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ABSTRACT

Traditional HPC (High Performance Computing) clusters are best suited for well-formed calculations. The
orderly batch-oriented HPC cluster offers maximal potential for performance per application, but limits
resource efficiency and user flexibility. An HPC cloud can host multiple virtual HPC clusters, giving the
scientists unprecedented flexibility for research and development. With the proper incentive model,
resource efficiency will be automatically maximized. In this context, there are three new challenges. The
first is the virtualization overheads. The second is the administrative complexity for scientists to manage
the virtual clusters. The third is the programming model. The existing HPC programming models were
designed for dedicated homogeneous parallel processors. The HPC cloud is typically heterogeneous and
shared. This paper reports on the practice and experiences in building a private HPC cloud using a subset
of a traditional HPC cluster. We report our evaluation criteria using Open Source software, and
performance studies for compute-intensive and data-intensive applications. We also report the design and
implementation of a Puppet-based virtual cluster administration tool called HPCFY. In addition, we show
that even if the overhead of virtualization is present, efficient scalability for virtual clusters can be achieved
by understanding the effects of virtualization overheads on various types of HPC and Big Data workloads.
We aim at providing a detailed experience report to the HPC community, to ease the process of building a
private HPC cloud using Open Source software.
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1. INTRODUCTION

An HPC cloud is capable of offering HPC-as-a-Service (HPCaaS). Amazon EC2's 42nd entry in
the Top 500 fastest computers listing indicates that it is possible for an HPC cloud to deliver a
competitive performance given the inherent virtualization overheads. Coupled with potential
resource efficiency and flexibility, HPC clouds can dramatically reduce computing costs and
improve scientists' productivity. The insatiable resource needs of scientific computing and data-
intensive applications further ensure the potential benefits that are critical to the long-term
sustainability of the scientific discovery processes. HPC clouds also represent a unique win-win
technology/business combination that can maximize resource efficiency, lower computing costs,
and ensure a provider's potential profits all at the same time.
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There are three new challenges for using the HPC clouds. The first is the inherent virtualization
overhead that directly conflicts with the operational objective of the traditional HPC clusters.
Limited by available virtualization technologies, compute-intensive applications that demand
very low latency may still have to rely on HPC clusters. Secondly, since the HPC cloud allows
the hosting of arbitrary virtual HPC clusters, the scientists have total freedom in choosing and
controlling the application stack on every virtual machine. The administrative complexity is
challenging for scientists who have already been responsible for domain knowledge and the
numerical translation processes. The third challenge is application-programming models. The
existing HPC programming models were designed for dedicated homogeneous and non-shared
parallel processors. An HPC cloud is typically heterogeneous and more volatile due to resource
sharing.

Building a HPC cloud using Open Source software is also a non-trivial challenge. Since the cloud
computing support software is relatively young, the availability and maturity of software change
rapidly. The differences are subtle, and every decision can either make or break the entire HPC
cloud construction process.

This paper reports on the Temple University research team's efforts in building a private HPC
cloud alongside of a conventional HPC cluster. The Temple HPC Cloud is a result of negotiations
with multiple research groups. We are mindful of multiple conflicting requirements. We report
our experiences in managing the conflicts from multiple independent research groups.

This paper is organized as follows:

• Section 2 covers the background of private HPC clouds.
• Section 3 examines three private HPC cloud components: virtualization software, cloud

platform, and storage choices. We report our evaluation criteria.
• Section 4 contains a report on automated tools to build and manage virtual clusters. We

also describe the design and implementation of HPCFY, a new automation tool for virtual
HPC clusters.

• Section 5 contains three performance evaluation reports:
o Evaluation of VM startup delays.
o NAS MPI benchmarks for compute-intensive applications.
o Hadoop performance evaluation for data-intensive applications.

• Section 6 contains the conclusion, and future research directions.

2. BACKGROUND

2.1. Private and Hybrid Computing Clouds

User-centered resource control is the primary motivation for building an HPC cloud. Mitigating
factors include either funding source limitations or data security concerns. Being hosted on-site, a
private HPC cloud can provide direct user control over every detail of the deployment,
management, and customized usage metering of the cloud. Sensitive data faces less threat of
being compromised as in public clouds. Internally, application installation and access security can
be provided by individual users while leveraging the same resource pool. This allows the
scientists to experiment with the latest Open Source software and encourage faster improvements
to the collective developments. It also makes economic sense for an enterprise to build its own
private cloud using existing resources to reduce administrative costs and to improve resource
efficiency.
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Since scientific computing applications have insatiable resource needs, it is likely that some
applications would grow bigger than a local private HPC cloud could support; hybrid clouds then
become desirable.

2.2. Software Availability

Building a private cloud using open source software is a non-trivial trial-and-error process.
Customization is a labor-intensive process where care must be taken at every decision point to
determine the potential usefulness, support problems, and unintended consequences. Having the
experience of building a regular cluster is definitely a plus. Finding help in configuring a
particular piece of software can sometimes be a daunting task. Like all other Open Source
software, the Open Source cloud computing technologies are continually evolving.

2.3. Hardware Views

Traditional HPC clusters usually follow a simple architecture such as the Beowulf cluster [1],
where a head node (Server), an interconnect, and a set of compute nodes constitute the entire
service provisioning platform. The head node is used for cluster administration, management, and
login. The interconnect provides a way for the nodes to communicate with each other.

As the applications evolve, the HPC clusters have to grow in size to meet the demands. This
increases the complexity of the architecture. Today, HPC clusters are typically composed of
multiple management nodes, multiple file system nodes, and massively many computing nodes.

The management nodes are composed of a login node plus DHCP (Dynamic Host Control
Protocol) and DNS (Domain Name Service) servers. They can also include data access control
and user monitoring functions. As the number of computing nodes increases, the pressure
increases on the interconnection network and ultimately on the file system for saving the
computation results. The file system nodes have seen a steady increase. Large clusters strive to
separate file system traffic from computational traffic. Computing nodes typically do not have a
large storage capacity. They rely on the centralized parallel file system for data storage and
retrieval. Interconnects are also differentiated, such that file system nodes are connected via
networks that are capable of higher aggregate bandwidth (less expensive, such as GigaE
Ethernet[2]) while computing nodes are typically connected via low latency and high bandwidth
networks (more expensive, such as Infiniband [3]).

A private HPC cloud should be able to provision multiple on-demand virtual HPC clusters, i.e.,
HPCaaS, while sharing a centrally managed pool of HPC resources. An example architecture is
shown in Figure 1.

The requirement to support multiple virtual HPC cluster adds a lot of complexity to the cloud
software stack. Unlike the traditional HPC cluster, where the resource capacities are fixed by the
attached hardware, virtualization allows a new dimension of flexibility that is nonexistent in
traditional HPC clusters.

In an HPC cloud, every computing node will run a hypervisor and participate with a user-
specified capacity in a full-fledged virtual cluster. Each such cluster should be able to configure
its own attached storage and networks. Unlike typical enterprise IT clouds, these virtual HPC
clusters must deliver comparable HPC performances using the HPC computing nodes and
multiple low latency networks. Unlike enterprise IT clouds, elastic-provisioning of an HPC cloud
requires a balance between computation and communication among multiple virtual clusters.
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Figure 1: An example of aHPCaaS architecture.

Each virtual cluster can be further customized for specific application types, such as compute-
intensive (MPI or OpenMP), data-intensive (big data analytics), or interactive use of
mathematical packages, such as Matlab. Most traditional HPC clusters only support batch mode
parallel processing. A private HPC cloud seems to be the only solution to meet the diverse
application needs from multiple research groups.

3. HPC CLOUD SOFTWARE CHOICES

3.1 Virtualization of High Performance Systems

Linux is the favored HPC operating system. Almost all entries in the Top 500 fastest
computers[4] use different versions of the Linux operating system. Due to its open source nature,
it is easier to modify and expand an HPC cluster by adapting to the latest processor and
networking technologies by different vendors.

For an HPC cloud, the first crucial decision is the choice of the virtualization hypervisor. Pricing,
compatibility with the operating system, and the level of hardware support are crucial elements in
the decision process. At the time of this writing, there are many good options, such as Xen [5],
KVM [6], Vmware [7], Virtual box [8], and others. Each choice seems suitable for a particular
cloud application type. We are interested in the virtualization of leading edge high performance
processors and networks, such as Graphical Processing units (GPU) and Infiniband networks. The
maturity of the virtualization technology also plays a role in the decision process since support
from the open source community would be more readily available compared to the less mature
projects. Table 1 shows the capability comparisons of the above-mentioned virtualization
technologies.
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Table 1: Comparison of some key aspects of virtualization technologies

Virtualization Full
virt

Para
virt

License Archit-
ectures

Libvirt
support

Infini-
band

support

GPU
support

Xen Yes Yes GPL i686, x86-
64, IA64,

PPC

yes yes Yes

KVM Yes Yes GPL i686, x86-
64, IA64,

PPC, S390

yes yes Yes

VMware ESX Yes No proprieta
ry

i686, x86-
64

yes yes Yes

VirtualBox Yes No GPL or
proprieta

ry

i686, x86-
64

no no yes

Support for the libvirt [9] technology was considered important in our decision process since it
unifies different virtualization technologies under the same API. In our analysis, Xen has good
support for most of the HPC demands, but KVM is also a viable option. VMware and VirtualBox
were considered too expensive for non-business applications, such as computational research.

3.2. Cloud Platform Choices for HPCaaS

The virtual resource management system represents the ``cloud platform". The choice of a cloud
platform decides the resource and user management interfaces and functionalities. It is another
crucial piece of HPCaaS infrastructure. Ease of user management, security and community
support, maturity, and intercloud operability are the decision factors. There are many cloud
platforms available today, such as Eucalyptus [10], Nimbus [11], OpenStack [12], and XCP[13].
Table 2 shows the comparisons of available features for these technologies.

Table 2: Comparison of different cloud platforms.

Cloud
platform

Client UI Intercloud
operability

License Main
Virtualization

support

Maturity

Eucalyptus EC2 WS,
CLI

EC2 BSD Xen, KVM High

Nimbus EC2 WS,
CLI, WSRF

EC2 Apache v2 Xen, KVM Medium

OpenStack EC2 WS,
CLI

EC2 Apache v2 Xen, KVM,
UML, HyperV

Low

XCP CLI na GPL2 Xen Low

We were especially interested in the inter-cloud operability in order to explore external clouds for
offloading bursty work in the local private cloud. We found, however, that the hybrid cloud
capability is very limited at the time of this report for all of the tools we have studied. Eucalyptus
and Nimbus have some support for cloud interoperability. They provide an API that can link the
private cloud with public cloud, such as Amazon EC2 HPC instances. XCP only focuses on
supporting the Xen platforms. We have also found efforts to extend the functionality of
virtualization technology to allow for more flexible cross-platform resources. OpenStack[12] is
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such an open source cloud computing project. It is encouraging to observe the emerging
competitions in this field when the established entities, such as Eucalyptus and Nimbus, strive to
succeed in both open source and commercial spaces. The race is on. A recent survey by [14]
presents interesting perspectives in this space. In our evaluation, we choose the Eucalyptus cloud
platform.

3.3. Cloud Storage Provisioning

One of the most difficult challenges for building a cloud is its storage provisioning system. In
Eucalyptus, the virtual machine's image management is done by the Walrus storage controller.
The Walrus service handles the storage management functions of the virtual machine images.
Cloud storage differs from traditional cluster storage in its refined provisioning rules. These
include disk image lifecycle management and on-demand storage functionality. Unlike traditional
HPC cluster storage devices, where the administrator only installs and configures the file system
once, the cloud storage adds an additional conceptual layer. The virtual disks have their own
commands for allocation/partition/format/mount/unmount operations for the requesting user. In
this sense, without system administration tools or experiences, the complexity for using the HPC
cloud is actually higher than the traditional HPC clusters, since the normal administrative routines
are all exposed explicitly to the end user.

The complexity of the cloud storage layer also presents itself as delays in the virtual machine
(instance) start up time, since the virtual machine images must be transmitted to the node
controllers for the entire lifetime of the user's contract with the system. Walrus is the single point
of contention. The delay is expected to increase linearly as the number of starting instances
increases. The pWalrus project [15] is a recent effort to make Walrus run faster using parallel
processing.

Another challenge for the cloud storage controller is the provisioning of storage buckets or on-
demand elastic block storage (EBS). Currently, Walrus supports AoE (ATA over Ethernet) and
iSCSI (internet SCSI) technologies [16] to provide transparent storage accesses. AoE is suitable
for environments where all of the storage nodes are located in the same broadcast domain. iSCSI
can be used across multiple broadcast domains [10].

We believe that it is more appropriate to use a distributed/parallel file system to provide a unified
namespace for data accesses within the cloud. A scalable distributed/parallel file system has been
an on-going research topic in systems area. Many recent projects have shown reasonable
advances. These include (not exhaustive) PVFS (Parallel Virtual File System)/OrangeFS [17],
HDFS (Hadoop File System)[18], Lustre [19], and GlusterFS [20]. Each of these systems is
suitable for a subset of applications by sacrificing properties that are less important for these
applications. Table 3 shows the comparison of these file systems. It also shows the design goals
and tuning potential for each file system type.

From Table 3, we can see that choosing the best distributed/parallel file system is a non-trivial
task. None of the existing file systems seems capable of supporting all application requirements.
Limited by the existing technologies, cloud storage system must compromise between availability
and performance.

High-end parallel file systems, such as PVFS (Parallel Virtual File System) and Lustre, are
popular choices for HPC applications. They both rely on a dedicated storage-area network (SAN)
to provide the reliability for large-scale applications. For HPC applications, a distributed SAN is
an expensive proposition.
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Table 3: Comparison of different distributed/parallel filesystems

Distributed
filesystem

Posix
compli
ance

Data
Replic
ation

Concurrent
write

support

Open
Source

Performance
for

replicated
data

Maturity

PVFS Yes No Yes Yes na Good
HDFS No Yes No Yes Good (no

concurrent
writes)

Good

Lustre Yes No Yes Yes na Good
GlusterFS Yes Yes Yes Yes Medium Good

When SAN is not appropriate, HDFS (Hadoop File System) can provide a reasonably reliable
large-scale storage infrastructure by using replicated data on multiple data nodes. However, there
are multiple limitations. The namenode is a single point of failure. There are recent projects that
attempt to solve this problem with a checkpoint node [21]or by replicating the namenode
metadata using DRDB [22]. Even if the reliability issue can be addressed, HDFS is still not an
appropriate HPC cloud storage system choice. HDFS was designed for large-scale data analysis
applications. Thus, it allows for ``single write, multiple reads". Concurrent writes are not
supported.

A fourth option is GlusterFS, which is an open source Network Attached Storage (NAS) that
specializes in scaling out storage. The main drawback of the GlusterFS is that the replication of
the data across pairs of Gluster clients halves the write bandwidth, and thus requires higher
aggregate bandwidth. It is also not appropriate for HPC applications. However, the bandwidth
drawback would not occur during computation, and thus we consider it a reasonable choice
balancing between reliability, performance, and support.

The other options in this space are Redhat's Global File System and the Oracle Distributed File
System. These involve proprietary software and require kernel support.

We implemented GlusterFS with Walrus and the storage controller's capabilities to provide EBS
storage and virtual machine image management functions.

4. VIRTUAL CLUSTER MANAGEMENT

4.1. Challenges of Virtual Cluster Management

End users have the freedom to build customized HPC clusters using multiple virtual machines,
elastic storage, and virtual networks. They also have the task of managing every aspect of these
virtual clusters. As discussed earlier, the process requires cluster administration expertise plus the
basic cloud resource management skills. These are additional responsibilities on top of being the
domain knowledge experts and parallel programmers. The new capability gives greater flexibility
to the researchers, such as being ``root" and install non-standard applications. They also allow
customization and optimization of individual applications. However, it is also evident that tools
are necessary to ease these administrative chores.

Since typical end users have limited knowledge of cluster administration, many user-oriented
tools have emerged to help: the Nimbus Contextualization Tool [23], the Amazon
CloudFormation [24], and the MIT Starcluster project [25]. More challenging environments such
as auction-based clouds have been examined in the SpotMPI project[36].
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The Contextualization Tool can form an HPC cluster and can hide much of the administrative
details from the user for Nimbus clouds.

CloudFormation Users can build a cloud infrastructure based on basic building blocks in the
Amazon EC2 cloud. The open source community expects that this tool would soon become
available for private Eucalyptus clouds.

Starcluster is a python-based scripting toolkit that was also developed to automate the building,
configuring, and management of cloud-based clusters for the Amazon EC2 cloud. It can automate
cluster construction to include a shared file system, a batch queuing system, and password-less
access to virtual machine instances. In addition, an automatic load balancing feature is also
available. It can use the statistics of the batch queuing system to adjust the size of the cluster
depending on the incoming computational requests.

Once the virtual cluster is ready, traditional HPC tools can be installed to launch applications on
hundreds and thousands of virtual computing nodes in parallel.

There are also open-source tools for automating the administration of large-scale virtual clusters.
These include Rocks [26], Puppet[27] and Chief [28].

Rocks is a Linux distribution for large-scale clusters. It contains tools for synchronizing software
packages and deploying application images to a large number of computing nodes according to
the user's specification. This functionality seems not useful for Eucalyptus or EC2 type clouds
since the same image can be used to initiate many virtual machines.

More programmatic approaches are adopted in the Puppet and Chief projects. They are two
DevOps APIs for the management and configuration of large-scale traditional HPC clusters. Their
support for various types of clouds is under heavy development.

It is evident that the user tools community is very active. While a set of published projects are
setting the tone for future developments in terms of resource planning and management [37],
since the problem space is so large, we still expect many new approaches to meet the HPC
sustainability challenges: performance, reliability, scalability, intercloud operability, and usability
of virtual clusters all at the same time.

4.2. HPCFY: Puppet-based Virtual Clustering

For our private HPC cloud project, none of the previously mentioned tools would fit the
Eucalyptus platform without heavy modifications. The specificity of each tool renders them
useless to us. This has led to the development of a minimalist, but extendable, clustering tool
(HPCFY) that is based on the configuration tool called Puppet [27].

Figure 2 shows an overview of the HPCFY clustering process to provide dynamic
contextualization for a group of independent virtual machines. HPCFY contains a set of Puppet
classes and utilities that allow easy cluster management [29].

The users login to the head node of the private cloud from which they deploy their own clusters.
The user starts by requesting a set of VMs from the cloud controller by specifying a virtual
machine image and type as well as the number of instances to be used. The cloud controller looks
at the current availability and allocates the requested number of VMs. Subsequently, the user
selects one of the nodes to be the head node of the user cluster.
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In the current implementation, the head node is assigned as the Puppet Master and is also the NFS
server for the user cluster. The user then sends the cluster configuration to the Puppet Master that
deploys the cluster configuration to the rest of the nodes. Once the cluster is stabilized, the user
will be able to launch parallel applications from the user cluster head node.

The HPCFY project is openly available and can be easily downloaded and extended. Currently,
we support popular HPC packages, such as MPI and Hadoop/MapReduce with the large scale
data mining package Mahout. It also provides automatic configuration of a NFS-based file
system, distributed user accounts security configurations, and cluster monitoring using the
Ganglia project [30].

Figure 2: Overview of the clustering workflow using HPCFY.

The open and minimalist nature of the HPCFY/Puppet framework allows the users to easily
customize cluster configuration to fit their specific software and hardware needs. This can be
done with little interaction with the cloud administrator utilizing the complete access to the
allocated virtual machines. We expect that this new flexibility could lead to better time-to-
solution for many different research groups.

The next section reports on the computational results using the virtual clusters built with the
HPCFY framework.

5. PERFORMANCE RESULTS

This section reports on the computational results from benchmarking the private cloud. We
measure the virtual cluster startup time and the performance scalability for compute-intensive and
data-intensive applications. We compare the performance of physical and virtual processing
cores. The objective is to expose the virtualization performance overhead and to identify
potentials for future improvements.

We aim to gain an understanding of the performance characteristics of the experimental private
HPC cloud. This section is organized as follows:

• Experiment setup.
• Evaluation of VM startup delays.
• Performance of compute-intensive applications:

o Performance Comparisons of Physical and Virtual Cores
o Computational scalability analysis of virtual clusters.
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• Performance of data-intensive applications:
o Performance analysis of the effect of VM types on Hadoop applications.

5.1. Experiment Setup

We planned four experiments using our private HPC cloud [31]. It has 12 physical nodes in two
groups: 8 regular multicore nodes and 4 multicore with GPU nodes. The regular multicore node is
a 2 x Intel Xeon CPU X5660 processor with a total of 12 cores, 12G RAM, and a 1 Gigabit
Ethernet card. Each multicore GPU node has a 2 x Intel Xeon CPU E5630 with a total of 16
cores, 24G RAM, and 2 Nvidia c2050 cards. Every node has a 1 Gigabit Ethernet card and an
Infiniband QDR interface. The operating system is a modified version of Debian 6.0 Squeeze
with Xen 4.0 as the hypervisor. One of the 12 nodes is the dedicated head/login node where no
virtual machine is allowed. The same node hosts the cloud system management components, (i.e.,
Eucalyptus cloud controller, walrus service, storage controller, and cluster controller).

Firstly, we measure the virtual cluster startup time and increase the number of simultaneous VMs
and varying VM types.

In the second exercise, we test the compute-intensive NAS NPB and NAS NPB-MZ
benchmarks[32] to evaluate the computational capabilities of the virtual cluster. We use the
HPCFY tool to help with test automation. We record the effects of different data sizes by running
classes C and D of the NAS benchmarks and the pseudo applications part of the benchmark. We
also tested the multi-zone benchmark that relies on a hybrid MPI-OpenMP programming model.

The final exercise concerns data-intensive applications. We run four data-intensive benchmark
applications: DFSIO, Sort, Wordcount, and Kmeans clustering, using the Hadoop/MapReduce
and Mahout packages.

5.1. Virtual machine startup times

The virtual machine (VM) start up time depends on the size of the VM image, the bandwidth
available, and the requested VM type.

Varying the number of simultaneous VMs tests the scalability of the cloud management system as
the walrus and the storage controllers responds to the VM requests. It directly stresses the
network as it must determine the data transfer rates from the location of the VM image to the
node controller. To complete the virtual machines, the node controller needs to create dedicated
disk space for the virtual machine by attaching the elastic storage specified by the user. Once
complete, this non-trivial process allows the node controller to boot the virtual machine.
Table 4 describes the VM types used in the experiments. The different types serve different
purposes. Smaller instances can be used for development and testing while the larger instances
can be used for production work. Each VM type will have a different startup time.

Table 4. VM types used in the experiments.

Name CPUs Memory(MB) Disk(GB)
m1.small 1 128 2

c1.medium 1 256 5
m1.large 2 512 10

m1.xlarge 2 1024 20
c1.xlarge 4 2048 20
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In this experiment, we used a Debian 5.0 image of size 1.2GB. We varied the number of
simultaneous instances.

Figure 3: Startup times vsthe number of VMs and VM Types.

Figure 3 shows that the startup time behavior can separated into 3  groups. We use a linear fitting
to show the similarity of the three groups. The elastic user storage size affects the startup time
greatly. In comparison, different CPU and RAM settings have negligible effects. The startup time
of smaller instances (m1.small and c1.medium, 2 and 5 GB respectively) increase by a factor of
0.3 to 0.4 when increasing the number of requested VMs. The third largest VM type's (m1.large,
10GB) startup time increases by a factor of 0.6. The two largest VM types (m1.xlarge and
c1.xlarge, 20 GB) show almost linear time increase with a factor of 0.9.

From this figure we can also see that the initial operating system image's size is the same of all
the tests. This means that the transfer time of the image is the same of all the tests. In fact, we
noticed that the longest time spent is in the creation of the root device of the virtual machine on
the node controller physical storage. As a best practice, we currently encourage users to keep the
image size as small as possible to reduce the startup time and use external storage such as EBS to
have access to larger storage. This effectively decouples the startup times from the size of the
operating system images.

These results can be useful when making scheduling decisions. Large initial waiting times are to
be expected. The startup time will lengthen when there are concurrently running VMs. For users
of a batch scheduling system that provisions virtual clusters, the queue waiting time should
include the startup time in addition to the dynamic scheduling and back-filling overheads/waiting
times.
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5.2. Compute-Intensive Benchmarks

5.2.1.Performance Comparison of Physical and Virtual Cores

Figure 4: Performances of a virtual and physical core for matrix multiplication.

We evaluated the virtualization overhead by measuring the serial processing capability difference
using a single virtualized core versus a physical core. Figure 4 shows the Mops (Million
Operations Per Second) of the two configurations. The test program is a matrix multiplication
application. We vary the size of the matrices. We notice that the physical core's performance has
a caching effect. The caching effect is non-existent to the virtual core. The actual virtualization
overheads can amount to 40% to 50 % compared to a physical core on the same machine.

5.2.2. Computational Scalability of Virtual Clusters

In this section, we report on two sets of experiments that evaluates the computational scalability
of the virtual machines. The tests include different problem sizes, different programming models,
and granularity for three parallel applications from the NAS benchmarks [32]. The NAS
benchmarks are widely used to measure the capabilities of supercomputers.

We used three CFD (Computational Fluid Dynamics) applications: scalar pentadiagonal (SP),
block tridiagonal (BT), and lower upper diagonal (LU). These applications have different types of
parallelism and computation/communication ratios[32]. We tested two classes, C (small) and D
(16x larger than C).

We used the largest VM type. The default configuration of the c1.xlarge (Table 4) includes 4
CPU cores and 2 GB of memory. The memory size is considered too small for this type of
application. Depending upon the research groups' needs, the cloud administrator needs decide
upon the suitable VM types based on available physical resources.

Figures 5 and 6 show the relative speedups for class C and class D versions of the NPB and NPB-
MZ benchmarks. For class C, we used 1 to 16 VMs for NPB and 1 to 25 VMs for NPB-MZ. For
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class D, we used 9 to 25 VMs for NPB and 9 to 25 VMs for NPB-MZ. This is because the VMs
have limited RAM; it was not possible to fit a class D problem into small VMs.

Figure 5: Relative Speedup for NPB and NPB-MZ, (Class C).

For the NPB benchmark, each MPI job requires the explicit definition of how many MPI tasks are
to run on each node. In our case, only one MPI task per node was possible before swapping.
Using only one core of each virtual machine leads to high network communication between tasks.
For the class D benchmarks, the problem sizes are 16x larger; even though the VM memory size
could barely hold a single MPI task, the overall performance behavior is similar to the class C
benchmarks.

Figure 6: Relative speed up comparison for NPB and NPB-MZ, (Class D).
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The multi-zone benchmarks (NPB-MZ) use MPI+OpenMP programming. These results have
consistent improvements compared to the MPI-only versions. This is because the MPI+OpenMP
version allows efficient use of all cores available within each VM under a small memory
footprint. This insight can be useful when using memory-constrained VMs. Another observation
is that, while the speedup differences between the three NPB benchmarks are small, the
differences are more pronounced for the NPB-MZ benchmarks. One possible reason is the altered
computation/communication ratios between the different implementations of the same algorithm.

5.3. DATA-INTENSIVE BENCHMARKS

5.3.1. Traditional Cluster Infrastructures and Data-Intensive Workloads

One of the challenges of a traditional cluster is the support of new research tools. Maintaining the
correct version of the software desired by research groups is a non-trivial task for cluster
administrators. Since traditional HPC clusters are optimized for compute-intensive applications,
data-intensive tasks are deemed inefficient. Often these software requests are denied access to the
HPC processors. HPCaaS clouds provide an ideal solution that gives the user the total control
over the virtual machines. Although the virtual machines are slower than the traditional cluster,
and the researchers are facing the complexities of virtual cluster administration, all of the
overhead maybe insignificant in view of scientific discovery processes in the long run. We
actually expect this newly found freedom to improve the speed of scientific discoveries.

One of the recent tools for big data research is the use of ``map-reduce" framework, that has been
popularized by Google [33] and picked up by many research groups and commercial companies.
The big data research groups use web-scale social media data in combination with scientific
instrumentation data to solve fundamental problems from gene sequencing, and protein folding,
to social, economic and political trend research.

In this section, we report on the computational results of data-intensive benchmarks. Our goal is
to understand the performance effects of using the virtual machines for a Hadoop cluster. We
study the performance effects of different VM types and workload types.

5.3.2. HADOOPMAPREDUCE BENCHMARKS

In this section, we present the performance results using virtual Hadoop clusters. We used two
VM types, c1.xlarge and m1.xlarge. The configurations of these two VM types are summarized in
Table 5.

Table 4: Configuration of the VMs used for the Hadoop Clusters.

VM type Configuration element Description
c1.xlarge Number of virtual cores 4

Memory Size 4GB
m1.xlarge Number of virtual cores 2

Memory Size 2GB
c1.xlarge and m1.xlarge Hard Drive 20GB

Network 1 Gigabit Ethernet NIC
Operating system Ubuntu 10.04 Lucid, 2.6.27.21-0.1-xen

JVM 1.7
Hadoop version Hadoop 0.20.2-cdh3u3
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We ran 4 classes of Map Reduce benchmarks applications: DFSIO, Sorting, Wordcount, and
Kmeans. DFSIO tests the IO performance of the virtual HDFS. We measure the read and write
performances. The sorting benchmark is a micro-version of the popular Terasort benchmark[34].
The Wordcount benchmark consists of aggregating the occurrence of individual words in a set of
files residing on the HDFS storage. The kmeans benchmark uses the Mahout library [35] to
cluster data into a number of related groups. The last three applications should show some level
of speedup.

Figure 7: DFSIO performance comparison

We are interested in the performance effects by different VM types. We used HPCFY to start a
cluster using one type of VM, c1.xlarge or m1.xlarge. We record the performance of each
configuration. The two clusters differ only in terms of core count per VM(4 vs 2) and available
Memory (4GB vs 2GB). Each virtual Hadoop cluster consists of 10 VMs interconnected with a
virtual Gigabit Ethernet network. To control the environment, we used a fixed 20GB storage per
VM. The physical storage is composed of 5x500GB disks in a RAID5 configuration, and the Xen
hypervisor provides the access for each VM. This is not an optimal set up, because Hadoop's best
practices advises to have a looser JBOD setup for the hard disks since the HDFS is supposed to
provide redundancy at the software level. This should not affect the performance comparison for
the present experiments. In our experiments, we made sure that only one VM is running on each
physical machine to circumvent the limitations of our current storage configuration.

Figure 7 reports the DFSIO results. We use the HDFS system to read and write 10 files with sizes
ranging from 10 to 60 GB. As expected, reads are faster than writes. Changing the VM type does
not affect the IO performance much.
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Figure 8: Terasort performance comparison

Figure 8 reports the performance of the sorting benchmark, Terasort, using VMs with different
core-counts: c1.xlarge(4 cores) and m1.xlarge(2 cores). Using the same number of VMs, the
expected speedup is 2x for c1.xlarge clusters. The recorded performances are for two different
virtual clusters. The c1.xlarge virtual cluster performed consistently better. The benefits of
multicore processing decreases as the problem size increases until 15 GB. Since the computing
complexity ( ( )) is higher than the communication complexity ( ), the speed differences
stabilize.

Figure 9: Wordcount performance comparison.
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Figure 10 reports the virtual cluster performance for the Wordcount application with increasing
sizes of text corpus. Unlike the sorting benchmark, the c1.xlarge cluster could only delivers
around 1.5x speedup. This is because that the computing and communication complexities are
both linear, ( ).The multicore benefits diminish after the network is saturated.

Figure 10: Kmeans performance comparison

For the Kmeans clustering application, we used the Open Source project Mahout [35]to perform
clustering on a range of data points. Each data point has 60 dimensions. The distance measure is
the Euclidian distance between any two data points. We set the number of clusters to 10. The
performance results show the time spent during 10 iterations of the program. The Kmeans
benchmark, Figure 10, reports speedup around 1 with increasing data sizes. This is due to the
iterative nature of the Kmeans algorithm, where each iteration is processed in Mahout/Hadoop as
a related but separate job. This incurs heavy overhead because of the frequent starting and
stopping of Hadoop jobs. This effect, in addition to the network bottleneck at larger data sizes,
contributes to the unchanged speedup when using larger VMs. Applications with frequent
synchronization barriers do not benefit from multicore technologies.

3. CONCLUSION AND FUTURE DIRECTIONS

Cloud-based HPC computing is a fast-evolving research and development area. Although there
are many difficulties, we expect that these difficulties will be overcome in the near future. Cloud
computing has already changed the landscape of IT service industries. The dramatically improved
resource utilization benefits are catching people's attention. Theoretically, HPC applications can
amplify these benefits due to their insatiable resource needs. In this paper, we report on our
practice and experiences in building a private HPC cloud from scratch. We share our results, the
tools, and the technologies that we have evaluated and used. Our experimental private HPC cloud
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is currently in production at Temple University. We serve research groups in computer science,
mathematics, physics, chemistry, biology, engineering, earth sciences, and medical sciences.

There are still major weaknesses in the existing cloud controllers. The primary challenge is to
gain performance and reliability at the same time as we scale-up the HPC cloud. This challenge is
particularly critical to the cloud storage for its important role in the entire system. There is also
much work to do in the virtual cluster controller for end users. For broader impacts and higher
productivity for HPC research and education, the tools must come through in a timely manner.
By taking advantage of the Puppet project, we introduced a user cluster management tool,
HPCFY, for building virtual clusters. We also presented benchmark results for compute-intensive
and data-intensive applications on the virtual machine clusters.

As the advances in computing hardware and networking technologies are slowing, the next
revolution would be in the area of HPC clouds, for their applications have growing resource
needs. Although it may seem far-fetched at the moment, an ideal would be to deliver higher
performance and reliability at the same time as the application acquires more resources. A private
HPC cloud would be the perfect testbed for experimental HPC research and development while
providing production quality service to the general research communities.

HPCaaS is a very young and challenging field in systems research. It promises to contribute
positively to the development of computational sciences in theory and in practice. Our future
work will be focused on the sustainability of HPC applications when acquiring more computing
and communication resources, especially the challenges of gaining performance, reliability,
scalability, intercloud operability, and usability of virtual clusters all at the same time. We will
explore auction-based HPC clouds in order to test the application's ultimate robustness under
extreme conditions. We believe that an extreme-scale HPC application is only possible if it can
sustain extreme volatile conditions on a large scale.
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