
International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.2, April 2013

DOI : 10.5121/ijcga.2013.3201 1

ONE-DIMENSIONAL SIGNATURE REPRESENTATION
FORTHREE-DIMENSIONAL CONVEXOBJECT

RECOGNITION
Ho-Jin Lee1, Dong-Gyu Sim2 and Rae-Hong Park1

1Department of Electronic Engineering, Sogang University, Seoul, Korea
Hojin.lee@lsgen.com, rhpark@sogang.ac.kr

2Department of Computer Engineering, Kwangwoon University, Seoul, Korea
dgsim@kw.ac.kr

ABSTRACT

A simple method to represent three-dimensional (3-D) convex objects is proposed, in which a one-
dimensional signature based on the discrete Fourier transform is used to efficiently describe the shape of a
convex object. It has position-, orientation-, and scale-invariant properties. Experimental results with
synthesized 3-D simple convex objects are given to show the effectiveness of the proposed simple signature
representation.
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1. INTRODUCTION

Representation of an object is a first step in three-dimensional (3-D) computer vision and object
recognition [1], in which two-dimensional (2-D) shape features based on their complementary
property are used. A good representation method makes it easy to retrieve, classify, and/or
recognize input objects from database. A 3-D object in a 3-D space can be described using various
features such as shape, position, and orientation, among which the shape information is useful for
both retrieval and recognition of an object [2, 3]. Some approaches to content-based
representation of a 2-D image have also been presented. A one-dimensional (1-D) signature to
represent an image for content-based retrieval from image databases was proposed [4]. Fourier-
Mellin transformation approximation was used to describe an image, in which Fourier power
spectrum was computed for pattern recognition, reconstruction, and image database retrieval [5].
Both methods have desirable representation properties invariant to geometric transformations
such as translation, rotation, and scaling.

In a 3-D convex object, points on the straight line that joins any two points are also in the object
[6]. The centroid of a convex object always lies in the object. Convex objects include solid cube,
convex polyhedral, quadrics, superquadrics, and hyperquadrics. For robotics applications,
computing the distance between convex objects was presented by nonuniform rational B-spline
curves or patches [7] and by interior point approach [8].

A new shape decomposition method of an object was proposed under some concavity constraints,
giving a compact geometrical and topological representation [9]. The more extended Gaussian
image model from range data was proposed for recognition of 3-D objects including convex and
concave shapes [10]. Also, hierarchical extended Gaussian image (EGI) was used to describe
nonconvex as well as convex objects [11].
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Efficient representation of an object is a fundamental and important step in 3-D computer vision
and pattern recognition. A good representation method leads to effective retrieval and recognition
of 3-D objects, thus a variety of 3-D object representation approaches have been proposed. Kang
and Ikeuchi [12] proposed a complex extended Gaussian image (CEGI) to overcome the
disadvantages of the conventional EGI. Hebert et al. [13] defined a spherical attribute image to
represent 3-D objects. Also, a 3-D feature descriptor using concentric ring signature was used to
represent local topologies of 3-D point clouds, which was applied to 3-D shape matching and
retrieval [14].

This paper presents an efficient method to represent 3-D convex objects. It is an extended version
of the previous paper [15], in which a 1-D signature is further proposed to effectively describe the
shape of a 3-D convex object. Since it is position-, orientation-, and scale-invariant, application to
3-D object retrieval and recognition is straightforward. The series of operations to the input object
gives the simple 1-D signature.

The rest of the paper is structured as follows. Section 2 presents the proposed 1-D signature
representation method, which is invariant to position, orientation, and scaling. Each step of the
proposed representation is explained in terms of invariant properties, which are desirable for 3-D
object recognition. Experimental results with synthetic convex test images are shown in Section 3.
Finally, Section 4 gives conclusion.

2. PROPOSED 1-D SIGNATURE REPRESENTATION

The proposed 1-D signature representation method presents three invariant properties of feature
values: position-, rotation-, and scale-invariant. Figure 1 shows the block diagram of the proposed
method. Each step for 3-D to 1-D representation is described in the following subsections.

2.1. Input Object

A 3-D object is represented as a set of cells in a 3-D coordinate system. Thus, a 3-D signal can be
defined to represent a 3-D object. A simple voxel-based spatial occupancy representation is used
to represent a 3-D input object [16, 17]. Voxels are arranged and indexed in the 3-D Cartesian
coordinate system. Information or property of an object such as shape, position, and orientation
can be defined using the distribution of the voxels that are marked as inside the object. Especially,
position and orientation can be parameterized with some vectors and angles [15].
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Figure 2 shows each step of the proposed 1-D signature generation procedure. Figure 2(a) shows
the definition of the parameters used for 3-D object representation, where for easy understanding
of the whole shape of the object, surface based representation is used, with f(x,y,z) denoting the
input object, a 3-D signal that has only two values 0 or 1. If position (x1,y1,z1) is occupied by the
object, in voxel-based spatial occupancy representation (x1,y1,z1)=1, and 0, otherwise. In this
paper, this binary 3-D signal representation is used to represent an object.

The position and orientation of an object can be described with two vectors and an angle. Vectors
vc, va, and angle ζ denote the centroid, the principal axis of the object, and the rotation angle about
va, respectively. The vector vc signifies the parameterized position of the object centroid and can
be obtained by averaging the 3-D coordinates of the object voxels whereas va and ζ represent the
parameterized orientation of the object. The vector va can be estimated as a dominant eigen vector
of the 3-D coordinate distribution of the object voxels.

2.2. Position-Invariant Property

Position invariance is obtained at the stage of coordinate conversion. After obtaining the centroid
(xc, yc, zc) of the input object f(x,y,z), new coordinates whose origin is at (xc, yc, zc) is defined to
represent the volume elements of an input object. Translation of f(x,y,z) to the centroid (xc, yc, zc)
expressed as

[ ]fTf
ccc zyx ,,' =

is the first transformation performed on the input object f(x,y,z) for position-invariant object shape
description, where T denotes the transformation describing the translation process. Figure 2(b)
shows the translated object f ′(x,y,z). Note that f ′(x,y,z) has only the shape and orientation
information of the object.

2.3. Orientation-Invariant Property (1)

Orientation- and scale-invariant properties are obtained after defining feature values. Orientation
of an input object can be parameterized using two parameters va and ζ. The direction of the
principal axis is estimated by the eigenvector of the matrix corresponding to the largest
eigenvalue, where the matrix is constructed by a set of coordinates of a number of volume
elements in the object. The orientation information of the principal axis can be eliminated by the
rotation transformation, which is defined by

[ ]''' , fRf
nv −= ,

where R denotes the rotation operation with τ denoting the inclination angle of the principal axis
from the z-axis as described in Figure 2(b). Rotation is performed about the axis vn that is
perpendicular to the surface defined by va and the z-axis. Figure 2(c) shows the result of the
rotation transformation of the translated object f ′(x,y,z) shown in Figure 2(b).

2.4. Coordinate System Conversion



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.2, April 2013

4

(a) (d)

(b) (e)

(c) (f)

Figure 2. Signature generation procedure. (a) f(x, y, z), (b) f ′(x, y, z), (c) f ′′(x, y, z), (d)

f ′′(ρ, , θ), (e) g(, θ), (f) S(m,n).
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Coordinate system conversion is needed to define rotation-invariant features in two steps: 1)
estimation of the center coordinates and the principal axis direction of the input object, 2) new
object representation using the estimated center coordinates and the principal axis, and the
spherical coordinate conversion. The invariant properties to position and the principal axis
orientation can be obtained by a series of geometric transformations (i.e., translation and rotation)
as mentioned above. The other orientation angle ζ, however, still remains in f′′(x,y,z). To be able
to eliminate this factor, coordinate system conversion from Cartesian to spherical is performed to
define rotation-invariant features, with the newly defined origin and the principal axis of the input
object. In this new coordinate system, an input object is located at the origin of the coordinate
system. The relationship between the variables of the Cartesian coordinate (x, y, z) and the
spherical coordinate (ρ, , θ) [15] is shown in Figure 2(c), in which rotation parameter ζ in the
Cartesian coordinate system is converted to the translation parameter in the spherical coordinate
system. After the coordinate conversion, the 3-D signal that represents an object is expressed as
f′′(ρ, , θ).

At the next step, this property is combined with a property of the discrete Fourier transform
(DFT) [18] to construct a 2-D signature image that is invariant to object orientation. Figure 2(d)
shows the volumetric representation of the object voxels in the spherical coordinate system.

2.5. Equivalent 2-D Representation

If the input object f(x,y,z) satisfies the convexity, the volumetric representation f′′(x,y,z)
transformed thus far has no hole in it, so that 2-D equivalent representation of f′′(x,y,z) can be
expressed as [15]
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where g(, θ) represents the 2-D image signal of which independent variables are  and θ, as
shown in Figure 2(e). This process changes object representation from volume-based to surface-
based, reducing the data complexity. The process of the data complexity reduction does not cause
any loss of information. The 2-D representation g(, θ) has the surface information of an input
object. Note that data complexity reduction is achieved by representing an object from 3-D to 2-
D. In Figure 2(e), brighter gray level values are used to represent larger signal values.

2.6. Orientation-Invariant Property (2)

The orientation factor in g(, θ) denoted by the angle ζ can be eliminated by using the property of
the DFT [12]: ζ in the Cartesian coordinate is converted into the translation parameter. If the
signature image is defined by the power spectra of g(, θ), the orientation angle ζ is eliminated.
The 2-D signature image P(m,n) is defined by

22 )],(Im[)],(Re[),( nmGnmGnmP += ,

where –M/2 ≤ m ≤ M/2–1, –N/2 ≤ n ≤ N/2–1, with M × N denoting the image size (M, N: even
numbers). G is the DFT of g(, θ) and Re[•] and Im[•] signify the real and imaginary parts,
respectively. Note that P(m,n) contains only the shape information of the input object f(x,y,z), i.e.,
position and orientation information is eliminated.
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2.7. Scale-Invariant Property

In some cases, two objects with the same shape are different in their sizes. If size is not an
important factor to discriminate an object from the others in a specific application, a scale-
invariant signature is needed. The scale-invariant signature image S(m,n), i.e., normalized
absolute DFT coefficients, can be obtained by normalizing P(m,n) with respect to the DC
component:

)0,0(
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where P(0,0) is the DC component of g(, θ). Note that S(m,n) is position-, orientation-, and
scale-invariant with S(m,n) retaining only the shape information. Figure 2(f) shows an example
of the 2-D signature image S(m,n).

2.8. 1-D Signature

Although S(m,n) is an invariant feature of an input object f(x,y,z), it is not a good descriptor of
an object. Low data complexity is needed for efficient retrieval or recognition of 3-D objects. For
this goal, a 1-D signature Q(k) is defined. The weighted average of the 2-D signature image
S(m,n) is used to construct the 1-D signature Q(k).

Figure 2(f) shows the blocking scheme used to average the signature values. The overlaid black
lines on the 2-D signature image S(m,n) denote the boundary of the blocks, in which 4-layered
subdivision in each quadrant is shown. Quad-divisions to low-frequency area are performed
iteratively until 1×1 block of the DC component of S is defined. The 1-D signature Q(k) consists
of the average values of the blocks, where the averaging blocks are defined only in the upper two
quadrants (n≤0). By virtue of the even symmetry property of the 2-D signature P(m,n), only half
of the coefficients are required. Then, the proposed 1-D signature Q(k) is used for recognition of
3-D convex objects.

In summary, the proposed method has three invariant properties of feature values. Position
invariance is obtained by coordinate conversion whereas rotation and scale invariances are
achieved by defining feature values using DFT coefficients and weighted average operations,
respectively.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

To show the effectiveness of the proposed 1-D signature representation Q(k) for 3-D convex
object recognition, three simple 3-D convex objects f(x,y,z) are synthesized and their 1-D
representations are obtained. Figures 3(a), 3(b), and 3(c) show the specifications of the test
polyhedral objects in the Cartesian coordinates, where the number denotes the line length in
voxel element unit. The voxel array used in representing 3-D objects has the dimension of
256×256×256, with the voxel value equal to 0 or 1 depending on whether the element is
occupied by an object or not.

As explained in Figure 2, 2-D representations S(m,n), which are defined based on the DFT
coefficients, of 3-D test objects are obtained. Then, 1-D signatures Q(k) are generated for each
object, in which 44 blocks are defined. As explained in Figure 2(f), 7-layered subdivision of a
256×256 quadrant of S(m,n) down to 1×1 gives 22 blocks and note that two quadrants (n≤0) are
used. The average values of the 44 blocks formulate the 1-D signature Q(k).
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Invariant characteristics to rotation and scale can be tested by changing the rotation angle and
object size [15]. Rotation- and scale-invariant characteristics can be used to define invariant
feature values of some objects that have the same shape if it is assumed that two objects have the
same shape with different size and object pose.

To test the invariant and discriminating properties of the proposed 1-D signature Q(k), Euclidean
distances between the signature vectors of the synthesized objects at different positions,
orientations, and scales are computed. Table 1 shows the average distance between the objects,
which is used as a dissimilarity or distance measure. For the position, orientation, and scale
parameters of an input object, arbitrary values are randomly generated for test objects. For the
translation parameters, the values from –75 to 75 are used whereas for the scaling parameters, the
values from 0.5 to 1.5 are used. The rotation parameters used have the range from 0 to 2.

Object recognition is performed by comparing the distance defined based on the 1-D signatures
Q(k), in which the distance is used as a dissimilarity measure for object matching or recognition.
As shown in Table 1, the distance (intra-distance) is small between the same objects (diagonal
elements in Table 1) whereas the distance (inter-distance) is large between different objects (off-
diagonal elements). The inter-distance of the pair objects 1 and 2 yield relatively small distance
values. Other pair of objects produces high distance values. About 0.02-0.1 can be used as the
threshold to distinguish whether a pair of objects is the same or not. Table 1 shows good invariant
and discriminating properties of the proposed 1-D signature representation. The ratio of inter- to
intra-distance is large enough (from 76 to 330), which is desirable for reliable object recognition.

Figure 3. Synthesized 3-D convex objects. (a) object 1, (b) object 2, (c) object 3

(a) (c)(b)

Table 1. Intra- and inter-distances between object pairs.

Distance Object 1 Object 2 Object 3

Object 1 0.0012 0.1305 0.2316
Object 2 0.0014 0.1072

Object 3 0.0007
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4. CONCLUSIONS

For effective representation of 3-D convex objects, a 1-D signature invariant to position,
orientation, and scale is proposed. The invariant and discriminating properties of the proposed 1-
D representation are supported by experiments. The proposed 1-D signature representation can be
applied to effective shape-based 3-D object retrieval and recognition. Future work will be the
application of the proposed 1-D signature to more complex and real object dataset and the
extension of the proposed algorithm to recognition of non-convex objects.
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