
International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

DOI : 10.5121/ijccsa.2012.2604 43

CLOUD PENETRATIONTESTING

Ralph LaBarge1 and Thomas McGuire2

1Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
Ralph.LaBarge@jhuapl.edu

2Johns Hopkins University, Baltimore, MD USA
Tmcguir3@jhu.edu

ABSTRACT

This paper presents the results of a series of penetration tests performed on the OpenStack Essex Cloud
Management Software. Several different types of penetration tests were performed including network
protocol and command line fuzzing, session hijacking and credential theft. Using these techniques
exploitable vulnerabilities were discovered that could enable an attacker to gain access to restricted
information contained on the OpenStack server, or to gain full administrative privileges on the server. Key
recommendations to address these vulnerabilities are to use a secure protocol, such as HTTPS, for
communications between a cloud user and the OpenStack Horizon Dashboard, to encrypt all files that store
user or administrative login credentials, and to correct a software bug found in the OpenStack Cinder type-
delete command.

KEYWORDS

Cloud, Fuzzing, OpenStack, Penetration Testing, Vulnerability Detection

1. INTRODUCTION

This paper discusses penetration testing of the OpenStack Essex Cloud Management Software
package. The paper is organized into nine sections including (I) Introduction, (II) OpenStack
Cloud Management Software, (III) Selection of Penetration Testing Software, (IV) Design &
Implementation of the Test Cloud, (V) Design & Implementation of the Penetration Test
Environment, (VI) Description of the Penetration Tests Performed (VII) Test Results, (VII)
Summary and Conclusions, and (IX) References.

2. OPENSTACK CLOUD MANAGEMENT SOFTWARE

OpenStack includes four core services, and a set of ancillary services, which provide an
integrated cloud management environment. Core services include “Compute”, “Storage”,
“Networking” and “Dashboard”. Shared services include “Identity” and “Image”. Figure 1 shows
a block diagram of the OpenStack cloud management software.

mailto:LaBarge@jhuapl.edu
mailto:Tmcguir3@jhu.edu

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

44

Figure 1. OpenStack Cloud Management Software

2.1. OpenStack Compute (Nova)

OpenStack Compute is used to provision and manage large networks of virtual machines.
Common use cases for OpenStack Compute include public cloud service providers offering
Infrastructure as a Service (IaaS) cloud services, IT departments offering private cloud services
within their organizations, Big Data applications using tools like Hadoop, and High-performance
computing (HPC) applications. A partial list of OpenStack Compute features includes:

• Manage virtualized commodity server resources including CPU, memory, disk, and
network interfaces

• Manage local area networks including Flat, Flat DHCP, VLAN DHCP, IPv4 and IPv6
networks

• Virtual Machine image management services to store, import, share, and query virtual
images

• Ability to assign (and re-assign) floating IP addresses to VMs
• Role Based Access Control (RBAC) provides security by user, role and project
• VM Image Caching on compute nodes provides faster provisioning of VMs

2.2. OpenStack Storage (Swift & Cinder)

OpenStack Storage provides both object and block storage for use with servers and applications.
Object storage is a distributed storage system for static data such as virtual machine images,
backups and archives. Objects and files are written to multiple disk drives spread throughout the
OpenStack cloud, providing scalability and redundancy. OpenStack also provides persistent
block level storage devices for use with compute instances that require high performance storage
for databases, expandable file systems, or a server that requires access to raw block level storage.

A partial list of OpenStack Storage features includes:

• Use of commodity hard drives to reduce the cost per storage byte
• Self-healing: Data is copied to several different places across the cloud making the

storage system highly redundant and reliable
• Unlimited storage with both horizontal and vertical scaling
• Very large scale: multiple Petabytes with billions of individual objects
• Amazon S3 (Elastic Block Storage) API support
• Built in management utilities provide account management, container management and

storage monitoring functions

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

45

2.3. OpenStack Networking (Quantum)

OpenStack Networking is an API-driven system for managing cloud networks and IP addresses.
A partial list of OpenStack Networking features includes:

• Manages IP addresses, allowing for static, DHCP or floating IP addresses
• Several networking models including flat networks or VLANs
• Allows users to create and manage their own networks
• Support for software-defined networking technology (i.e. OpenFlow)
• Network framework allows for a variety of devices to be integrated into the cloud

including intrusion detection systems, load balancers, firewalls, etc.

2.4. OpenStack Dashboard (Horizon)

OpenStack Dashboard allows cloud administrators and users to provision, manage and control
cloud compute, storage and networking resources. Cloud administrators use the dashboard to
create users and projects, assign users to projects, and set limits on the resources for those
projects. Cloud users can also use the dashboard to provision and control the resources that have
been allocated to their projects. The OpenStack Dashboard is implemented as an extensible web-
based application.

2.5. OpenStack Identity (Keystone)

OpenStack Identity maintains a database of users and maps these users to the OpenStack services
they are allowed to access. It provides a common authentication system across the cloud and can
be integrated with third party backend directory services (i.e. LDAP). Multiple forms of
authentication are supported including standard username and password credentials, token-based
systems and Amazon Web Services style logins. OpenStack Identity allows cloud administrators
to set common policies across users and systems, to create users and tenants, and to define
permissions for compute, storage and networking resources.

2.6. OpenStack Image (Glance)

The OpenStack Image Service provides discovery, registration and delivery services for disk and
server images. Cloud administrators can create base image templates from which cloud users can
create new instances. Users and administrators can also create and store snapshots of images.
Images can be stored in a variety of common formats including Raw, VHD (Hyper-V), VDI
(VirtualBox), qcow2 (Qemu/KVM), VMDK (VMware), and OVF (VMware, others).

3. SELECTION OF PENETRATION TESTING SOFTWARE

Penetration testing software is used to evaluate the security of a computer system or network by
simulating an attack. The simulated attack can come from an outsider (e.g. a hacker) or an insider
(e.g. a disgruntled employee). Several penetration testing techniques will be used in this research
effort, including fuzzing, session hijacking, and credential theft.

3.1. Fuzzing

Fuzzing is used in computer security to describe a number of tools and techniques used to
discover vulnerabilities by subjecting a program to a wide variety of inputs. Computer
programmers, and testers have used fuzzing techniques since the early 1970’s. [1] The term

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

46

“fuzzer” was first used in 1988 by Barton Miller, a professor at the University of Wisconsin-
Madison (UW-M). Miller, his associates, and students from his Computer Science classes at
UW-M developed a series of fuzzers to test the reliability of UNIX system routines and
application programs. [2]

Another milestone in the history of fuzzing was the initial release of SPIKE in 2001, and its
subsequent presentation at Black Hat 2002 by Dave Aitel of Immunity, Inc. [3] SPIKE is a
fuzzing framework that allows a tester to define the structure of a program’s input as a series of
layered blocks. Understanding the structure of the input stream allows fuzzing to be more
efficient than simply generating random input data and providing it to a program under test. For
example if a program’s input includes a checksum, generating completely random input data to
fuzz the program would be extremely inefficient since the random input data would likely not
include a valid checksum, and would thus be rejected by the program.

Grammar based fuzzing is a combination of random fuzzing techniques with block-based fuzzing
techniques. A minimal definition of the protocol to be fuzzed is created to automatically generate
inputs to the program under test that partially complies with the protocol specification. Critical
protocol parameters, such as checksums, can be completely specified, while less important
parameters can be randomized. An example of a grammar-based fuzzer is the PROTOS project
developed at the University of Oulu in Finland. [4]

Since 2002 the popularity of fuzzing has grown, as has the sophistication and number of open-
source and commercial fuzzing tools. Today, fuzzing is widely recognized as a valid computer
security test method, and is being used by many commercial software development companies.
Microsoft uses “white-box” fuzzing as part of their quality assurance process. Dr. Patrice
Godefroid of Microsoft defines white-box fuzzing as “a new approach to fuzzing pioneered at
Microsoft in the SAGE tool and based on symbolic execution and constraint solving techniques.”
[5] According to Godefroid a Windows 7 test team found 50% more bugs using a white-box
fuzzer (SAGE) than all other traditional fuzzers combined.

3.1.1. Comparison of Fuzzing Tools

While there are dozens of fuzzing tools available, the authors have chosen to select between a
subset of open-source tools for this project. Open-source tools that will be considered include
BED, SFUZZ, SICKFUZZ, and SPIKE.

BED, also known as Bruteforce Exploit Detector, is a protocol fuzzer developed by Martin
Muench & Eric Sesterhenn that detects common vulnerabilities including buffer overflows,
format string bugs, and integer overflows. [6] BED supports fuzzing the FINGER, FTP, HTTP,
IMAP, IRC, LPD, PJL, POP, SMTP, SOCKS4 and SOCKS5 protocols. BED is an open-source
Linux based fuzzing tool that is relatively easy to use. BED does not offer any options to perform
command line fuzzing.

SFUZZ, also known as Simple Fuzzer, is a block-based fuzzer that includes a number of
predefined scripts for popular protocols including HTTP, POP3, RTSP, SMTP and Twitter. [7]
SFUZZ can also be used to perform command line fuzzing. SFUZZ is an open-source Linux
based fuzzing tool that is very easy to use for the predefined protocol scripts, and moderately easy
to use for fuzzing command lines.

SICKFUZZ is a Python front-end for the SPIKE fuzzing tool. SICKFUZZ is designed to fuzz the
HTTP protocol, and includes six predefined test cases for HTTP functions (HEAD, GET, POST,
etc.). [8] SICKFUZZ is an open-source Linux based fuzzing tool that is relatively easy to use,

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

47

although it generated a large number of run-time errors when the authors attempted to use it to
fuzz the OpenStack Horizon HTTP interface.

SPIKE is a block-based fuzzer developed by David Aitel of Immunity, Inc. [9] SPIKE is an open-
source Linux based fuzzing tool that is relatively hard to use since it requires a strong knowledge
of the C programming language, as well as detailed knowledge of the protocols that are fuzzed.
SPIKE is probably the most powerful open-source block-based fuzzer available today.

Based on analysis of how each fuzzing product met the specific requirements for this research
effort, as well as hands-on testing or live product demonstrations of each product, the authors
chose to use BED and SFUZZ for the test phase of this research effort. BED will be used to fuzz
the OpenStack Horizon user interface via a network protocol (HTTP) interface. SFUZZ will be
used to fuzz the OpenStack Horizon user interface via a network protocol (HTTP) interface.
SFUZZ will also be used to fuzz the OpenStack command line interfaces.

3.2. Session Hijacking

Session hijacking involves the exploitation of a valid session key to gain unauthorized access to a
computer system or a computer network. There are four basic types of session hijacking attacks
including session fixation, session sidejacking, session key theft, and cross-site scripting. The
session sidejacking technique will be used in this research effort. Session sidejacking uses packet
sniffing tools to capture a login sequence, and thus gain access to the user’s session key. Figure 2
shows a block diagram of a session hijacking attack.

Figure 2. Session Hijacking

As shown in Figure 2, the user initiates an HTTP session with a server over a network connection.
The user’s web browser sends a session request to the server, which responds with a session key.
The session key will be used in subsequent communication as an alternative to the user’s login
credentials. The attacker gains access to the session key by packet sniffing on the network the
user and server use to communicate. Once the session key has been sniffed, the attacker can use a
web browser to access restricted web pages on the server using the stolen session key.

Penetration testing tools developed by Robert David Graham of Errata Security called Ferret and
Hamster will be used to perform the session sidejacking tests on the OpenStack cloud. [10] Ferret
sniffs and captures session keys transmitted over a network connection. Ferret stores the URLs of
web pages along with the session keys associated with those pages in a text file. Hamster reads

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

48

data from a Ferret text file, opens a standard web browser, and provides an easy to use graphical
interface where an attacker can click on any of the captured URLs and navigate the browser
directly to restricted web pages using the captured session keys.

3.3. Credential Theft

Credential theft is a relatively simple penetration technique where an attacker steals, or guesses, a
user’s login credentials. User credentials can be stored in unencrypted files on the computer’s
hard drive, or transmitted over an unencrypted network connection. In either case, once an
attacker has gained access to the unencrypted user credentials they can use them to impersonate
the user and gain access to their restricted data. Another technique used to steal user credentials
is through the use of a key logging program that is used to remotely login to a computer. The
most common security incident at the National Energy Research Scientific Computing Center
(NERSC) is account compromises resulting from credential theft. [11]

For this research effort Wireshark will be used to monitor the network connection between an
OpenStack user and the OpenStack server. [12] Captured packets will be analyzed to determine if
user credentials have been transmitted over the network as unencrypted data.

Analyzing the OpenStack server’s hard drive to locate unencrypted user login credentials will be
performed using a number of standard Linux file access and editing tools. For example gedit can
be used to open and search through text based configuration files to look for user names,
passwords or other forms of login credentials.

4. DESIGN & IMPLEMENTATION OF THE TEST CLOUD

This section will describe how the OpenStack cloud server was built and configured prior to the
start of the testing effort.

OpenStack (Essex) cloud management software was installed on an Ubuntu 12.04 LTS system
with dual quad-core Intel i7-3770 processors operating at a clock speed of 3.4 GHz. The
OpenStack server included 16 GB of system RAM, a 3 TB local hard drive, and two Gbit
Ethernet network interfaces. One of the network interfaces was used to connect the OpenStack
server to an Internet Gateway, while the other was used to provide network connectivity between
the OpenStack server and the various computers used to perform vulnerability tests.

Figure 3 shows a high-level block diagram of the OpenStack Test Cloud as well as the various
computers that were used to perform the penetration tests

Figure 3. OpenStack Test Cloud Implementation

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

49

The OpenStack software was downloaded from the DEVSTACK web site, which offers shell
scripts to automatically install OpenStack on a variety of target platforms. [13] The DEVSTACK
“All-in-one” shell script was used to install OpenStack on the target server. Using the shell script
from DEVSTACK reduced the OpenStack installation process to the following three steps:

1. Install Ubuntu 12.04 LTS on the target server
2. Clone the DEVSTACK installation software from Github
3. Deploy the OpenStack cloud software by executing the DEVSTACK shell script

The OpenStack installation process using the DEVSTACK shell script took approximately two
hours. A few additional configuration steps were required after the installation process had been
completed, such as editing configuration files to include the correct network addresses.
Additional configuration steps included downloading virtual machine images for use in the
OpenStack cloud, creating test user accounts, creating virtual machine instances, creating
volumes, and associating volumes with specific virtual machine images. Most of the cloud
configuration steps can be performed from a remote workstation using the OpenStack Horizon
Dashboard, or they can be performed from the command line on the OpenStack server.

While the primary purpose of this research effort was to detect vulnerabilities in the OpenStack
cloud management software, it was desirable to configure the OpenStack test system so that it
was fully operational, with multiple user accounts, multiple virtual machine images, and multiple
volumes. CentOS, Fedora, RedHat, ttylinux and Ubuntu virtual images in the QCOW2 format
were downloaded and installed on the OpenStack server. These OpenStack compliant virtual
machine images are available for download from Rackspace Cloud Builders. [14]

5. DESIGN AND IMPLEMENTATION OF THE PENETRATION TEST

ENVIRONMENT

This section will describe how the systems used to perform OpenStack penetration tests were
built and configured prior to the start of the testing effort.

As shown in Figure 3, three different computers were configured to support penetration testing
during the research effort. A Windows 7 laptop was used primarily to connect remotely to the
OpenStack Horizon Dashboard interface. A Windows XP system was configured with a
promiscuous mode network interface card, Wireshark, and a few other tools to analyze network
traffic to and from the OpenStack server.

A Backtrack 5 (R3) system was configured with a variety of penetration tools, including the
fuzzing tools discussed earlier. Some penetration tools were also installed on the OpenStack
server itself in order to facilitate command line fuzzing. Backtrack 5 (R3) is a Linux based
penetration testing tool that is used by cyber security professionals. Backtrack 5 (R3) includes
hundreds of different cyber security analysis and penetration testing tools and is available as a
free download. [15] All the open-source fuzzers discussed earlier in this paper are available in the
Backtrack 5 (R3) release. A number of network scanners, including Zenmap, and network packet
capture tools, including Wireshark, are also available in the Backtrack 5 (R3) release.

Prior to performing penetration tests, a detailed network scan of the OpenStack server was
performed using the Zenmap program on the Backtrack 5 (R3) system. Zenmap is a graphical
user interface for the nmap program. [16] Nmap, also known as Network Mapper, is an open
source utility for network discovery and security auditing. The result of the scan indicates that
there are 19 network ports on the OpenStack server that could be used as attack vectors. Table 1
lists the open network ports that are used by OpenStack. [17]

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

50

Table 1. OpenStack Network Ports

Port 80 – HTTP Port 5672 – AMQP Port 8776 – Nova API
Port 3260 – Glance API Port 5800 – X11VNC Port 9191 – Glance API
Port 3306 – MySQL Port 5900 – VNC Port 9292 – Glance API
Port 3333 – Nova API Port 8773 – EC2 API Port 35357 – Keystone API
Port 4369 - EPMD Port 8774 – EC2 API
Port 5000 – Keystone API Port 8775 – Nova API

Once the network ports used by OpenStack were identified, a series of tests were run to
characterize the network packet structures used for each port. These were fairly simple tests that
involved monitoring the network using Wireshark while using the Horizon Dashboard to
configure different aspects of OpenStack.

6. DESCRIPTION OF THE PENETRATION TESTS PERFORMED

This section will describe the specific penetration tests that will be performed on the OpenStack
cloud management software.

6.1. OpenStack Horizon HTTP Fuzzing

The OpenStack Horizon Dashboard provides administrators and users a graphical interface to
access, provision and automate cloud-based resources. The Horizon Dashboard services use a
standard Apache web server listening on port 80. This portion of the OpenStack penetration
testing effort will attempt to detect vulnerabilities in the OpenStack Horizon Dashboard and its
associated Apache web server using the Bruteforce Exploit Detection (BED) and Simple Fuzzer
(SFUZZ) penetration test tools.

6.1.1 Bruteforce Exploit Detection (BED) HTTP Fuzzing

The Backtrack 5 R3 system will be used to run the BED program to test the OpenStack Horizon
Dashboard’s HTTP service.

For HTTP testing of the OpenStack Horizon Dashboard service BED will be invoked from the
Backtrack 5 R3 command line as follows:

perl bed.pl –s HTTP –t 192.168.1.10 –p 80 –o 2

This command instructs the BED program to fuzz the HTTP service listening on 192.168.1.10:80
with approximately two seconds between each fuzzing attempt. The BED program will transmit a
series of fuzzed packets to test the HTTP HEAD, GET, POST, User-Agent, Host, Accept,
Connection, Referer, Authorization, From, Charge-to, If-Modified-Since, and Pragma functions.

6.1.2 Simple Fuzzer HTTP Fuzzing

The Backtrack 5 R3 system will also be used to run the sfuzz program to test the OpenStack
Horizon Dashboard’s HTTP service. sfuzz includes a basic HTTP fuzzing configuration file.
Configuration files are used to specify how the sfuzz program generates the fuzzed packets that
are sent to the HTTP service.

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

51

For penetration testing of the OpenStack Horizon Dashboard HTTP service sfuzz will be invoked
from the Backtrack 5 R3 command line as follows:

./sfuzz –T –f scripts/basic.http –S 192.168.1.10 –p 80

This command instructs the SFUZZ program to fuzz the HTTP service listening on
192.168.1.10:80 using the “basic.http” fuzzing configuration file located in the scripts directory.
This configuration file instructs the SFUZZ program to generate a series of fuzzed HTTP GET,
HEAD and POST commands with a fuzzed string length between 1 and 10,024 characters.

6.2. OpenStack Command Line Fuzzing

OpenStack includes six services that have command line functions with at least one parameter.
These services include Cinder, Glance, Keystone, Nova, Quantum and Swift. Each command
with at least one required parameter from these six services will be fuzzed using the SFUZZ
program. OpenStack has been designed to require user authentication for most commands.
During the SFUZZ tests for each command that requires user authentication the fuzzed command
line will include a valid OpenStack user name, password, tenant name, and a URL pointing to the
Keystone server that will validate these credentials.
The OpenStack credentials used for the command line fuzzing are provided below. This
information is available from the OpenStack Horizon Dashboard by logging into an account,
clicking on the “settings” button located in the top right portion of the screen, clicking on the
“OpenStack API” button on the left portion of the next screen, and then clicking on the
“Download RC File” button at the bottom of the next screen. The OpenStack RC file for the
admin account includes the following user credential information required to execute commands.

OS_TENANT_ID=84a0eb4cabc441ab9325c42f0c6f57a5
OS_TENANT_NAME="admin"
OS_USERNAME=admin
OS_AUTH_URL=http://192.168.1.10:5000/v2.0

The password for admin is not included in the OpenStack RC file, and is required by Keystone
for authentication before a command is executed. The password for admin is “adminpassword”,
which will be included as a command line parameter. The admin account credentials will be used
for command line fuzzing since a user with administrative privileges is required to execute some
OpenStack commands.

For each of the six OpenStack services a custom SFUZZ configuration file was developed which
includes test cases for each OpenStack command with proper user authentication parameters, and
one or more fuzzed parameters.

The goal of fuzzing each of these OpenStack commands is to determine if each parameter is
properly validated before the command is executed. These fuzzing tests may discover
vulnerabilities if the code associated with a command does not properly validate a parameter that
has been accepted from the command line.

For each OpenStack service a custom SFUZZ configuration script was created with individual
test cases for each unique command and sub-command combination. These configuration files
are saved as .txt files. An exemplar test case from the nova.txt file is shown below.

Nova Test Case 03
Fuzz nova add-fixed-ip (two arguments)

http://192.168.1.10:5000/v2.0

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

52

nova --os_username admin
--os_password adminpassword
--os_tenant_name "admin"
--os_auth_url http://192.168.1.10:5000/v2.0
add-fixed-ip FUZZ FUZZ

--
This test case generates a series of nova add-fixed-ip commands which each requires two
parameters. Each parameter will be fuzzed to create a series of valid nova add-fixed-ip
commands with what are most likely invalid parameters.
Each configuration file is processed by the SFUZZ program to create a series of fuzzed
commands that are stored in a shell script file. An exemplar shell script line from the nova.sh
file is shown below.

Nova Test Case 03
Fuzz nova add-fixed-ip (two arguments)
nova --os_username admin

--os_password adminpassword
--os_tenant_name "admin"
--os_auth_url http://192.168.1.10:5000/v2.0
add-fixed-ip AAAA AAAA

This shell script command includes two parameters that the SFUZZ program has filled in with a
series of four “A” characters. The length of the fuzzed parameter strings generated by the SFUZZ
program is controlled by the configuration file. For the OpenStack Cinder, Glance, Keystone,
Nova, Quantum and Swift testing efforts the maximum string length of a fuzzed parameter was
set to 1025 characters. Table 2 shows the total number of unique fuzzed shell script commands
created to test each of the OpenStack services.

Table 2: OpenStack Command Line Fuzzing Tests

Service Name Test Cases Total # of Tests
Cinder 16 229,600
Glance 11 157,850
Keystone 24 344,400
Nova 73 1,047,550
Quantum 28 401,800
Swift 8 114,800
Totals 160 2,296,000

Each SFUZZ configuration file also specifies the characters used to build the fuzzed parameters.
These include the following ASCII characters: !, /, 0, 9, :, @, A, Z, [, ', a, z, {, and ~. Each of
these characters are used to form test strings between 1 and 1025 characters in length, which are
then inserted as parameters of the fuzzed OpenStack commands.

Some OpenStack services include a rate-limiting option that limits the number of commands that
can be executed over a specific period of time. During the fuzzed command line testing of the
nova service the rate-limit feature was disabled to ensure that all of the commands were processed
by the nova service. Disabling the nova rate-limit feature is done by editing the etc/nova/api-
paste.ini file. [18]

http://192.168.1.10:5000/v2.0
http://192.168.1.10:5000/v2.0

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

53

It should be noted that while the number of unique commands that will be fuzzed during these
tests is very large, it is possible to perform a much more comprehensive fuzzing of the OpenStack
command lines. Only required parameters are being fuzzed during this research effort. In
addition to required parameters most OpenStack commands can also contain optional parameters.
Also the command line fuzzing performed during this research effort generated fuzzed parameters
using only 10 different ASCII characters, and limited the parameter length to 1025 characters. A
more comprehensive OpenStack command line fuzzing test could be designed to use all the
required and optional parameters, use all 256 valid ASCII characters, and create longer fuzzed
parameters. Going to this extreme would likely increase the total number of fuzzing tests to well
over 50,000,000.

6.3. Session Hijacking

During this portion of the OpenStack penetration test effort an attempt will be made to hijack an
HTTP session using a stolen session cookie. The Ferret program will be used to monitor the
network connection between an OpenStack user and the OpenStack server. When the OpenStack
user connects to the OpenStack server via the Horizon Dashboard, Ferret will capture the session
cookie provided by the server to the user’s browser. Ferret stores the stolen session cookie in a
text file, along with URL data associated with web pages that were visited by the user during their
session.

The Hamster program retrieves the stolen session cookie and URL information from the text file
created by Ferret, and allows an unauthorized user to hijack the OpenStack user’s HTTP session,
and gain access to restricted Horizon Dashboard web pages.

The Ferret and Hamster programs were run on a Windows XP system that has a promiscuous
mode network interface card, as shown in Figure 3. A Windows 7 laptop was used to login to the
OpenStack server using the Test_User_1 account.

There is a known session hijacking vulnerability in OpenStack Essex and Folsom as described in
the National Vulnerability Database CVE-2012-2144. [19] The overview for CVE-2012-2144
states “Session fixation vulnerability in OpenStack Dashboard (Horizon) folsom-1 and 2012.1
allows remote attackers to hijack web sessions via the sessionid cookie”. A patch to fix this
vulnerability was released by OpenStack in May 2012. [20] The patch rotates session cookies
after a user logs out, and properly clears sessions. [21]

This patch revised the following six python scripts used in portions of the Horizon login process:

• horizon/exceptions.py,
• horizon/middleware.py,
• horizon/tests/auth_tests.py,
• horizon/users.py,
• horizon/views/auth.py,
• horizon/views/auth_forms.py

The penetration tests will attempt to verify that session cookies are reset after an OpenStack user
logs out, and will also attempt to hijack a user’s session before they logout.

6.4 Credential Theft

During this portion of the OpenStack penetration test effort an attempt will be made to steal user
credentials transmitted over the network connection, or stored in files on the OpenStack server.

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

54

The Wireshark program will be used to monitor the network connection between an OpenStack
user and the OpenStack server. When the OpenStack user connects to the OpenStack server via
the Horizon Dashboard, Wireshark will attempt to capture the user’s login credentials. During
this penetration test a Windows 7 computer will be used to login to the OpenStack Horizon
Dashboard using Test_User_1’s login credentials.

In addition to attempting to steal user credentials transmitted over the network connection, the
OpenStack server will be analyzed to determine if any user login credentials are stored in files on
the server. No special penetration test programs are required for this analysis. Standard Linux
programs like gedit can be used to analyze OpenStack files to determine if user credentials may
be stored in them. The OpenStack server directories that will be analyzed include the “devstack”,
“etc”, and “var” directories. Each of these directories includes a number of OpenStack
configuration files, program files and script files.

7. TEST RESULTS

This section will present the results of the penetration tests performed on the OpenStack cloud
management software.

7.1 OpenStack Horizon Dashboard HTTP Fuzzing

The OpenStack Horizon Dashboard HTTP server was fuzzed using both the BED and SFUZZ
penetration test tools.

7.1.1 BED HTTP Fuzzing Test Results

Figure 4 is a Wireshark HTTP/Packet Counter Summary from the BED fuzzing test. During this
test a total of 93,896 HTTP packets were transmitted, and the test took approximately four hours
to complete. Throughout the BED fuzzing test the OpenStack HTTP server was responsive, and
did not exhibit any behaviour that would indicate a potential vulnerability.

Figure 4. BED HTTP/Packet Counter Figure 5: sfuzz HTTP/Packet Counter

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

55

7.1.2 SFUZZ HTTP Fuzzing Test Results

Figure 5 is a Wireshark HTTP/Packet Counter Summary from the SFUZZ fuzzing test. During
this test a total of 3,474 HTTP packets were transmitted, and the test took approximately ten
minutes to complete. Throughout the SFUZZ fuzzing test the OpenStack HTTP server was
responsive, and did not exhibit any behaviour that would indicate a potential vulnerability.

7.2 OpenStack Command Line Fuzzing

The OpenStack server was command line fuzzed using six different shell scripts created by the
SFUZZ penetration test program. These shell scripts tested the OpenStack cinder, glance,
keystone, nova, quantum and swift command line APIs.

7.2.1 Cinder Command Line Fuzzing Test Results

Figure 6 shows a screen grab taken while the cinder command line fuzzing test was running. The
left side of the screen shows a Linux terminal executing the cinder fuzz test shell script, while the
right side of the screen shows the Ubuntu System Monitor program, which was used to monitor
the CPU, Memory and Network utilization rates during the test. As shown in Figure 6, the
average CPU utilization rate was less than 50% during this test.

The OpenStack cinder service did not crash, or exhibit any unexpected behaviors during the
command line fuzz testing. However, one problem was observed after the end of the fuzz test.
During the fuzz testing over 9000 cinder volume types were created. After the fuzz testing, an
attempt was made to delete all of these cinder volume types so that the OpenStack server was in a
known state before running the glance fuzz tests.

Figure 6: Cinder Fuzz Test Figure 7: Cinder Failure

The OpenStack Horizon Dashboard was used to delete the volume types created during the cinder
fuzz testing. Ten of the volume types could not be deleted. Figure 7 shows a screen grab of the
OpenStack Horizon Dashboard showing the ten volume types that could not be deleted after the
cinder fuzz tests.

The green box on the right side of Figure 7 is a dialog box confirming that all ten volume types
were successfully deleted, however as can be seen in the center of Figure 7 all ten volume types
are still present in the volume type data base.

Interestingly each of the ten volume types has a name of exactly 255 characters in length. The
cinder type-create fuzz test created volume types with name lengths between 1 and 1025
characters. Volume types with name lengths between 1 and 254 as well as between 256 and 1025
characters were properly deleted using the OpenStack Horizon Dashboard.

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

56

In addition to using the OpenStack Horizon Dashboard to attempt to delete these ten volume
types, the OpenStack cinder “type-delete” command was used to attempt to manually delete the
ten image types. OpenStack cinder accepted, and appeared to execute each of the ten type-delete
commands, however all ten image types were still in the database after the execution of the cinder
type-delete commands.

There appears to be a problem in OpenStack Essex that prevents the deletion of a volume type
with a name length of exactly 255 characters. To test this theory another volume type was
created manually using the following cinder command:

cinder --os_username admin
--os_password adminpassword
--os_tenant_name "admin"
--os_auth_url http://192.168.1.10:5000/v2.0
Type-create

TestTes
tTestTe
stTestT
estTes

When executed this command created a new volume type and assigned it a volume type number
of 9527. The following cinder command was then used to delete the newly created volume:

cinder --os_username admin
--os_password adminpassword
--os_tenant_name "admin"
--os_auth_url http://192.168.1.10:5000/v2.0
type-delete 9527

This command was executed with no errors. To verify that the volume type was deleted the
following cinder command was executed:

cinder --os_username admin
--os_password adminpassword
--os_tenant_name "admin"
--os_auth_url http://192.168.1.10:5000/v2.0
type-list

The new volume type did not show up in the list of volume types, so the cinder type-delete
command appeared to work properly, even on a volume type with a name length of 255
characters. Based on these manual tests it appears that the problem is more complicated than not
being able to delete a volume type with a name of exactly 255 characters.

The cinder file cinder/volume/volume_types.py” contains the python code to delete a volume
type. [22] The portion of volume_types.py that implements the type-delete command is shown
below.

def destroy(context, name):
"""Marks volume types as deleted."""
if name is None:

msg = _("name cannot be None")

http://192.168.1.10:5000/v2.0
http://192.168.1.10:5000/v2.0
http://192.168.1.10:5000/v2.0

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

57

raise exception.InvalidVolumeType(reason=msg)
else:

db.volume_type_destroy(context, name)

The python code for db.volume_type_destroy is located in the cinder/db/api.py file. [23] The
portion of api.py that implements the type-delete command is shown below.

def volume_type_destroy(context, name):
"""Delete a volume type."""
return IMPL.volume_type_destroy(context, name)

A cursory analysis of the python code does not show any obvious bugs that could cause a volume
type name of 255 characters in length to fail the delete process. The problem could be in the
OpenStack MySQL database, or in other python code that is executed during the image-delete
process. This problem has been submitted to the OpenStack Foundation as bug # 1085192. The
bug submission has been accepted, assigned a high priority, and is planned to be resolved in the
Grizzly-2 release early in 2013. The proposed solution is to use UUID based image type names
rather than ASCII character based image type names.

7.2.2 Glance Command Line Fuzzing Test Results

Figure 8 shows a screen grab taken while the glance command line fuzzing test was running. The
left side of the screen shows a Linux terminal executing the glance fuzz test shell script, while the
right side of the screen shows the Ubuntu System Monitor program, which was used to monitor
the CPU, Memory and Network utilization rates during the test. As shown in Figure 8, the
average CPU utilization rate was less than 50% during this test. The OpenStack glance service
did not crash, or exhibit any unexpected behaviours during the command line fuzz testing.

Figure 8: Glance Fuzz Test Figure 9: Keystone Fuzz Test

7.2.3 Keystone Command Line Fuzzing Test Results

Figure 9 shows a screen grab taken while the keystone command line fuzzing test was running.
The left side of the screen shows a Linux terminal executing the keystone fuzz test shell script,
while the right side of the screen shows the Ubuntu System Monitor program, which was used to
monitor the CPU, Memory and Network utilization rates during the test. As shown in Figure 9,
the average CPU utilization rate was less than 50% during this test, although there were some
bursts of utilization higher than 75%. The OpenStack keystone service did not crash, or exhibit
any unexpected behaviours during the command line fuzz testing.

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

58

7.2.4 Nova Command Line Fuzzing Test Results

Figure 10 shows a screen grab taken while the nova command line fuzzing test was running. The
left side of the screen shows a Linux terminal executing the nova fuzz test shell script, while the
right side of the screen shows the Ubuntu System Monitor program, which was used to monitor
the CPU, Memory and Network utilization rates during the test. As shown in Figure 10, the
average CPU utilization rate was less than 50% during this test. The OpenStack nova service did
not crash, or exhibit any unexpected behaviors during the command line fuzz testing.

Figure 10: Nova Fuzz Test Figure 11: Quantum Fuzz Test

7.2.5 Quantum Command Line Fuzzing Test Results

Figure 11 shows a screen grab taken while the quantum command line fuzzing test was running.
The left side of the screen shows a Linux terminal executing the quantum fuzz test shell script,
while the right side of the screen shows the Ubuntu System Monitor program that was used to
monitor the CPU, Memory and Network utilization rates during the test. As shown in Figure 11,
the average CPU utilization rate was less than 50% during this test, although there were bursts of
CPU utilization above 75%. The OpenStack quantum service did not crash, or exhibit any
unexpected behaviors during the command line fuzz testing.

7.2.6 Swift Command Line Fuzzing Test Results

Figure 12 shows a screen grab taken while the swift command line fuzzing test was running. The
left side of the screen shows a Linux terminal executing the swift fuzz test shell script, while the
right side of the screen shows the Ubuntu System Monitor program, which was used to monitor
the CPU, Memory and Network utilization rates during the test. As shown in Figure 12, the
average CPU utilization rate was less than 50% during this test. The OpenStack swift service did
not crash, or exhibit any unexpected behaviors during the command line fuzz testing.

Figure 12: Swift Fuzz Test

Figure 13: Session Cookie

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

59

7.3. Session Hijacking

Figure 13 shows a portion of a Wireshark packet capture when OpenStack sends a session cookie
to a Test_User_1 who is trying to access the Horizon Dashboard. As shown in Figure 13 the
session cookie is transmitted as unencrypted ASCII text.

Figure 14 shows a screen shot of the Hamster program after it has read the session cookie
information generated during Test_User_1’s login session, and allowed an unauthorized user to
access the Images & Snapshots web page of test-project-1.

Figure 14: Test_User_1 Session Hijack

As discussed previously OpenStack released a patch to six Horizon python scripts to address a
session hijacking vulnerability. The session hijacking penetration tests verified that these patches
were installed on the OpenStack server, and that they properly prevented session hijacking after
the user logged out.

During penetration tests these patches did not prevent session hijacking performed while an
OpenStack user was still logged in. As long as the user was still logged in the Ferret and Hamster
programs were able to hijack the user session. Once the session was hijacked an unauthorized
user was able to access any of the restricted Horizon web pages associated with that user account.
Access to these restricted web pages allowed an unauthorized user to add or delete cloud
resources to any of the user’s projects, to create snapshots of the user’s instances or volumes, and
to exfiltrate the user’s instance or volume data.

This issue has been submitted to the OpenStack Foundation as bug # 1085198. The OpenStack
Foundation is currently considering several options to address this issue. The most likely solution
is to change the OpenStack documentation to make it clear that using a secure network protocol,
like HTTPS, for communication between a cloud user and the Horizon Dashboard is strongly
recommended. Horizon currently supports the HTTPS protocol, however in some cases it is not
enabled during the OpenStack installation process.

7.4. Credential Theft

Figure 15 shows a portion of a Wireshark packet capture when a user logs into the Horizon
Dashboard. As shown in Figure 19 the login credentials for Test_User_1 are transmitted as
unencrypted ASCII text. In this case the user name, “Test_User_1”, and the user’s password,
“password1”, are transmitted over the network connection in the same unencrypted packet.

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

60

Figure 15: Test_User_1 Login Figure 16: admin user login

Unlike the session hijacking vulnerability discussed above, this credential theft vulnerability can
be exploited even after the user has logged out of their Horizon session. In fact this vulnerability
can be exploited at any time of an attackers choosing provided the user has not changed their
password. More importantly a patient attacker who has the ability to sniff the OpenStack server
network connection could collect user login credentials for the OpenStack system administrator,
and thus gain unauthorized access to all of the user data stored within the OpenStack server
including images, instances, volumes, snapshots, and project data. Figure 16 shows a Wireshark
capture of the OpenStack administrator’s login credentials transmitted as unencrypted data over
the network connection.

Analysis of the devstack, etc and var directories on the OpenStack server found several files
where unencrypted administrative login credentials can be found. These files include:

• /devstack/localrc
• /etc/nova/api-paste.ini
• /etc/cinder/api-paste.ini
• /var/cache/cinder/cacert.pem
• /var/cache/cinder/signing_cert.pem
• /var/cache/glance/registry/cacert.pem
• /var/cache/glance/registry/signing_cert.pem

Since all of the files listed above are stored as unencrypted data it would be relatively easy for an
insider threat to obtain access to these files and thus be able to steal OpenStack administrative
credentials. It would be a bit more difficult for an outsider threat to access these files, but since
OpenStack enables SSH access to the server a patient hacker could eventually crack the SSH
password and then gain access to these files.

8. SUMMARY AND CONCLUSIONS

During this research effort a number of penetration tests were performed on an OpenStack Essex
Cloud Management Server. HTTP Fuzzing of the OpenStack Horizon Dashboard user interface
did not reveal any vulnerabilities or program errors. The HTTP fuzzing attacks used two freely
distributed penetration test programs called BED and sfuzz.

Command line fuzzing of the OpenStack cinder service discovered a programming error related
to deleting a volume type with a long file name (255 characters). Command line fuzzing of the
OpenStack glance, keystone, nova, quantum and swift services did not reveal any vulnerabilities
or programming errors. The OpenStack command line fuzzing attacks used the freely available
sfuzz program.

A session hijacking attack against the OpenStack Horizon Dashboard service was successful and
allowed an attacker to access restricted user information. The session hijacking attack used two
freely distributed penetration testing programs called ferret and hamster. The session hijacking
vulnerability is listed in the NIST National Vulnerability Database (CVE-2012-2144), and
OpenStack has released a patch to address this vulnerability. Despite having the proper patches

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

61

to address this vulnerability, a session hijacking attack is still possible under certain
circumstances (i.e. the user whose session cookie was hijacked is still logged in to the OpenStack
Horizon Dashboard).

Two different types of credential theft attacks were successful in allowing an attacker to learn a
cloud user’s or cloud administrator’s login credentials, as well as to gain access to administrative
certificates. Login credentials were acquired over an unencrypted network connection using the
freely available Wireshark program. Administrative login credentials and certificates were
acquired by locating unencrypted files on the OpenStack server that contained this sensitive
information.

All of the vulnerabilities discovered during this research effort can be eliminated through the use
of encryption. The session hijacking attack can be prevented by using HTTPS instead of HTTP
for communications between cloud users and the cloud management software. The credential
theft attacks can be prevented by encrypting any OpenStack files that contain sensitive
information.

The programming error related to deleting volume types with long file names has been reported to
the OpenStack foundation (bug # 1085192), been assigned a high priority, and is scheduled to be
resolved in the Grizzly-2 release during early 2013.

The session hijacking issue has also been reported to the OpenStack Foundation (bug # 1085198).
The most likely solution is to change the OpenStack documentation to strongly recommend the
use of a secure protocol like HTTPS for network communications between cloud users and the
Horizon Dashboard. OpenStack currently supports the HTTPS protocol, although it is not
required for all installations.

It is important to continue to perform penetration tests on the OpenStack Cloud Management
Software. OpenStack is being used by many large companies for their private, as well as public
clouds. Improving the overall security posture of OpenStack through penetration testing is a
worthy effort since many OpenStack users are moving more of their applications and data into the
cloud

9. REFERENCES

[1] Hanford, K. (1970) Automatic generation of test cases, IBM Systems Journal 9(4), 242–257
[2] Miller, B., Fredriksen, L. & So, B. (1990) An empirical study of the reliability of unix utilities,

Communications of the ACM 33(12), 32–44.
[3] Aitel, D. (2002) http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt,

December 2012
[4] Roning, J., Laakso, M., Takanen, A. & Kaksonen, R. (2002) Protos- systematic approach to eliminate

software vulnerabilities, https://www.ee.oulu.fi/research/ouspg/, December 2012
[5] Godefroid, P., Molnar, D., (2010) Fuzzing in The Cloud (Position Statement),

http://research.microsoft.com/pubs/121494/paper.pdf, December 2012
[6] BED (Bruteforce Exploit Detector), available from http://www.codito.de, December 2012
[7] SFUZZ (Simple Fuzzer), available from http://SFUZZ.git.sourceforge.net/git/gitweb.cgi?p=SFUZZ,

December 2012
[8] SICKFUZZ, available from http://sickness.tor.hu/?p=334, December 2012
[9] SPIKE, Dave Aitel, Immunity, Inc., available from http://www.immunitysec.com/resources-

freesoftware.shtml, December 2012
[10] Graham, R. D., Ferret & Hamster Sidejacking Tools, available from

http://www.erratasec.com/sidejacking.zip, December 2012

http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
www.ee.oulu.fi/research/ouspg/
http://research.microsoft.com/pubs/121494/paper.pdf
http://www.codito.de
http://SFUZZ.git.sourceforge.net/git/gitweb.cgi
http://sickness.tor.hu/
http://www.immunitysec.com/resources-

International Journal on Cloud Computing: Services and Architecture (IJCCSA),Vol.2, No.6, December 2012

62

[11] NERSC Cyber Security Tutorial, Full text can be found at http://www.nersc.gov/users/training/online-
tutorials/cybersecurity-tutorial/, December 2012, page 4

[12] Wireshark is available from http://www.Wireshark.org/, December 2012
[13] Quick Start All-in-One OpenStack Shell Script, available from http://devstack.org/, December 2012
[14] OpenStack Virtual Machine Images are available from https://github.com/rackerjoe/oz-image-build,

December 2012
[15] Backtrack 5 (R3) is available from http://www.backtrack-linux.org/, December 2012
[16] Zenmap and nmap are available from http://nmap.org/, December 2012
[17] OpenStack Documentation is available from http://docs.openstack.org/, December 2012
[18] Detailed information on the OpenStack Compute API rate limit parameters can be found at

http://docs.openstack.org/api/openstack-compute/2/content/, December 2012
[19] National Vulnerability Database CVE-2012-2144,

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-2144, December 2012
[20] OpenStack /Horizon session fixation security fix,

https://github.com/openstack/horizon/commit/041b1c44c7d6cf5429505067c32f8f35166a8bab,
December 2012

[21] OpenStack Bug # 978896, Session Fixation Vulnerability,
https://bugs.launchpad.net/horizon/+bug/978896, December 2012

[22] cinder/volume/volume_types.py can be downloaded from
https://github.com/openstack/cinder/blob/master/cinder/volume/volume_types.py, December 2012

[23] cinder/db/pi.py can be downloaded from
https://github.com/openstack/cinder/blob/master/cinder/db/api.py, December 2012

http://www.erratasec.com/sidejacking.zip
http://www.nersc.gov/users/training/online-
http://www.Wireshark.org/
http://devstack.org/
http://www.backtrack-linux.org/
http://nmap.org/
http://docs.openstack.org/
http://docs.openstack.org/api/openstack-compute/2/content/
http://web.nvd.nist.gov/view/vuln/detail

