
International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

DOI : 10.5121/ijcga.2011.1202 13

3-PHASE RECOGNITION APPROACH TO PSEUDO 3D

BUILDING GENERATION FROM 2D FLOOR PLAN

Raj Kishen Moloo

Computer Science and Engineering Department,

University of Mauritius, Reduit, Mauritius
r.moloo@uom.ac.mu

Muhammad Ajmal Sheik Dawood

MSc Student, University of Essex, Colchester, Essex, UK
ajmalsd@yahoo.com

Abu Salmaan Auleear
Senior Web-Designer, Chesteroc ltd (Mundocom Mauritius), Ebène, Mauritius

prince_05@live.com

ABSTRACT

Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the

conceptualisation, design and presentation of architectural products in the construction industry, providing

realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D

models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of

the model and this is a slow and laborious process. The aim of this paper is to automate this process by

simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we

have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and

developed a software accordingly.

Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the

Image Processing module; The Save Module generated an XML file for storing the processed floor plan

objects attributes; while the Irrlitch [14] game engine was used to implement the Interactive 3D module.

Though still at its infancy, our proposed system gave commendable results. We tested our system on 6 floor

plans with complexities ranging from low to high and the results seems to be very promising with an

average processing time of around 3s and a 3D generation in 4s. In addition the system provides an

interactive walk-though and allows users to modify components.

KEYWORDS

Image processing, analysis, recognition, 3D, Architectural plan, Virtual Reality, Object Extraction.

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

14

1. INTRODUCTION

Enhanced graphic processing capabilities of today’s computers have enabled the widespread of

three dimension (3D) visualisation in the construction industry, providing realistic interaction and

walkthrough on engineering products. 3D architectural visualization has become a powerful tool

in the conceptualisation, design and presentation of architectural products [8]. Long gone are the

days of mere 2D plans. Several 3D authoring packages like Google Sketchup [10], 3DS Max

[11], Maya [12], Blender [13] can be used to model 3D buildings based on the 2D plan.

Nevertheless, creating 3D buildings requires skilled and trained people, besides being a lengthy,

cumbersome and tedious task [8].

Nowadays, popular architectural package like AutoCad [9] allows saving of 2D plans digitally, in

particular formats, e.g., DWG/ DWF format, out of which enhanced design and visualization

workflows on 3D buildings can be generated. However, not every building plan has been

implemented using these advanced engineering software. There are still plans which are hand-

drawn or are not saved in particular structured format allowing 3D generation. The aim of our

paper is to tackle this issue whereby no digital 2D plan exists (e.g. DWG format), accepting a 2D

floor plan, scan it as an image, pre-process the plan and reconstruct a 3D plan out of the 2D plan.

For this purpose, image processing techniques have been applied to extract semantic and spatial

information, recognising architectural symbols such as walls, windows and doors only and locate

their positions in the 2D sketch so that these details are used to generate a pseudo-3D model of

the building. Information extracted is stored in an XML format which can be easily ported to any

architectural package format. Based on our XML format we used a game engine, Irrlicht [14], to

generate the 3D plan allowing navigation and walkthrough.

Several work on this theme have been done previously as elaborated in section 2 (Previous work),
with research spanning from effective symbol recognition algorithm to implementation of whole

system/package to generate 3D models out of 2D floor plans. The aim of our paper is to

implement the same step, but using existing image processing library like OpenCV [24] and 3D

engines. Functions provided by image processing library OpenCV 2.2 [24] have been used

throughout this project to evaluate and find the most appropriate image processing techniques that

can be used for the detection and extraction of the architectural symbols. Only walls, windows

and doors symbols which are oriented horizontally and vertically have been considered while

building the system. Also, once pre-processed, spatial and semantic information are gathered and

stored in XML format to be loaded in an existing 3D engine. Though our system is at its infancy

and does not cater for all possibilities, interesting results have been noticed in terms of symbol

detection rate and 3D building generation.

The rest of the paper is organised as follows: Section 2 describes similar existing work on

architectural symbol recognition and 3D building generation. Section 3 provides a description of

our proposed system while in Section 4, we elaborate on our implementation process. Section 5
analyses the results achieved through our system. Finally, we conclude in terms of our

achievements and future directions in Section 6.

2. PREVIOUS WORK

Lewis and Sequin in [1] developed a robust, semi-automatic system to create 3D polyhedral
building models from computer drawn floor plans, requiring minimal user interaction. A

prototype system, called the Building Model Generator (BMG) which accepts 2D floor plans in

the common AutoCAD DXF geometry description format. The system starts by cleaning up the

2D floor plans, then converting them into suitable internal data structure permitting efficient

geometric manipulations and analysis. After correction of small local geometrical inconsistencies

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

15

and necessary adjustments are made, a consistent layout topology is obtained. Semantic

information such as room identities and connecting portals are extracted, walls are extruded to a

specified height, and door and window geometries are inserted where appropriate. Hence a 3D

representation of the building is generated permitting visualisation in interactive walkthrough.

The models generated are directly compatible with the Berkeley WALKTHROUGH system and

with the NIST CFAST fire simulator. Such work demonstrated that the construction of 3D

building models from existing floor plans have become manageable and affordable reducing

built-in time from months to days.

Lu & al in [2] proposed new methods to analyse architectural working drawings (AWD), usually

used to describe design intents of architects, recognize typical structural objects and architectural

symbols. They categorise AWD into three types of entities namely structural, functional and

decorative. Structural entities deal with structures supporting and resisting load of the whole
building such as steel and concrete. Functional entities such as doors, windows, lifts etc provide

convenience to the users. Examples of decorative entities are partition walls, hung ceilings etc.

Processing of these AWDs are done in three steps namely recognition of structural entities using

shape based method, removal of graphical primitives of recognized structural objects and

recognition of architectural entities from simplified drawings using feature-based symbol

recognition. They test their model on 257 plane architectural/structural drawings, 40 being

synthetic and 217 being real data. This model shows interesting detection rate with above 80%

correct detection rate on synthetic and real data set.

 S.-H. Or et al in [3] proposes a highly automated approach to generate 3D model from a 2D floor

plan. The system parses a floor plan into a number of connected segments and analyse their

relationship to generate the 3D model accordingly. The plan is pre-processed converting the raster

image into vector image. Symbol recognition is used for identification of doors and windows. The

system assumes that any arc symbols represent a door while thin boxes represent windows. Once

these symbols are identified, the 3D models are generated and loaded on Genesis 3D, a 3D game

engine. However, the system needs some improvements in terms of recognition of building
entities, creation of multi-storey building.

Dosch et al in [4] proposed a complete system to reconstruct scanned 2D architectural drawings

in 3D. They describe their robust image processing and feature extraction algorithm by dividing

the scanned 2D images into tiles, processing each part separately and then merging them again

after vectorisation. Using the skeleton based approach they extract lines and represent them into

segments using the polygon approximation technique. Their system allows for dashed line, arcs

and staircase detection. A user interface is provided for human interaction and correction of errors

and interactively manipulating the resulting data. They advocate the stability of their image

processing and feature and dashed line extraction algorithm. Nevertheless, there are still some

improvements need to be done and tests need to be made on how scalable this system is.

[5] proposed a Self-Incremental Axis-Net-based Hierarchical Recognition (SINEHIR) model for

automatic recognition and interpretation of real-life complex electronic construction structural

drawings. They designed and implemented shape-independent algorithms based on internal

semantic constraints rather than visual graphical constraints. Their methods identifies

characteristic features of structural components from the more regular constituents, and then
tracks the graphic objects as far as possible under the guidance and constraints of recognised

objects and the domain knowledge. Their approach was tested on more than 200 real-life

drawings and the results showed a 90% average recognition rate.

In [6], based on Messmer & Bunke ideas on symbol recognition, Ah-Soon & Tombre proposed a

method for recognising architectural symbols based on the description of the model through a set

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

16

of constraints on geometrical features, and on propagating the features extracted from a drawing

through the network of constraints. They advocate the flexibility of such approach to

accommodate new symbols.

[7] proposes a reconstruction method based on four main phases namely (i) 2D edges processing

for removing geometrical inconsistencies, (ii) topological reconstruction with semantic
information, (iii) 3D building extrusion (iv) superimposing of floors. The model expresses

incidence and adjacency relations between all the elements with semantic information associated

with all volumes such as openings, portals, stairs etc. Conversion from 2D to 3D is done through

extrusion using specific rules guided by the semantics.

3. PROPOSED SYSTEM

Our proposed system is a 3-phase system namely (i) Image Processing (ii) Save Module (iii)

Interactive 3D module.

 Figure 1. 3-Phase proposed system

3.1 Image Processing

The system loads a scanned image of a floor plan consisting of wall, door and window symbols

oriented horizontally and vertically. The scanned image is pre-processed by removing noise and

text, converting it to a vectorised image. The image is preprocessed through thresholding and

edge detection. Horizontal and vertical lines are extracted from the resulting image using

probabilistic Hough transform. A region growing approach is then applied to cluster the lines to

identify walls and derive their positions. Then, the windows are identified from the detected walls

using the characteristics of the wall symbols and using a similar region growing approach to

walls’ identification. The detected walls and windows are subtracted from the image to obtain a

difference image with only door symbols. The difference image is then segmented using a

contour finding approach to locate the position of each object in the image. A histogram matching

technique is applied to identify which of the remaining objects is a door.

Interactive 3D Module

6.3 Doors and Windows from

Template

6.2 Wall

6.1 Floor &

Ceiling

8. Interactive 7. Navigation 6. 3D Model

Save Module

4. Architectural Symbol Localisation 5. XML Generation

Image Processing Module

Scanned

Image

3. Symbol Recognition

Wall Identification

Door Identification

Text Removal

Noise Removal

Raster to Vector

2. Image

Window Identification

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

17

3.2 Save Module

For each recognised door, their relative position in the image is calculated. Finally the dimension

of a pseudo roof for the building is calculated from the sketch. All of the identified walls,

windows, doors and approximate roof positions are saved in an XML file.

3.3 Interactive 3D module

The Interactive 3D generation module calculates the position, length, height and width of the

wall, door and windows models from the generated XML file. The 3D model of the building is

then generated, enabling the user to visualise the building in different perspective and navigate

through it. The system provides a user friendly menu driven interface. Additional facilities that

the system provides are (i) full screen navigation, (ii) interactive modification of 3D models, e.g.,

applying different textures to either interior or exterior walls separately, (iii) loading different

window, door models, roof and tiles, (iv) taking screenshots while navigating, (v) saving XML

containing the modified 3D building description and (vi) loading of existing XML file.

4. IMPLEMENTATION

The object detection and localisation module of the system has been implemented in C/C++ using

data structures and functions provided by OpenCV image processing library. TinyXml was used

as an XML parser with Irrlicht Engine to create the GUI, 3D generation and navigation system.

4.1 Image Preprocessing

4.1.1 Wall Identification

To identify walls, lines are extracted from the preprocessed image using probabilistic Hough

transform [20] resulting in a sequence of lines. The lines are then separated as horizontal and

vertical lines sequences only. For each sequence of lines, a clustering technique is applied to

group lines into bounding boxes, each representing a potential wall. The bounding box is

dynamically adjusted to accommodate inserted elements. The number of horizontal bounding

boxes is reduced by any grouping overlapping boxes as one single bounding box. Similar

technique is used to group vertical lines in bounding boxes to identify potential vertical walls.

Intersecting endings of vertical and horizontal bounding boxes are then aligned as shown in the

Figure 2 below. It should be noted that the identified walls may contain windows. The clustering

algorithm assumes that for a line forming part of wall in the image and to be included in a

bounding box, it should be at most 50 pixels from the edge of the bounding box. This value is

used as the stopping condition for the clustering algorithm. Considering horizontal sequence of

lines only, the following algorithm identifies potential horizontal walls:

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

18

Figure 2. (top left) Partial floor plan. Figure 3. (top middle) Walls symbols grouped in bounding

boxes. Figure 2. (top right) Bounding box adjusted.

WHILE (horizontal sequence, h, contains lines)

 Put first line from h in bounding box

 FOR each line in h

 IF (line is in (bounding box enlarged by 50 pixels on each side)) THEN

 Put line in bounding box

 END IF

 END FOR

 FOR each line in bounding box

 Remove line from h

 END FOR

END WHILE

Figure 3. Algorithm for bounding box.

4.1.2 Window Identification

The same procedure as wall identification, before

alignment of horizontal and vertical boxes, has

been used for window detection. The algorithm

in Figure 4 describes the extractions of vertical

window symbols. Here we assumed that the

length of line_v should be at least three-quarter
(3/4) height of bounding box to be accepted.

Height of bounding box must be at two (2) times

longer than width of Region of Interest (ROI) and

less than half height of ROI to be considered a

window. Windows cannot be found at corners of

ROI i.e., wall symbols.

Figure 4. Wall Identification

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

19

FOR each vertical bounding box positions

 Set positions as ROI in preprocessed image

 Get width and height of ROI

 Extract lines L, from in ROI using probabilistic Hough transform function

 Get horizontal lines h, from L using getHorLines method

Get vertical lines v, from L using getVerLines method

Sort h using sortTopDown method

Sort v using sortLeftRight method

FOR each line in h, line_h

 Put line_h and next line_h in bounding box

 FOR each line in v, line_v

 IF (length line_v ≥ 0.75 × height of bounding box) THEN

 Put line_v in bounding box

 END IF

END FOR

IF (height of bounding box ≥ (2 ×width) AND ≤ height÷2) THEN

 Increment number of windows (bounding boxes)

ELSE

 Clear bounding box

END IF

END FOR

 Figure 5. Window symbol detection

4.1.3 Door Identification

After walls and windows were

identified from a floor plan image,

these symbols were subtracted from

the edge image leaving only the

remaining objects which were then

segmented and put in bounding boxes.

Figure 6 shows the isolation of

remaining objects before door

identification.

 Figure 6. Isolation of remaining objects

Each identified object then undergoes histogram matching which used a combination of Chi-

square and Bhattacharyya distance metrics, and template matching which uses normalised

correlation coefficient matching method, against a small set of sample door images. After this

operation, only bounding boxes containing door symbols are left. It can be said that door symbols

detection has a very high success rate.

During histogram matching, an assumption was made that for a ROI to be detected as a door

symbol, the results by both Chi-square and Bhattacharyya distance metrics must be below than

0.2, i.e., a good match. The assumption that was made for template matching template is that the

result obtained by using correlation coefficient method should be above 0.9 to be a good match. If

either histogram or template matching is successful, then the ROI is classed as a door symbol.

The implementation details to detect doors is describes in Figure 7.

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

20

Number of samples for templates, TS.

Number of samples for histogram matching, HS.

FOR each vertical wall positions

 Subtract vertical wall image part from image_edge

END FOR

FOR each horizontal wall positions

 Subtract horizontal wall image part from image_edge

END FOR

Find contours in image_edge using cvfindContours function

Redraw on image_edge using redraw method

Find contours in image_edge

FOR each set of contours

 Put contour in bounding box, b

 Increment number of bounding box

END FOR

Set isDoorHistogram to false

Set isDoorTemplate to false

FOR each ROI represented by array b

 FOR i:=0 to HS

 Load sample door image i

Do histogram matching of ROI and sample using compareImgHistogram method

 IF (match is true) THEN

 Set isDoorHistogram to true

 END IF

 END FOR

FOR i:=0 to TS

 Load template door image i

Do template matching of ROI and template using compareImgTemplate method

 IF (match is true) THEN

 Set isDoorTemplate to true

 END IF

 END FOR

 IF ((isDoorHistogram OR is DoorTemplate) is true) THEN

 Get door bounding box positions

 Increment number of doors

 END IF

END F

Figure 7. Algorithm for door identification

4.2 Getting door and window positions

After the doors have been identified, they need to

be aligned to their adjoining walls. This is

achieved by incrementing each side of the

bounding boxes representing doors by the

average thinness of walls in the image and

calculating which horizontal or vertical walls,

previously detected, ends in the bounding box.

Thus the start and end points for the doors, being

represented as lines, are obtained.

 Figure 8. Aligning window to adjoining wall

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

21

4.3 Saving detected object

After symbols identification, the detected walls, windows, doors [and roof positions] are saved in

the XML file. Figure 9 shows a partial xml contain a floor plan attributes.

Figure 9. Partial XML file generated

4.4 User Interaction and Generating the 3D model

The graphical user interface (GUI) and the 3D generation module have been implemented in

C/C++ using the Irrlicht engine. The GUI allows the user to load a floor plan image and trigger
the object detection module which produces an XML file with the detected objects’ attributes.

The latter is then read by the 3D generation module which calculates the coordinates at which to

place the objects such as the walls, doors and windows in the 3D model. It then loads the

corresponding objects, map their textures draws the 3D model of the building. The GUI presents

the 3D model of the building in several different views as shown in Figure 10-11 below.

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

22

Figure 10. Generated 3D house

Figure 11. Top view without the

roof

5. RESULTS AND ANALYSIS

Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library for

the Image Processing module; The Save Module generated an XML file for storing the processed

floor plan objects attribute; while the Irrlitch [14] game engine was used to implement the

Interactive 3D module. Though still at its infancy, our proposed system gave commendable

results.

5.1 Benchmark Testing

In this section, testing is made to know the performance of the software on different hardware

systems. The frame rate of the software has been considered for testing the performance.

Table 1. Capabilities of system tested

System A:

32MB graphics card

256Mb of RAM

750 MHz Processor

Frame rate: ~16

System B:

256MB graphics card

1GB of RAM

2.2 MHz Processor

Frame rate: ~250-300

5.2 Portability Test
The software was compiled and run using Codeblocks IDE on Fedora 10, a Linux operating

system and it could successfully load an image and generate the 3D model, though the frame rate

was very low (frame rate was 4 as the proper graphic card driver was not installed on the OS).

Top view

Navigate view Animated view

Front view

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

23

5.3 Performance Test

Table 2. Performance Testing results

 Floor

plan 1

Floor

plan 2

Floor

plan 3

Floor

plan 4

Floor

plan 5

Floor

plan 6

Complexity Low Medium Medium Low High Medium

Wall detection 25 /25 -
100%

24/30 –
80%

34/54 –
62.9%

17/17 -
100%

38/49 –
77.6%

26/30-
86.7%

Window detection 8/9 -
88.9%

3/9 –
33.3%

2/8 -
25%

3/6 -
50%

2/12 –
16.7%

2/4 -
50%

Door Detection 6/7 –

85.7%

6/14-

42.8%

4/17 -

23.5%

8/8 -

100%

9/15 -

60.0%

5/9 –

55.6%

Image Processing time 2 s 3s 3s 2s 5s 4s

3D model

Faces 246 355 535 203 511 427

Triangle mesh 884 1210 1590 758 1528 1409

Average generation time 4s 4s 4s 4s 4s 4s

Based on Table 2 it can be said that the system produced commendable results in recognition of

walls, windows and doors symbols from floor plans images. Walls positions were extracted with

a very high success rate. Windows identification using probabilistic Hough transform and

clustering technique produced fairly good results. The combination of histogram and template

matching to identify door symbols was very reliable as it allows all doors to be detected in floor

plan images. However, better algorithms could not be derived to properly align all the detected

doors in their final positions.

5.4 Processing Time
Image processing for identification of objects depended on the complexity of the floor plan. The

more complex the plan in terms of walls, doors and windows, the more time it took for

processing. Computing times have been obtained with a 2.2 MHz processor, 1GB RAM and 256

MB RAM graphic card. However, once the XML was generated, then the 3D model generation of

the Building was performed on average in 3 seconds irrespective of the model.

6. CONCLUSION

In this paper we demonstrated some conclusive results on our 3-phase recognition approach to

pseudo 3D building generation from 2D floor plan. Our system based itself on the idea of using

existing concepts, algorithm, libraries and technologies with minimal modifications and

integrating them into a fully functional working application. Hence, we used C, C++ and OpenCV
for image processing and recognition, XML for storage and Irrlitch [14] engine for 3D model

generation.

We used existing image processing techniques like probabilistic Hough transform, Histogram

matching, Clustering and bounding box techniques , Chi-square and Bhattacharyya distance

metrics to recognise architectural symbols like walls, doors and windows. XML technology was

used as the interface and the bonding technology between image processing and 3D generation of

building. It was also used as the storage format for saving models and processed image. The 3D

Generation module provides a sense of aesthetic and a realistic scene in the 3D environment for

the user’s experience with the system. It provides interactive and navigational capabilities with

different views.

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

24

However, the system developed is not 100% efficient in identifying and localising the walls,

windows and doors within the floor plans used during the tests carried out. Nevertheless it has

been able to detect most wall symbols with some tiny false positive walls forming part of a door

symbols being recognised as part of a wall; most window symbols are detected and door symbols

have been recognised. However, some doors are not properly aligned with their adjacent walls

after being detected and this need some improvement. Also, our 3D module is still at an embryo

stage. It needs to be enhanced to produce more realistic model, enabling users to change color,

textures, light and the ability to interactively insert objects like tables, chairs etc in the model

generated.

6.1 Future Works

Though the object detection and localisation module is fully functional some feasible

improvements can done to further enhance the system. Some identified future works are as

follows: (1) recognition of walls other than at horizontal and vertical positions. This would

involve replacing the rectangular bounding box used in the module by a bounding box which can

be inclined at different angles; (2) detection of different types of doors and windows such as

sliding, interior or exterior doors by modifying the template matching method; (3) detection of

other architectural symbols such as supporting columns and stairs; (4) extending the system to

allow for multiple storey building.

As a concluding note it can be said that using our approach based on architectural symbol

recognition, significant reduction in time is to be noted in 3D building generation as compared to

traditional 3D building implementation. This has opened new avenues with commercial potential

in creating virtual environments especially for games, virtual property advertising and also for

modelling historical building having only paper plans.

Figure 12. Overview of generated 3D model

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

25

REFERENCES

[1] R.Lewist, & C.Sequin. (1998). Generation of 3D building models from 2D architectural plans.

Computer Aided Design.30(10), pp. 765-779. Elsevier Science.

[2] Lu, T., Yang, H., Yang, R., & Cai, S. (2006). Automatic analysis and integration of architectural

drawings. Internation Journal on Document Analysis and Recognition IJDAR, 9 (1)pp. 31-47.

[3] S H Or, et al. (2005). Highly Automatic Approach to Architectural Floorplan Image Understanding and

Model Genration. Proceedings of Vision, Modeling, and Visualization,Pattern Recognition (pp. 25-

32). Erlangen,Germany: IOS Press.

[4] Dosch, P., Tombre, K., Ah-Soon, C., & Masini, G. (2000). A complete system for the analysis of

architectural drawings. International Journal on Document Analysis and Recognition , 3(2) pp.102-

116.

[5] Lu, T., Taib, C.-L., Sua, F., & Cai, S. (2005). A new recognition model for electronic architectural

drawings. Computer Aided Design , 37(10) pp. 1053-1069.

[6] Ah-Soon, C. et al., (2001). Architectural symbol recognition using a network of constraints. Pattern

Recognition Letters, 22 (2) p.231-248.

[7] Horna, S. et al., (2007). Building 3D indoor scenes topology from 2D architectural plans. Computer

Graphics Theory and Applications (GRAPP), pp. 37-44. Available at: http://citeseerx.ist-

.psu.edu/viewdoc/download?doi=10.1.1.100.6752 &rep=rep1& type=pdf.

[8] AutoDesk, AutoCad Products.[online] Available at:

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=15408302 [Accessed 15 Dec 2010]

[9] Pilkinton, B. (2010, 12 1). Article Squeeze .The Importance Of 3D Architectural Visualisation.

[online] Available at: http://www.articlesqueeze.com/business-articles/the-importance-of-3d-

architectural-visualisation/ [Accessed 15 Dec 2010]

[10] Google Sketchup. [online] Available at: http://sketchup.google.com/intl/en/index.html[Accessed27

Dec, 2010]

[11] Autodesk. 3DS Max Products.[online] Available at:

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=15683479 [Accessed 27 Dec 2010]

[12] Autodesk .Autodesk Maya. [online] Available at:

http://usa.autodesk.com/adsk/servlet/pc/index?id=13577897&siteID=123112 [Accessed 27 Dec 2010]

[13] Blender .Blender. [online] Available at: http://www.blender.org/ [Accessed 27 Dec 2010]

[14] IrrlitchIrrlitch . [online] Available at:http://irrlicht.sourceforge.net/ [Accessed 10 Jan 2011]

[15] Gibson S, Howard T. (2000). Interactive reconstruction of virtual environments from photographs,

with application to scene-of-crime analysis. In Proceedings of ACM Symposium in Virtual Reality

Software and Technology 2000, October 2000. Seoul, Korea

[16] Fisher R et al. (2004). Explore with Java -Adaptive Thresholding Chapter.[online] Available

at:http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm[Accessed 24 Dec 2008]

[17] Green B (2002). Canny edge Detection Tutorial[online] Available at:

http://www.pages.drexel.edu/~weg22/can_tut.html [Accessed 14 March 2009]

[18] Raphael C.. Gonzalez, Richard E. Woods(2002). Digital image Processing, 2nd Edition, Prentice Hall

International.

[19] Fisher R et al. Intensity Histogram[online] Available at: http://homepages.inf.ed.ac.uk/rbf-

/HIPR2/histgram.htm[Accessed 25 Dec 08]

[20] Gary Bradsky , Adrian Kaehler. (2008). Learning OpenCV. O’Reilly.

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

26

[21] G.Chaudri.. Bhattacharyya distance. Available at: http://eom.springer.de/B/b110490.htm [Accessed 15

March 09]

[22] Longin Jan Latecki. Template matching, Available at:

http://www.cis.temple.edu/~latecki/Courses/CIS601-03/Lectures/TemplateMatching03.ppt[Accessed

14 March 2009]

[23] Binary Image processing.[Online].Available at http://homepages.inf.ed.ac.uk/rbf/CVonline/-

LOCAL_COPIES/MARBLE/medium/binary/ [Accessed 18 March 2009]

[24] OpenCV, Open Computer Vision Library. [Online] Available at:

http://sourceforge.net/projects/opencvlibrary/ [Accessed 18 June 2011]

[25] Xuetao Yin, Wonka, P., Razdan, A. Generating 3D Building Models from Architectural Drawings: A

Survey, IEEE Computer Graphics and Applications - CGA , vol. 29, no. 1, pp. 20-30, 2009. DOI:

10.1109/MCG.2009.9

[26] Su, F., Song, J. & Cai, S., 2001. Dimension recognition and geometry reconstruction in vectorization

of engineering drawings. Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition CVPR 2001, p.I-710-I-716

[27] Jung, I., Mckinley, L. & Weg, Z., 2008. Three-dimensional building reconstruction : a process for the

creation of 3D buildings from airborne LiDAR and 2D building footprints for use in urban planning

and environmental scenario modelling. Available at: http://www.virtualcitysystems.de/uploads/-

media/BuildingReconstruction_Paper_RealCorp_2008.pdf

[28] Horna, S. et al., 2009. Consistency constraints and 3D building reconstruction.Computer-Aided Design,

41(1), p.13-27

International Journal of Computer Graphics & Animation (IJCGA) Vol.1, No.2, June 2011

27

Authors

Mr. Raj Kishen Moloo is a lecturer at the University of Mauritius. He has a

Masters degree in Advanced Computer Science at the University of Manchester

(2005) and BEng (Hons) Computer Science and Engineering (2003) from the

University of Mauritius. He is also an ACCA affiliate. His main research

interests are Computer Graphics, Games, Virtual Reality and Mobile

Application Development.

Mr. Muhammad Ajmal Sheik Dawood is enrolled for an MSc Financial

Software Engineering at the University of Essex. He has a BSc (Hons) Computer

Science and Engineering from the University of Mauritius.

Mr. Abu Salmaan Auleear is working as a Senior Web-Designer at Chesteroc

Ltd (Mundocom Mauritius). He has a BSc (Hons) Computer Science and

Engineering from the University of Mauritius.

