected or public bucket, the Access Control List of the
bucket is searched to check whether or not the user is authorized to access it. Due to this
searching, the time required to access such buckets increases. To illustrate this, the sample test
run is conducted with 100 registered users with Walrus Storage. For the test, 5 buckets are created
per user and out of those 5 buckets one bucket is made protected and one bucket is made public.
The time required to access the buckets by five random users is recorded. Table 1 shows the time
required to access the buckets.

4. MATHEMATICAL MODELING OF THE SYSTEM

Let B represents a system representing the buckets stored in Walrus such that,

B = {n, s, f, d, m | F(d), F(m), F(f)} (1)

where,
n = name of bucket
s = size of bucket
f = set of flags which will indicate whether the bucket is private, protected or public
d = data present in the bucket
m = address of machine at which the bucket is

present

and for every bucket b Є B,

F(d) : n → d

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

43

F(m) : n → m
F(f) : n → f

Also let U be a system represents the set of users such that,

U = {u, lprivate, lprotected, lpublic | F(private), F(protected), F(public)} (2)

where,
u = user id
lprivate = list of private buckets
lprotected = list of protected buckets
lpublic = list of public buckets

and for every user u Є U and for every bucket b Є B,

F(private) : u × b → lprivate

F(protected) : u × b → lprotected

F(public) : u × b → lpublic

In order to facilitate locating the private and non private buckets efficiently, we have reorganized
the metadata of the buckets in an in memory data structure. This in memory data structure is
designed using two different strategies viz. linked organization and hashed organization.

Private
Buckets in

Nanoseconds

Protected
Buckets in

Nanoseconds

Public
Buckets in

Nanoseconds
13541356 17716525 20751198
12771076 15149817 22186371
27476716 32278136 27666525
22445588 25973608 23591333
27673747 32644019 29809070

Table 1: Time Required for Locating Buckets

4.1 Representing Internal Data Structure Using Linked Organization:

Let C<i,j,k> be the index organization of buckets for each user u Є U, such that 1 ≤ i ≤ 3, 1 ≤ j ≤
62 and 1 ≤ k ≤ n, where i represents the list li in which the bucket is present such that {0 →
private list, 1 → protected list , 2 → public list}, j represents the index of sub list lj into which li
is partitioned on the basis of starting character of the bucket name which may be from the set S =
{ a, b, c, …, z, A, B, …, Z, 0, 1, …, 9}, where |S| = 62 and k represents the appropriate index of
the bucket in jth list. The storage organization is shown in Figure 2 and Figure 3.

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

44

Figure 2: Data Structure for maintaining Private and Protected List of Buckets of Users Using Linked
Organization

Figure 3: Data Structure for maintaining Public List of Buckets of Users Using Linked Organization

Given any query q(u, b), where u is user id and b is bucket name, we have to retrieve an index
C<i,j,k> if bucket b Є user u. If we could guess the presence of bucket in specific list and could
modify the query q with additional parameter p such that q(u,b) will become q(u,b,p) where p is a
list in which the bucket is more likely to be present, then the probability that the bucket is located
faster increases just because this problem can be reduced to 3-coloring of graph problem and it
can be represented as:(|) = (∩)() (3)

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

45

The parameter p can be calculated by asking the user to specify the additional information along
with the query. For example, if user wants some bucket with name ‘abc’ then he can specify the
query like “search my ‘abc’ bucket. Here we can guess that the bucket belongs to the user so it
may be his private bucket and the probability that the bucket will be present in private list will be
higher. In this case we can search it first in the private list.

Further each jth list will hold the list of size n of all buckets starting with alphabet αj. Hence in
order to find the index k, we have to search all n values of the list. For reducing the time required
to search further, we can use some threshold θ such that if 0 ≤ n ≤ θ then we will perform
sequential search and if θ < n then we will perform binary search which will return the index k.

4.2 Representing Internal Data Structure Using Hashed Organization:

Let H<k,v> be the hash organization for all the users u Є U where k is the key representing user
id and v is the associated value representing the hash tables of private and protected buckets for
key k as shown in Figure 4; such that h(UserID) → k → v. Here h is the hashing function which
maps user id to corresponding key. Also let HPub<b,v1> be the hash organization for all buckets
b Є B such that b is public. Since these buckets are accessible to all, they are stored in separate
hash table.

Figure 4: Data Structure for maintaining List of Buckets of Users Using Hashed Organization

Once the user u sends the request to access the data, the hash function h will map the user id to
key k and will retrieve an object from hash table containing a HPriv<b,v2> and HProt<b,v3>
where HPriv and HProt are the hash tables for private and protected buckets and b is the bucket
name and v2, v3 represent data associated with the buckets. From these two hash tables the
required data is retrieved along with the data present in hash table of public buckets. In this case

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

46

the time required for searching is reduced since directly hash value will be calculated and value
associated with that hash value will be returned instead of traversing the whole list.

5. IMPLEMENTATION DETAILS AND RESULTS

We are using Eucalyptus Walrus to implement the prototype. The version of Eucalyptus used is
2.3.0. Since many tools are available to access the Storage Service, instead of modifying each
tool, we have decided to modify the source code of the Walrus. From the source code, the main
files in which changes done are WalrusManager.java from package called walrus and
DatabaseAuthProvider.java from package called authentication.

The performance could be measured using the following parameters:

1. The additional amount of memory required for the new data structures.
2. The amount of time required for retrieving the list of all buckets accessible for a

particular user.

6.1 Statistics for Additional Amount of Memory Required

The new data structures are implemented within Eucalyptus Walrus source code to locate the
buckets in an efficient manner. The list of all users registered with Walrus is maintained in
memory. Further for every user, two different lists are maintained; one for storing the information
of private buckets and other for protected buckets of the user. In order to improve the searching
performance further, each list is divided into 62 sub-lists (26 sub-lists are required for buckets
starting the names with letters from a – z, in the same way 26 sub-lists are required for buckets
starting with letters A – Z and 10 are required for buckets starting with letter 0 – 9). Here we have
assumed that, the bucket name will start with either letter a – z or A – Z or 0 – 9. Since public
buckets are accessible to all the users, instead of storing them in each user’s list, a separate data
structure is created for it. The additional amount of memory will be required for these data
structures. For the calculation of memory requirement, the following assumptions are made:

• The average size of user name and bucket name field is 100 bytes.
• Every user has created 62 buckets which are private buckets for him and 62 protected

buckets are accessible to him.
• Every user has given access of his one bucket to the group of all users. It means one

bucket of every user is public.

With the above assumptions, the amount of memory required for every user could be given as:
Let Uname represents the size of the user id field and Sprivate, Sprotected and Spublic represent the size of
the private, protected and public lists of the user respectively. Also let L is the number of buckets
present in one of the three lists and Bname is the size of the bucket name field. The memory
required for each of the list could be given by:

Sprivate = L * Bname (4)

Sprotected = L * Bname (5)

Spublic = L * Bname (6)

The total memory required for storing the bucket information of all the users could be calculated
using equations (4), (5) and (6) and can be represented as:

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

47

= S + S + S (7)

Here N is the total number of users present in the Walrus storage system.

The amount of additional memory required for the different number of users is as shown in Table
1 and its respective graph showing how the memory requirement increases with the number of
users is shown in Figure. 5. It could be found that even if the numbers of users accessing Walrus
storage are 1 million, the additional amount of memory required to maintain the information
about buckets is just nearly 1GB.

6.2 Statistics for Time Required to Locate Bucket List

The original implementation of Walrus Storage Service locates only the private bucket list of
users and there is no mechanism to locate the information of non private buckets. The information
about non private buckets will be provided only if bucket access URL is provided. On the other
hand the modified implementation provides not only the information of private buckets, but also
the information of protected and public buckets which are accessible to the user. Hence the
amount of time required to locate the information of buckets with modified implementation
would be more than that of original implementation. The following table shows that the time
required with new implementation is comparable with the original implementation.

For measuring the time required to locate the buckets, both original and new Walrus
implementations are configured on different machines with same configuration as Intel Core i5
processor, 8 GB Memory and 1TB disk storage. Initially 10 users are added in the system and the
amount of time required for locating their buckets is noted. Then the number of users is increased
gradually in multiple of 10 up to 100 and the time required to locate the buckets is

Sr.
No.

Number
of Users

Amount of
Memory

Required (MB)
1 100 1.20163
2 1000 12.0163
3 10000 120.163
4 100000 1201.63
5 1000000 12016.3

Table 1: Statistics for Memory Requirements

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

48

Figure 5: Memory Requirements for Internal Data Structures

calculated. Table 2 shows the statistics of the time required for locating buckets with existing
Walrus implementation and Table 3 shows the statistics for the time required for locating buckets
with new Walrus implementation with linked memory organization and Table 4 shows the same
with hash memory organization. The average amount of time required for locating the buckets is
shown in Table 5. The graph shown if Figure 10.2 shows the comparison between the time
required for locating buckets with existing and new Walrus implementation.

No of
Users Time Taken By Users to Locate Buckets (mSec)

10 49.08 12.01 12.37 10.29 11.12 10.57 10.94 12.04 6.23 14.83
20 50.23 9.87 9.87 9.61 9.88 8.80 11.04 6.04 9.19 8.90
30 9.86 9.34 6.83 50.65 6.01 10.15 9.35 9.54 9.28 9.41
40 4.76 9.50 5.24 9.34 7.27 6.89 11.96 45.86 7.95 20.40
50 8.86 8.79 53.28 8.38 9.28 9.04 9.19 6.57 8.57 9.21
60 7.49 4.76 5.81 8.76 4.66 9.15 50.01 18.26 15.38 18.73
70 7.65 8.67 8.96 9.10 9.01 49.12 9.10 17.34 9.70 18.06
80 7.15 6.41 8.92 8.04 9.40 9.61 48.51 18.85 14.91 18.82
90 5.58 8.36 7.30 6.69 8.59 49.42 18.26 18.39 17.26 18.78

100 5.94 5.05 7.83 50.11 6.68 17.31 12.19 19.69 11.87 18.18

Table 2: The Time Required for Locating Buckets with Existing Walrus Implementation

No of
Users

Time Taken By Users to Locate Buckets using Linked Memory Organization
(mSec)

10 9.24 11.26 9.15 11.10 14.22 15.43 22.35 27.28 25.35 27.33
20 11.77 14.79 16.88 14.78 15.03 18.93 17.55 28.25 21.47 17.20
30 9.51 8.18 16.84 16.11 22.52 18.81 16.77 24.31 21.38 22.67
40 22.68 21.86 22.62 22.81 27.16 22.67 23.08 22.78 22.71 22.91
50 2.79 1.24 2.06 22.94 27.70 23.05 24.59 22.70 22.59 22.69
60 1.51 1.98 2.58 23.45 23.37 23.58 27.03 23.00 23.10 22.89
70 2.71 2.30 4.68 23.98 27.93 23.98 26.95 22.99 22.78 30.22
80 2.67 4.65 8.36 22.58 22.48 23.27 23.54 31.14 25.28 27.11
90 4.26 7.60 9.25 27.92 22.14 20.16 23.61 25.94 25.28 27.30

100 8.70 6.29 22.69 23.55 22.44 22.53 28.38 25.86 21.69 23.33

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

49

Table 3: The Time Required for Locating Buckets With New Storage Organization Using Linked Memory
Organization

No of
Users

Time Taken By Users to Locate Buckets using Hashed Memory Organization
(mSec)

10 1.35 2.17 2.05 1.53 1.91 1.53 1.65 1.89 1.61 2.59
20 6.63 1.82 1.91 1.68 1.54 1.95 2.44 1.58 2.25 2.38
30 6.74 2.04 2.09 2.13 2.37 1.93 1.83 1.59 3.51 1.83
40 22.74 22.98 22.68 23.17 22.80 23.43 22.70 22.54 22.60 22.78
50 22.98 22.93 22.80 22.77 22.91 22.90 22.54 22.34 22.33 22.42
60 22.85 22.62 22.72 23.37 22.48 23.01 22.43 22.96 22.45 22.34
70 23.59 24.11 22.82 26.97 22.46 22.93 22.48 26.84 22.79 22.49
80 23/02 22.74 27.45 23.30 22.42 22.66 26.31 22.42 22.79 22.30
90 23.22 23.62 23.21 22.78 27.01 22.87 22.57 22.61 26.99 22.38

100 22.98 22.74 22.69 22.79 22.71 22.78 22.58 22.56 22.26 27.72

Table 4: The Time Required for Locating Buckets With New Storage organization Using Hashed Memory
Organization

Figure 6 indicates that the time required for locating the buckets in modified implementation is
more compared to original implementation. This is because the original implementation provides
only the list of private buckets whereas the modified implementation provides the list of non
private buckets also. We can also conclude that the time required for locating the buckets with
linked memory organization is more compared to hashed memory organization. In linked
memory organization we have to traverse the whole linked list for locating the users as well as
buckets whereas in case of hashed memory organization the time required to traverse is less. It
also indicates that, in case of linked memory organization, as the number of users is increased, the
time required also increases but in case of hashed memory organization it is almost constant.

No.
of

Users

Time Required for
Locating Buckets

with Original
Implementation

(mSec)

Time Required
Locating Buckets for
New Implementation

Using Linked Memory
Organization (mSec)

Time Required for
Locating Buckets for
New Implementation

Using Hashed Memory
Organization (mSec)

10 14.95205 17.27194 17.61534
20 13.34729 17.83423 16.78149
30 13.04566 17.68960 17.04811
40 12.92219 17.56440 17.05349
50 13.12308 17.23879 16.86654
60 14.30290 17.25353 16.60352
70 14.67446 18.85695 16.75666
80 15.07000 19.11327 16.73796
90 15.86134 19.74968 16.96284

100 15.48699 20.54831 16.92950

Table 5: Average Time Required for Locating Buckets

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

50

Figure 6: Time Required for Locating the Buckets

6. CONCLUSION

In this work an effective data storage organization is proposed which would reorganize the
information of the data stored in cloud storage. This would be helpful to locate the data belonging
for a particular user in an efficient manner. In contrast to the existing solutions which retrieve
only the private data of the users easily, a new implementation provides non private data also to
the user which the user is authorized to access. Even though access to non private data is
provided, the privacy of the data will not be compromised. This will also help to eliminate the
need to generate and maintain the access URLs which are required to provide the access to the
private data of certain user to other users. When the access for certain data is provided to some
user through access control policy, that data will be directly accessible to the user. The additional
memory is required for the internal data structures, but this memory requirement could not be an
overhead because even if one million users are using the storage service, just nearly 1GB of
memory is required to be allocated. Since the new implementation provides the list of private as
well as non private buckets to the user, the time required is more compared to original
implementation. The algorithm being implemented inside the Cloud Storage, no other application
tools providing the access to Walrus are required to be modified.

REFERENCES

[1] Amazon Simple Storage Service [Online] Available at: http://aws.amazon.com/s3/
[2] Windows Azure: Microsoft’s Cloud Platform [Online] Available at:

http://www.windowsazure.com/enus/home/features/storage/
[3] Google Cloud Storage [Online] Available at: http://cloud.google.com/products/cloud-storage.html
[4] Atmos – Cloud Storage, Big Data – EMC [Online] Available at:

http://www.emc.com/storage/atmos/atmos.htm
[5] Cloud Computing Software from Eucalyptus [Online] Available at: http://www.eucalyptus.com/

http://aws.amazon.com/s3/
http://www.windowsazure.com/enus/home/features/storage/
http://cloud.google.com/products/cloud-storage.html
http://www.emc.com/storage/atmos/atmos.htm

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.2, No.4, August 2012

51

[6] Enterprise Cloud Storage – Nirvanix Public Hybrid Private Clouds [Online] Available at:
http://www.nirvanix.com

[7] MezeoCloud – Mezeo Cloud Storage [Online] Available at: http://www.mezeo.com/platform
[8] Cloud Computing, Cloud Hosting and Online Storage by Rackspace [Online] Available at:

http://www.rackspace.com/cloud
[9] “Amazon Simple Storage Service API reference, API version 2006-03-01,” 2006.
[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov, “The

Eucalyptus open-source cloud-computing system,” in CCGRID ’09: Proceedings of the 2009 9th
IEEE/ACM International Symposium on ClusterComputing and the Grid. Washington, DC, USA:
IEEE Computer Society, 2009.

[11] “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.com/ec2/.
[12] “Elastic Block Storage,” http://aws.amazon.com/ebs/.
[13] “Amazon Web Services Developer Community: Amazon S3 Authentication Tool for Curl,”

http://developer. amazonwebservices.com/connect/entry.jspa.
[14] M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D. O’Hallaron, J. Cipar, E. Krevat, J. L´opez,

M. Stroucken, and G. R. Ganger, “Tashi: location-aware cluster management,” in ACDC ’09:
Proceedings of the 1st workshop on Automated control for datacenters and clouds. New York, NY,
USA: ACM, 2009.

[15] M. Armbrust, A. Fox, R. Gri_th, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley view of cloud computing. Technical
report, University of California at Berkeley, 2009.

[16] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a database on S3. In
SIGMOD '08: Pro-ceedings of the 2008 ACM SIGMOD international conference on Management of
data, pages 251_264. ACM, 2008.

[17] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud computing: Vision, hype, and reality
for delivering it services as computing utilities. In HPCC '08: Proceedings of the 2008 10th IEEE
International Conference on High Performance computing and Communications, pages 5_13. IEEE
Computer Society, 2008.

http://www.eucalyptus.com/
http://www.nirvanix.com
http://www.mezeo.com/platform
http://www.rackspace.com/cloud
http://aws.amazon.com/ec2/
http://aws.amazon.com/ebs/
http://developer

