
International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

DOI : 10.5121/ijcga.2013.3103 29

Iterative Smoothing of Curves and Surfaces
John R Rankin

Computer Science and Computer Engineering, La Trobe University, Australia
j.rankin@latrobe.edu.au

Abstract

Algorithms for drawing smooth curves and surfaces are well-known but may be too expensive in CPU
time to use for certain high speed interactive graphics applications. This paper looks at some new
geometrically-based smoothing algorithms that arrive at the final smooth curve or surface after the
application of an infinite number of iterations of the algorithm using subdivision refinement. When CPU
time is scarce low iteration counts can be used to provide an acceptable level of approximation of
smoothness and when CPU time is more plentiful higher levels of iteration can be applied for greater
visual smoothing accuracy. Three new algorithms are presented and analysed. Convergence is proved
geometrically for each and their timings are reported. Mixing iterations provides new opportunities for
achieving various different effects in curve and surface smoothing.

Keywords
subdivision curve schemes, subdivision surface computations

1. INTRODUCTION

Smooth curve and surface rendering has a long history in graphics research [FOLEY et al. 1996] with the
main emphasis being on spline algorithms [AHLBERG et al. 1967, de BOOR 1978]. Many applications
today require animated smooth curves and surfaces in the background with smoothness accuracy not the
highest priority in the application and CPU time allocated to several other tasks as well. This leaves little
frame time for generating the smooth shapes and traditional high fidelity spline algorithms that produce
perfect smoothness could use up too much of the scarce available time. Subdivision schemes were
subsequently developed starting from the work of Chaikin [CHAIKIN 1974, JOY 1999] and have been
extensively researched in relation to spline algorithms as refinement limit cases or as alternatives [eg JOY
2002, CATMUL et al. 1987, YAP 2006, KARCIAUSKAS 2010, LEVIN 2000, KOBBELT 2000,
CASHMAN et al. 2009a & b, PETERS 1997, MULLER et al 1998, HERTZMANN et al. 2000]. In many
algorithms the final smooth curve or surface and the starting polyline or polyhedron of control points are
far apart: the control points being used only to control the final smooth curve or surface shape. In this
paper we look at new algorithms for smoothing a polyline or mesh with the result as close to the polyline
or mesh as possible. These are the inner, outer and central algorithms. The central includes the original
vertices and is different from the incentre scheme of C Deng and G Wang [DENG et al. 2010], in
particular in the definition of polyline vertex tangents. The algorithms are iterative where each iteration
produces an improvement in smoothness. By using only a small number of iterations, a satisfactory level
of smoothness is possible in less CPU time.

2. INNER SMOOTHING

A polyline is a sequence of line segments (called edges) joined end-to-end where adjoining line segments
are not colinear and curve smoothing starts from a given polyline P of vertices Pi for i = 1 to n where n >

mailto:rankin@latrobe.edu

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

30

2. (The cases for n ≤ 2 are trivial and require no smoothing.) The polyline defines a sequence of n-1 edges
Ei = PiPi+1 for i = 1 to n-1 and a sequence of n-2 angles αi where αi is the angle between edges Ei and Ei+1

for i = 1 to n-2. From these definitions it follows that all polyline angles are in the range (0,π). For the
purposes of this paper, the smoothness σ(P) of a polyline P is defined to be the minimum angle α i in the
polyline, divided by π (and sometimes expressed as a percentage). For any smoothing algorithm S, the
algorithm is convergent if σ(S(P)) > σ(P) for all polylines P. A fast algorithm that fulfills the requirement
of convergence is Inner Smoothing which is now described.

For any polyline P, vertices P1 and Pn are called the outer vertices and the other n-2 vertices are called the
inner vertices. Each angle of P corresponds to an inner vertex. For inner smoothing, each inner vertex Pi is
replaced by two vertices by the 2D lerping geometric operator:
Li = Lerp(Pi,Pi-1,λ) ≡ Pi + λ(Pi-1 - Pi)
Ri = Lerp(Pi,Pi+1,λ) ≡ Pi + λ(Pi+1 - Pi)
so that the new polyline is P’ = {P1, L2, R2, L3, R3, … Ln-1, Rn-1, Pn}.

The proportion factor λ is a constant of the inner smoothing algorithm in the range (0,0.5). The algorithm
effectively chops off the corners at each inner vex. Each vertex corner is replaced by two other vertices
whose angles we need to compare with the angle at the vertex chopped off in order to determine
convergence. Figure 1 shows the new angles α’1 and α’2 that are formed. From Figure 1 we see that
α’1 = α + β1

α’2 = α + β2

where
α + β1 + β2 = π
and L’iR’i is the parallel transport of line segment LiRi to pass through inner vertex Pi so that LiRiR’iL’i

forms a rectangle. Since α is in (0,π) and λ is in (0,0.5), β1 and β2 are both strictly positive and therefore
both α’1 and α’2 are greater than α and yet both less than π. As α tends to its upper limit of π, β1 and β2

tend to zero and α’1 and α’2 also asymptote to π ahead of α. Therefore all angles of P’ are greater than the
corresponding angles of P and so the smoothness σ(P’) of the derived polyline P’ = S(P) is greater than
the smoothness σ(P) of the original polyline P and this means that the inner smoothing algorithm is
convergent.

Figure 1. Three vertices in a polyline are shown, Pi-1, Pi and Pi+1. Points Li and Ri are lerped from vertex Pi

to form an inner smoothing.

.

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

31

Figure 2b shows the third iteration of inner smoothing for λ = 0.3. Every iteration of the inner smoothing
algorithm reduces the length of every edge of the polyline. If in the initial polyline an edge between inner
vertices is of length L0, in the first derived polyline the corresponding edge will be reduced to length L1 =
(1-2λ)L0. After i iterations the corresponding edge will be of length Li = (1-2λ)iL0 which tends to zero as i
tends to infinity because λ is in the range (0,0.5). The starting point for the edge of length L1 is at distance
λL0 from Pk along inner edge Ek of the original polyiine (for the edge number k under consideration).
After the second iteration, the starting point has moved further to distance λL0 + λL1 from Pk along the
original edge Ek of the initial polyline P. After i iterations the starting point is at λL0 + λL1 + … + λLi

from Pk and as i tends to infinity it is easy to demonstrate that this distance asymptotes to L0/2. So
therefore the limit curve of inner smoothing passes through the midpoints of all the edges as well as the
outer vertices of the initial polyline P. These points are termed here “sticking points” where the derived
polylines remain attached to the initial polyline. It was observed that after N = 3 iterations the changes in
the derived curves are virtually too small to see. This leaves apparent discontinuities in slope for λ above
0.3 at the sticking points which are indeed smoothed however but at sub-pixel scales. For low values of λ
less than 0.2 the curves appear (at larger than pixel scales) to smoothly join to a section of the original
polyline’s edges surrounding the sticking points on those edges as seen in Figure 2a. If λ < 0 then it is out
of the valid range for λ and it generates “knots” in the curve. The knots can be avoided by reversing the
order of Li and Ri in the derived polyline P’ for i = 2 to n-1. If λ > 0.5 then it is out of the valid range for λ
and it generates “snitches” in the curve which are small introduced z-turns or cross-overs. The snitches
can be removed by interchanging points Ri and Li+1 for i = 2 to n-2. Even so, there is no guarantee of
convergence for these values of λ. The inner smoothing algorithm is more general than polygon or
polyline rectification and the Chaikin curves. Polyline rectification corresponds to λ = 0.5 and points R i

are not used so that P’ = {P1, L2, L3, … Ln-1,Pn}. Repeated rectification results in the Bezier curve whose
sticking points are P1 and Pn only. The Chaikin curves use λ = 0.25 and replace each edge with the
derived pairs of points rather than replacing each inner vertex with the derived pairs of points as in the
inner smoothing algorithm. The Chaikin curves do not therefore retain the P1 and Pn as sticking points but
do retain the midpoints of the original polyline edges as sticking points. Repeated application results in a
quadratic uniform B-spline curve [RIESENFELD 1975].

Applying the inner smoothing algorithm to an initial polyline P(0) of n0 vertices produces polyline P(1) of
n1 vertices and after N iterations produces polyline P(N) with nN vertices where:

or in general after N iterations

The time for iteration i is approximated by

where the constants a = 0.79 and b = 0.42 have been experimentally determined from the data shown in
Table 1. Based on the amount of frame time ∆t available and the initial polyline size n0 one can therefore
compute the maximum number of iterations N possible by solving:

For large N or n0 this is approximately

for smoothness with upper limit

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

32

where σ0 is the smoothness of the initial polyine. For example if Δt = 0.5s and n0 = 5, σ0 = 0.25 then N < 5
iterations are possible and the final smoothness factor could be expected to be σ4 = 0.953 which is
visually acceptable as in Figure 2a. We should note that inner smoothing has the property that all derived
polylines P(j) for j = 1 to N are inside the convex hull of the starting polyline P(0).

1 17

2 42

3 80.6

4 191

5 458

6 986

7 2958

8 13356

9 40010

10 160899

Table1. Iteration count and execution ticks (milliseconds) for a polyline of n0 = 5 vertices.

Figure 2a. Inner smoothing (green) for λ = 0.15 after i = 4 iterations

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

33

Figure 2b. Inner smoothing (green) for λ = 0.3 after i = 3 iterations vs Bezier (blue)

3. OUTER SMOOTHING

The name of the inner smoothing algorithm derives not from the fact that it uses the inner vertices of a
polyline, but that if the polyline happens to be closed and forms a convex polygon, then the curves
generated by the inner smoothing algorithm are all inside the polygon so formed. Also in general each
polyline in the sequence of polylines generated by the inner iterations is inside the convex hull of the
initial polyline. Sometimes however we need to generate a smooth curve which for a closed polyline
forming a convex polygon, lies outside of this polygon. An algorithm to do this is here called an outer
smoothing algorithm. A way of achieving outer smoothing is to construct a “tangent” at each inner vertex
Pi. The tangent at an inner polyline vertex is here defined as a line L’ iR’i passing through inner vertex Pi

such that the perpendicular to L’iR’i through Pi bisects the polyline angle αi at Pi. This is depicted in
Figure 3. The vertices L’i and R’i now replace vertex Pi in the polyline. The outer smoothing algorithm,
like the inner smoothing algorithm, introduces two new angles for the new polyline in replacement of the
one angle at Pi. For convergence of the algorithm we need to see that these two angles are greater than the
angle αi at Pi and yet still less than π. For L’i and R’i as given in the inner smoothing algorithm and
constant λ this condition is not true and therefore we introduce a different smoothing parameter called ν
below.

Figure 3 The geometric construction of points L’i and R’i which replace vertex Pi in the outer smoothing
algorithm.

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

34

Denoting angles Pi-1L’iPi as α’1i, angle PiR’iPi+1 as α’2i, Pi-1PiPi+1 as αi and PiPi-1L’i as δ1i and R’iPi+1Pi as δ2i

we have (see Figure 3):

We will choose

where ν is a small but positive constant in the range (0,1) so that

Since ν is in (0,1), the factor (1-ν) is positive. Since α < π, the second factor above is also positive and
hence α’i1 is greater than αi and similarly for α’i2. In this way, the introduced angles α’1i and α’2i which
replace αi are each guaranteed to be greater than αi and therefore the smoothness of the polyline σ(P) must
increase with each iteration of the outer smoothing algorithm asymptoting to a smoothness of unity.
Therefore the outer smoothing algorithm is convergent.

As with inner smoothing, the application of the outer smoothing algorithm once to polyline P(0) of n0

vertices produces a polyline P(1) of n1 vertices where n1 = 2n0 - 2 so that the formula for nN remains the
same as for inner smoothing. The ith iteration of the algorithm takes time Ti where log10(Ti) = a + bni

where the constants were experimentally found to be a = 1.16 and b = 0.398 for ν = 0.1 and n0 = 5. So
outer smoothing is computationally faster than inner smoothing for higher iteration values.

Figure 4 shows outer smoothing after 6 iterations for ν = 0.1. Clearly outer polylines are not contained
within the convex hull of the starting polyline.

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

35

Figure 4. Outer smoothing (green) for v = 0.1 after N = 3 iterations vs Bezier (blue) for n0 = 5.

4. CENTRAL SMOOTHING

The more iterations of inner smoothing that are done, the shorter the resultant smoothed curve total length
is and the greater λ is the more it is pulled away from the original polyline except at the sticking points as
seen in Figures 2a and b. After N = 4 iterations no further changes to the curve are visually apparent.
Likewise the more iterations of outer smoothing that are done, the longer the resultant curve is and the
larger v is the more it is pulled away from the original polyline in the other direction as seen in Figure 4.
After N = 4 iterations no further changes to the curve are visually apparent. In both cases the original
vertices are no longer part of the smoothed curve except for the two outer vertices P1 and Pn which remain
fixed. However in many applications we want the smoothed curve to continue to use the original vertices
and not be pulled away from the original polyline. A central smoothing algorithm which achieves this is
now described.

At each inner vertex Pi of the polyline P, construct a tangent which is a line L’ iR’i passing through Pi such
that the perpendicular to L’iR’i through Pi bisects the vertex angle αi at Pi. The angle between the tangent
L’iR’i at Pi and the edge Pi-1Pi is called here the tangent angle ϕi at Pi:

From each inner vertex, a pair of new vertices Ai and Bi is generated where angles AiPiPi-1 and Pi+1PiBi

equal θi = μϕi where μ is a real number in the range (0,1), and dropping Ai vertically onto PiPi-1 gives
point A’i at proportion λ along PiPi-1 and dropping Bi vertically down to PiPi+1 gives point B’i at proportion
λ from Pi along edge PiPi+1 as shown in Figure 5. The new polyline consists of the vertices P1 A2 P2 B2 A3

P3 B3 … Bn-1 Pn. The Central Smoothing iteration therefore converts a polyline of n vertices into a new
polyline of n’ = 3n - 4 vertices which include the n vertices of the previous polyline. Therefore after the
ith iteration, the derived polyline has ni = 3in0 - 2(3i) + 2 vertices.
The Central Smoothing algorithm generates 3 new angles for each vertex angle of the original polyline
and in order to prove smoothing convergence, each angle must be compared with the original vertex

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

36

angle. We will set restrictions on λ in order to prove convergence. Figure 6 shows the new angle at A2

which is called α’2 and is given by

By requiring λ < 0.5 we ensure that θ1 < θ2 so that

Therefore the new vertex angle at A2 exceeds the vertex angle α2 at P2. Considering the angle α2 at P2 and
the new angle α’3 at P’3 = P2 in the derived polyline, it is clear that since μ > 0 it follows that θ2 > 0 and
α’3 = α2 + 2θ2 > α2 and so the new vertex angle at P2 (i.e. the angle at vertex P’3 in the derived polyline
P’) exceeds the previous vertex angle at P2.

Next we look at the possibilities for the angle at B2. There are four cases to consider and Figure 7a shows
the related triangles for the first of these. In this case θ3 < θ2 so that h2 > h3 and β3 > 0. From λ < 0.5 it is
easy to prove that θ2 > β3. B2 is vertex 4 of the next polyline P’, and the angle at this vertex is therefore

Hence the angle at B2 in P’ exceeds the angle at P2 in P. The similar case shown in Figure 7b where θ3 ≥
θ2 has β2 ≥ 0 and

Therefore in this case also the angle at B2 in P’ exceeds the angle at P2 in P. In cases three and four shown
in Figures 7c and 7d, the new polyline crosses the old polyline and the angle at B2 is α’4 = π - θ2 - β3. In
Figure 7c, θ3 < θ2 which results in β3 < θ2 provided λ ≤ 0.25 which leads to α’4 - α2 > (1 - μ)(π - α2) > 0
and so α’4 > α2 . In case 7d it can be proven from λ < 0.25 that β3 < θ3. From this the following formula
can be derived

Since in this case θ3 > θ2 it follows that α2 < α3 so that

In summary we have found that the new angle at B2 exceeds the old angle at P2 for all cases provided λ ≤
0.25. The treatment for the new angles at A3, P3 etc follow similarly and we conclude that the application
of the Central Smoothing algorithm produces a smoother polyline that the previous polyline.

Figure 5 The construction of new edges AiPi and PiBi for generating the central smoothing algorithm.

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

37

Figure 6 The angles relating to the new vertex A2.

Figure 7a, b, c and d show the 4 cases to consider in determining the relative size of the polyline angle at B2.

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

38

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

39

Figure 8 below shows central smoothing for 4 iterations for μ = 0.5 using the same initial polyline with n0

= 5. Results showed the same formula for Ti with a = 0.60 and b = 0.75 and 4 iterations are sufficient for
visual smoothness with no visible changes for i > 4..

5. MIXING THE ALGORITHMS AND 3D

The iterative approach to smoothing curves provides increased flexibility over how the final smoothed
curve is developed: the curve parameters may be changed between iterations and we have the opportunity
to mix and combine the algorithms at each iteration. For example inner smoothing after a single iteration
of outer smoothing produces a smoothed curve which is closer to the original polyline than repeated outer
smoothing produces. For each of these algorithms, inner, outer and central, there is also an inverse
algorithm. The algorithm to reverse inner smoothing uses pairs of vertices forming alternate edges of P(i).
These edges are extended and intersected pairwise and the intersection points replace the adjacent before
and after vertices of P(i). The new vertices (including the two outer vertices) form the new polyline P(i-1).
The central algorithm, like the in-centre algorithm [18], retains the vertices of the previous polyline yet
differs markedly from that algorithm firstly in the definition of what is a tangent at a vertex, secondly in
the number of vertices added per iteration and thirdly in how those additional vertices are formed. The
tangent to a circular arc through Pi-1, Pi and Pi+1 at Pi can differ from the perpendicular to the angle
bisector at Pi by up to almost ninety degrees.

If a three-dimensional poyline (a polyline whose vertices are in three dimensions) is coplanar (i.e. all its
vertices lie in the same plane) then application of any of the described iterative smoothing algorithms
within its plane maintains this coplanarity property in the resultant polyline. To develop the 3D versions
of the three smoothing algorithms for 3D polylines, the 3D polyline is broken into a sequence triplets of
vertices {P1,P2,P3}, {P2,P3,P4},... {Pn-2,Pn-1,Pn}. Each triplet defines a plane in 3D so a sequence of n-2 3D
planes is thereby generated. The 2D planar algorithm of each of the three smoothing algorithms of 2D
geometric constructions is applied in the sequence of planes to generate the 3D vertices for the derived
3D polyline. When the generated 3D points after N iterations are drawn, no 3D discontinuities appear. For
the inner smoothing algorithm this only means generalizing the 2D point lerping formula in a straight-

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

40

forward manner to 3D point lerping. Outer smoothing additionally requires 3D lerping by distance rather
than by proportion together with 3D parallel transport of the base of the isosceles triangle to the apex and
this is easily implemented using the 3D point displacement geometric operator. The central smoothing
algorithm also needs the construction of perpendiculars in 3D. The geometric operator for this takes two
points A and B, the distance d and unit normal n to the plane containing A and B and returns point C in
the plane which is at distance d from point B and such that BA and BC are perpendicular vectors. This is
a straight-forward generalization of the 2D perpendicular geometric operator which does not have the
parameter n. Generally 3D polylines are not coplanar and neither will the derived polylines be coplanar.

For surfaces, the cartesian product of the polyline smoothing algorithms is used. The initial surface is a
height map above an mxn grid in the x-y plane. The grid has equally spaced lines in the x and y directions
with a spacing of Δx in the x direction and a spacing of Δy in the y direction. Thus the 3D position of the
(i,j) grid point is (x0+iΔx,y0 + jΔy, 0) for i = 0 to m and j = 0 to n. The height of the surface above grid
point (i,j) is zij giving the surface vertex Pij = (x0 + iΔx, y0 + jΔy, zij). The surface can be drawn as m+n+2
polylines where m+1 polylines are parallel to the x-axis and n+1 polylines are parallel to the y axis. The
polylines are 3D polylines and as the smoothing algorithm progresses these polylines change and may
well become non-planar. The inner and outer smoothing algorithms have disadvantages for surface
smoothing in that vertices of the polylines and therefore polylines of the surface are removed in each
iteration and new ones added. However the central smoothing algorithm doesn’t have this disadvantage:
the existing polyline vertices and therefore their corresponding polylines of the surface remain and new
ones are added. This means that central smoothing of surfaces is a process of adding more and more
polylines across the surface producing a patchwork of quadrilaterals with increasing numbers and smaller
sizes of quadrilaterals in each iteration. Since each quadrilateral might not be planar, it is rendered as two
triangles by the diagonal (roughly) parallel to the plane y = x. The central smoothing algorithm produces
more quadrilaterals per iteration than either the inner or the outer smoothing algorithms.

Figure 9(a) shows a random 10x10 height map illuminated by a mainly diffuse light source in OpenGL.
In Figure 9(b) the surface of Figure 9(a) has had one application of the Inner Smoothing algorithm for λ =
0.3. Figures 9(c) and (d) show the results of a second and third application of the algorithm. In Figure
9(e) the refinements in smoothing are barely noticable so that 3 iterations are sufficient in this case.

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

41

Figure 9

6. DISCUSSION

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

42

Inner smoothing produces a smoothed curve tightly fitting to the given set of initial points. Outer
smoothing produces a smoothed curve which pulls away from the original polyline in the opposite side
from the inner smoothed curve. Central smoothing on the other hand maintains the original points in the
smoothed curve neither pulling away from the original polyline on one side or the other. The timing
measurements done although precise to the tick have two sources or error. Firstly the measurements are
made in an unavoidably multiprocess environment where other higher priority system processes can steal
CPU cycles and at random moments of time so that repeating the tests can give different measurements
and therefore average values over many tests were used. Secondly the timings included the times for
construction, copying and destruction of dynamic arrays to hold the polyline data which changes at every
iteration. By using the formulas for nN and the timing results, we can decide on the maximum number of
iterations N in advance and allocate sufficient memory in static arrays for the polyline data before any
iterations are done. This would be more efficient than using dynamic arrays and save on the housekeeping
chores involved with dynamic arrays.

It is noted that all three algorithms presented have local shape control and this can be used to construct the
curves piecewise thereby using less memory allocations. Consider for instance the inner smoothing
algorithm. Denoting the sticking points as Qi = Lerp(Pi,Pi+1,0.5) for i = 1 to n-1 we note the following
pieces of the limit curve. From P1 to Q1 the limit curve is the straight line segment P1Q1. The limit curve
piece from Q1 to Q2 is uniquely determined by the initial polyline vertices P1, P2 and P3 alone. The limit
curve piece from Q2 to Q3 is uniquely determined by the initial polyline vertices P2, P3 and P4 alone and
so forth. From Qn-1 to Pn the limit curve is the straight line segment Qn-1Pn. So the total curve can be
rendered by computing and drawing these n+1 pieces in turn and this approach requires much less array
space allocation. Likewise if a vertex of the original polyline is moved then only a part of the curve needs
to be recomputed and redrawn. Moving P1 changes Q1 and requires recomputing and redrawing the curve
from P1 to Q2 only i.e. the first two pieces. Moving P2 changes Q1 and Q2 and therefore requires
recomputing and redrawing only the first three pieces from P1 to Q3. In general moving inner vertex Pk

means that three curve pieces must be recomputed and redrawn namely the pieces from Qk-2 to Qk-1, from
Qk-1 to Qk and from Qk to Qk+1. Moving Pn requires recomputing and redrawing only the last two pieces
from Qn-2 to Qn-1 and from Qn-1 to Pn.

The vertical projection of the initial height map to the plane z = 0 is a grid of regular spacing in the x and
y directions. However after applying any of the three smoothing algorithms to the cross pattern of
polylines on the surface, the vertical projection to z = 0 of the surface mesh will no longer be a regular
equally-spaced grid of parallel and perpendicular lines. The polylines used to draw the surface have
become general 3D polylines rather than planar polylines so their 2D projection is an irregular grid
(although for the central smoothing, while most of the polylines will be non-planar and their projections
irregular, the original polylines will remain and they will remain planar with rectilinear projections).
Another observation to make about the smoothed surfaces developed by crossed sets of 3D polylines, is
that the final mesh is not order dependent. The set of 3D mesh vertices produced by subdividing the x line
polylines and then the y line polylines will be the same as the set of vertices produced by first subdividing
the y polylines followed by subdivision of the x polylines. This is due to the symmetric nature of the
formulas for multi-dimensional lerping.

7. CONCLUSIONS

Three algorithms for iterative smoothing have been presented: Inner Smoothing, Outer Smoothing and
Central Smoothing. Each algorithm converges geometrically and generates after sufficient iterations
different smoothed approximations of the original starting polyline or polyhedron. The curve smoothness

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

43

measure σ(P) defined in this paper, for visually acceptable smoothness has a value of about 0.95. The
number of iterations for visually acceptable smoothness has been found to be very small such as N = 3 or
4. Iterative smoothing can consume less CPU time that traditional spline curve and surface methods.
Since only a few applications of the algorithm are needed for visually acceptable smoothness, these
algorithms can take less computation time than traditional methods such as Bezier curves and NURB
surfaces. Additionally it is possible to predict in advance how many iterations N can fit into a given time
interval so that smoothness computations can be tuned to the available time in an animation and sufficient
memory space allocated in advance. Using iterative smoothing algorithms also allows for alternating
between the algorithms with varying parameter values to gain different smoothed curve or surface effects.

REFERENCES

[1] FOLEY J D, VAN DAM A, FEINER S K, HUGHES J F “Computer Graphics Principles and
Practice (Second Edition in C)”,Addison-Wesley, 1996, pp 478-529.

[2] AHLBERG J H & NILSIN E N, “The Theory of Splines and Their Applicqations”, Academic
Press Inc, 1967

[3] de BOOR C “A Practical Guide To Splines”, Springer-Verlag, 1978, pp113-114.

[4] CHAIKIN G, “An Algorithm For High Speed Curve Generation”, Computer Graphics and Image
Processing 3 (1974), 346-349.

[5] JOY K I, “Chaikin’s Algorithms For Curves”, On-line Geometric Modelling Notes, Visualization
and Graphics Research Group, Department of Computer Science, University of California, Davis, 7pp,
1999.

[6] JOY K I, “Quadratic Uniform B-Spline Curve Refinement”, University of California, Davis,
Computer Science Department web pubication, 2002, 5pp.

[7] CATMUL E & CLARK J, “Recursively Generated B-Spline Surfaces On Arbitrary Topological
Meshes”, Computer-Aided Design, Vol 10, 6th of November 1987, pp 350-355.

[8] YAP C K “Complete Subdivision Algorithms, I: Intersection of Bezier Curves”, SCG ‘06
Proceedings of the 22nd Annual Symposium on Computational Geometry, 2006 pp 217-226.

[9] KARCIAUSKAS K & PETERS J “Curvature of Approximating Subdivision Schemes”,
University of Florida web publication, pp 1-13 and Proceedings of Curves and surfaces'2010.
pp.369~381.

[10] LEVIN D, WARTENBERG I, “Convexity-Preserving Interpolation by Dual Subdivisions
Schemes”, Saint-Malo Proceedings XXX, 2000, pp 1-10

[11] KOBBELT L, “Root 3 Subdivision”, SIGGRAPH ‘00, Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pp 103-112

International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.1, January 2013

44

[12] CASHMAN TJ, DODGSON NA, Sabin MA, “A symmetric non-uniform refine and smooth
subdivision algorithm for general degree B-splines”, Computer Aided Geometric Design, 26 (2009) pp94-
104.
[13] CASHMAN TJ, DODGSON NA, Sabin MA, “Selective knot insertion for symmetric non-
uniform refine and smooth B-spline subdivision”, Computer Aided Geometric Design, 26 (2009) pp472-
479.

[14] PETERS J, REIF U “The simplest subdivision scheme for smoothing polyhedra”, ACM
Transactions on Graphics, 16, 4, Oct 1997, pp 420-431.

[15] MULLER H, JAESCHKE R “Adaptive Subdivision Curves and Surfaces”, Computer Graphics
International 1998 Proceedings, 1998, pp 48-58.

[16] HERTZMANN A & ZORIN D, “Illustrating Smooth Surfaces”, SIGGRAPH ‘00 Proceedings of
the 27th annual conference on Computer Graphics and Interactive techniques,10pp.

[17] DENG C, WANG G “Incentre Subdivision Scheme For Curve Interpolation”, Computer Aided
Geometric Design, 27 (2010), pp 48-59.

[18] RIESENFELD R, “On Chaikin’s Algorithm”, IEEE Computer Graphics and Applications 4, 3
(1975), pp 304-310.

