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Abstract 
 

A new algorithm is presented which determines the dimensionality and signature of a measured space. The 

algorithm generalizes the Map Maker’s algorithm from 2D to n dimensions and works the same for 2D 

measured spaces as the Map Maker’s algorithm but with better efficiency. The difficulty of generalizing the 

geometric approach of the Map Maker’s algorithm from 2D to 3D and then to higher dimensions is 

avoided by using this new approach. The new algorithm preserves all distances of the distance matrix and 

also leads to a method for building the curved space as a subset of the N-1 dimensional embedding space. 

This algorithm has direct application to Scientific Visualization for data viewing and searching based on 

Computational Geometry. 

 

Categories and Subject Descriptors: I.3.3 Viewing algorithms, I.3.5 Computational Geometry and Object 

Modelling 

 

1. Introduction 
 

The Map Maker’s problem is to convert a measured space into a two-dimensional coordinatized 

space. This is well achieved by the Map Maker’s algorithm [Ran13]. However the assumption in 

that process is that the distance matrix of the measured space corresponds at least roughly to a flat 

two-dimensional space. When this is true the Map Maker’s algorithm is distance preserving. In 

general however this would not be the case and then the Map Maker’s algorithm does not 

preserve all distances. A measured space is defined by a set of sites i = 1 to N and their measured 

separations dij where dij is the shortest distance between site i and site j. The set of NxN distances 

dij is called the Distance Matrix. This matrix is symmetric and trace-free with zeros down the 

principal diagonal. Thus a set of known sites and their distance matrix constitutes what is called a 

defined (or measured) space. 

 

Research based on distance matrices has had wide applications such as in signal processing 

[PC92], pattern recognition [ZWZ08] and medical imaging [PE*09]. One of the foundational 

research efforts [LSB77] resulted in Lee’s algorithm for projecting n-dimensional distance matrix 

data to two dimensions for visualization. Lee’s algorithm does not determine the n-dimensional 

coordinates of the points involved but goes straight to a projection of those points in 2D. In the 

process of this projection most of the distance information is not preserved in the visualization. 

Other approaches such as LLE preserve distances just in the local neighbourhood of a chosen 

point [RS00, TSL00]. In the research presented here the coordinatization and projection processes 

are separated so that one is free to apply any desired projection transformation to the 

coordinatized data. Surprisingly, from the distance matrix dij one can determine the 

dimensionality and signature of the space that it defines as well as the coordinates for the sites 

and the algorithm presented in this paper demonstrates this. 
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The algorithm presented here, called the Coordinatizator algorithm, does not require any special 

ordering of the sites before processing. The given ordering of the sites however determines the 

directions and orientations of all axes in the building of the n-dimensional space. Re-orderings of 

the sites therefore may be done for other reasons such as desired axial directions or reduction in 

numerical errors. The Coordinatizator algorithm coordinatizes by considering the sequence of 

simplices Sk = P1P2…Pk with vertices Pi for i = 1 to k and setting up orthogonal axes for these 

simplices. 

 

2. Coordinatizator Process 
 

The Coordinatizator algorithm uses the given sites to construct axes and produce coordinates for 

each of the sites. As in the Map Maker’s algorithm, site 1 is taken as the origin so it is 

coordinatized as the point: 

 

P1 = (0, 0, 0, 0...) 

 

The direction from site 1 to site 2 is taken as the x-axis or the first axis so therefore site 2 is 

coordinatized as the point: 

 

P2 = (x21, 0, 0, 0...) 

and obviously x21 = d12. 

 

The triangle of site 1 to site 2 to site 3 defines the x-y plane and thus the 2-axis (i.e. the y-axis 

which is perpendicular to the 1-axis which is the x-axis). Therefore P3 is coordinatized as the 

point: 

 

P3 = (x31, x32, 0, 0, 0...) 

 

The tetrahedron formed by the first 4 sites defines the third axial direction perpendicular to the 

first two. Thus site 4 is coordinatized as the point: 

 

P4 = (x41, x42, x43, 0, 0, 0...) 

and so forth so that in general: 

 

Pi = (xi1, xi2, xi3, …, xii-1,0, 0, 0, 0...) 

for i = 1 to N where N is the number of sites and the size of the Distance Matrix. 

 

This process of converting the Distance Matrix into a set of N points in n-dimensional space 

generally creates a non-Euclidean space of n = N-1 dimensions. We add the points progressively 

by building up a simplex from 0 dimensions to n = N-1 dimensions. However it is possible that at 

some step the added point is degenerate and the dimension does not increase for that step so that 

in general the dimensionality of the measured space is bounded above by N-1,  n  N-1.  It is 

interesting that every time another point say the k+1th point is added, we only have to consider k 

more edges since dij = dji. 

 

The Coordinatizator algorithm solves the following mathematical equations for the xij given the 

dij. Investigation into these equations found that the algebraic solution was possible for the 

general n-dimensional case. 
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Given: 

P1 = (0, 0, 0, 0...) 

P2 = (x21, 0, 0, 0...) 

P3 = (x31, x32, 0, 0, 0...) 

P4 = (x41, x42, x43, 0, 0, 0...) 

P5 = (x51, x52, x53, x54, 0, 0, 0...) 

::::: 

Pi = (xi1, xi2, xi3, …, xii-1,0, 0, 0, 0...) 

 

The unknowns xij in the above equations can be solved for k = 1 to N by the following procedure. 

Every coordinatization is extended to higher dimensions by appending the additional required 

number of zeros in the n-tuple. 

 

For k = 1 we consider only point P1 and coordinatize it by assign it to the 0 dimensional origin. 

For k = 2 we bring in point P2 and get: 

d12
2
 = (P2 - P1)(P2 - P1) = x21

2 

 

and without loss of generality we choose: 

 

x21 = d12 

and thereby coordinatize P2 as the 1 dimensional point (x21). 

 

For k = 3 we bring in point P3 and coordinatize it by getting: 

d13
2
 = (P3 - P1)(P3 - P1) = x31

2
 + x32

2
 

d23
2
 = (P3 - P2)(P3 - P2) = (x31-x21)

2
 + x32

2
 

Subtracting gives: 

d13
2
 - d23

2
 = 2x21x31 - x21

2
 

so that 

x31 = (d13
2
 - d23

2
 + x21

2
)/(2x21) 

and therefore 

      √   
           

  

 

Now if the term in the square root is negative then we have non-Euclidean flat space. We will 

consider this type of situation later on. Here we will take the positive root without loss of 

generality since this will be the first point with a y component. 

 

For k = 4 we are adding in P4 and we have these three equations to consider: 

 

d14
2
 = (P4 - P1)(P4 - P1) = x41

2
 + x42

2
 + x43

2
 

d24
2
 = (P4 - P2)(P4 - P2) = (x41-x21)

2
 + x42

2
 + x43

2
 

d34
2
 = (P4 - P3)(P4 - P3) = (x41-x31)

2
 + (x42-x32)

2
 + x43

2
 

Therefore: 

d14
2
 - d24

2
 = 2x21x41 - x21

2
 

so that 

x41 = (d14
2
 - d24

2
 + x21

2
)/(2x21) 

Secondly 

d24
2
 - d34

2
 = (x41-x21)

2
 - (x41-x31)

2
 + 2x32 x42 - x32

2
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so that 

x42 = (d24
2
 - d34

2
 - (x41-x21)

2
 + (x41-x31)

2
 + x32

2
)/(2x32) 

Finally we get: 

      √   
           

           
  

 

Now if the term in the square root is negative then we have non-Euclidean flat space. We will 

consider this type of situation later on. Here we will take the positive root without loss of 

generality since this will be the first point with a z component (i.e. 3rd or kth component). 

 

For k = 5 we are adding in P5 and we have these four equations to consider: 

 

d15
2
 = (P5 - P1)(P5 - P1) = x51

2
 + x52

2
 + x53

2
 + x54

2
 

d25
2
 = (P5 - P2)(P5 - P2) = (x51-x21)

2
 + x52

2
 + x53

2
 + x54

2
 

d35
2
 = (P5 - P3)(P5 - P3) = (x51-x31)

2
 + (x52-x32)

2
 + x53

2
 + x54

2
 

d45
2
 = (P5 - P4)(P5 - P4) = (x51-x41)

2
 + (x52-x42)

2
 + (x53-x43)

2
 + x54

2
 

Therefore: 

d15
2
 - d25

2
 = 2x21x51 - x21

2
 

so that 

x51 = (d15
2
 - d25

2
 + x21

2
)/(2x21) 

Secondly 

d25
2
 - d35

2
 = (x51-x21)

2
 - (x51-x31)

2
 + 2x32 x52 - x32

2
 

so that 

x52 = (d25
2
 - d35

2
 - (x51-x21)

2
 + (x51-x31)

2
 + x32

2
)/(2x32) 

Thirdly 

d35
2
 - d45

2
 = (x51-x31)

2
 - (x51-x41)

2
 + (x52-x32)

2
 - (x52-x42)

2
 + 2x43 x53 - x43

2
 

so that 

x53 = (d35
2
 - d45

2
 - (x51-x31)

2
 + (x51-x41)

2
- (x52-x32)

2
 + (x52-x42)

2
 + x43

2
)/(2x43) 

Finally we get: 

      √   
           

           
           

  

 

Now if the term in the square root is negative then we have non-Euclidean flat space. We will 

consider this type of situation later on. Here we will take the positive root without loss of 

generality since this will be the first point with a kth component. 

 

This forms a clear pattern for any value of k >= 1 and hence the algorithm can be worked for any 

value of N. 

 

3. Imaginery Components 
 

The quantities under the square root signs in the equations above could be positive, zero or 

negative giving rise to three important cases to consider. If the quantity is positive we have an 

extra Euclidean dimension for housing the points. If the quantity is zero then we have sufficient 

dimensions already and an extra dimension is not (yet) required for embedding the points 

considered so far. If the quantity is negative then the Euclidean space becomes pseudo-Euclidean 

[Wik13a] like Minkowski space in Special Relativity where time is an imaginary extra axial 

dimension for three-dimensional space. As in Relativity, the invariant quadratic form then is no 



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 2013 

 

19 

longer positive definite and is properly termed a pseudo-metric though it is common to continue 

to call it a metric anyway). 

Sylvester’s Theorem [Wik13b] states that the matrix for any quadratic form can be diagonalized 

by a suitable change of coordinates and with rescalings the diagonal elements are only {-1,0,1} 

and furthermore the number of +1s (called the positive index of inertia n+) and the number of 0s 

(n0)and the number of -1s (called the negative index of inertia n-) is invariant no matter what 

recoordinatization is chosen. Clearly 

 

n+ + n0 + n- = N-1 

 

The dimensionality of the measured space is given by 

n = n+ + n-  

 

The signature of the measured space is given by 

s = n+ - n-  

 

Knowing the dimensionality, the signature and N is equivalent to knowing n+, n0 and n- which the 

Coordinatization algorithm provides. The Corrdinatizator algorithm automatically determines 

these quantities by noting the sign of the quantities under the square root. The presentation of the 

algorithm below explicitly indicates these quantities. 

 

4. Coding the Algorithm 
 

We have an outer loop for k = 1 to N. In each loop we determine k constants which are the non-

zero components of Pk. Computing the next component depends on the values of all previously 

computed components. Essentially we are constructing a new output NxN matrix called x from a 

given input NxN matrix called d. The input matrix cannot have negative values, must be 

symmetric and its principal diagonal should consist only of zeros. The output matrix is lower-

triangular so that it also has zeros on its principal diagonal. In both cases the matrix indices run 

from 1 to N. So the algorithm looks like this: 

 

Inputs: The NxN distance matrix d[i,j] 

Outputs: The NxN matrix of point components x[i,j]. 

Initialize all x[i,j] = 0 -: 

for i = 1 to N 

 for j = 1 to N 

  x[i,j] = 0 

PositiveIndex = 0 

NegativeIndex = 0 

for k = 1 to N 

 l = k-1 

 for i = 1 to l-1 

  sum = Sq(d[i,k]) - Sq(d[i+1,k]) 

  for j = 1 to i-1 

   sum += - Sq(x[k,j] - x[i,j]) 

   sum += + Sq(x[k,j] - x[i+1,j]) 

  sum += Sq(x[i+1,i]) 

x[k,i] = sum/2/x[i+1,i] 
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 sum = Sq(d[l,k]) 

 for i = 1 to l-1 

  sum = sum - Sq(x[l,i]-x[k,i]) 

 if sum > 0 

  PositiveIndex++ 

  x[l,k] = SqRoot(sum) 

 if sum < 0 

  NegativeIndex++ 

  x[l,k] = SqRoot(-sum) 

 

5. Curvature, Dimensionality and Degeneracy 
 

We will start by assuming that the N sites define a space of dimensionality n = N-1. If for any k 

in the algorithm we find xk+1k is zero or close to it then we will reduce the dimensionality n of the 

data space by 1. The Coordinatizator algorithm does not search for curvature in the space nor the 

dimensionality of the embedding space, so the defined space be either a flat n-dimensional 

Euclidean space or a flat n-dimensional pseudo-Euclidean space. When there is degeneracy one 

has to check whether the negative is the right solution i.e. it gives the right distances to the other 

points before it according to the distance matrix as described in the Map Maker’s algorithm. 

 

6. Conclusions 
 

The Coordinatizator algorithm presented in this paper maps sites to an n-dimensional pseudo-

Euclidean space preserving all distances of the given distance matrix. The algorithm returns the 

positive index of inertia and the negative index of inertia of the pseudo-metric of the pseudo-

Euclidean space. If the negative index is zero then the space is pure Euclidean and the triangle 

inequality [Wik13c] is valid for all triplets of points within it. If the negative index is non-zero 

then the triangle inequality is reversed but only for the subspace of points spanned by the 

imaginary axial directions. Once this algorithm is applied to defined space data projection 

mappings can be applied to view the n-dimensional data on a flat screen. The Coordinatizator 

algorithm effectively maps one NxN lower triangular matrix (dij) to another NxN lower triangular 

matrix (xij) and this would allow us to reduce memory needs by storing data in a single square 

NxN real matrix. 
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