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ABSTRACT 
 

This paper presents a technique to reduce the ghost artifacts in a high dynamic range (HDR) image. In HDR 

imaging, we need to detect the motion between multiple exposure images of the same scene in order to 

prevent the ghost artifacts. First, we establish correspondences between the aligned reference image and the 

other exposure images using the zero-mean normalized cross correlation (ZNCC). Then, we find object 

motion regions using adaptive local thresholding of ZNCC feature maps and motion map clustering. In this 

process, we focus on finding accurate motion regions and on reducing false detection in order to minimize 

the side effects as well. Through experiments with several sets of low dynamic range images captured with 

different exposures, we show that the proposed method can remove the ghost artifacts better than existing 

methods. 
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1. INTRODUCTION 
 

Most sensors can detect only a restricted range of light intensity values. In a captured image, we 

cannot observe what we see in a real-world scene. More specifically, in a low dynamic range 

(LDR) image, a pixel with very low irradiance will appear as noisy or saturated black pixel, 

whereas that with very high irradiance as saturated white pixel containing incorrect information 

of the scene. Faithfully representing the information of the real-world scene is a challenging task. 

General approach to solve this problem is to produce a high dynamic range (HDR) image by 

combining a set of LDR images (LDRIs) captured with different exposure settings [1–4], which is 

so-called HDR imaging. Each LDR image provides partial information of radiance values of the 

scene. Combining irradiance values from multiple LDRIs, an HDR image (HDRI) can cover a 

wide range of radiance values that the real-world scene has. Ideally, irradiance value at one pixel 

is supposed to be consistent with those at corresponding pixels of the same scene taken with 

different exposure settings. However, if LDRIs are not aligned, inconsistencies can occur between 

corresponding pixels of the same scene taken at different exposure settings, which makes an 

HDRI suffer from ghost artifacts [4, 5]. 

 

This paper focuses on local motion detection of objects in HDR imaging. Generally, global 

motion comes from shaking a hand-held camera during capturing a set of LDRIs [6, 7], whereas 

local motion is caused by moving objects in a scene during shooting [5]. Since it takes 

comparatively long time to capture multi-exposure images, we cannot assure that pixels at the 

same location in different exposure images represent the same radiance information of the real-

world scene in this situation. If the area of moving objects is relatively large in a scene, estimation 

accuracy of a camera response function can be affected by unaligned or misaligned part of images 
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since the possibility that samples for the camera response function are taken from the moving 

objects gets higher. 

 

In this paper, we propose a feature based ghost removal method in HDR imaging. The rest of the 

paper is structured as follows. Sections 2 and 3 present previous works on ghost removal and 

conventional HDRI generation methods, respectively. Section 4 proposes a framework for ghost 

removal consisting of saturated region separation, feature map generation, adaptive local 

thresholding, motion map clustering, and radiance map generation. Experimental results are given 

in Section 5. First, we discuss the image capture setting such as the number of LDRIs and 

exposure value (EV) spacing which affect the quality of the HDRI [8]. Then, we compare 

performance of the proposed ghost removal method with existing methods. Experiments with 

various test image sets show that the proposed method can remove the ghost artifacts effectively. 

Finally, conclusions are given in Section 6. 

 

2. PREVIOUS WORKS 
 

Kang et al. estimated the displacement between pixels in a moving object in differently exposed 

images, using conventional motion estimation techniques such as optical flow method [6]. But 

motion estimation methods do not work reliably with differently exposed images because change 

of illumination gives poor motion estimation results and also they may fail if a non-rigid object is 

deformed. Especially, it is hard to find correspondences when occlusions or saturated regions 

exist in LDRIs. Therefore, we can say that a motion estimation based ghost removal method has a 

clear limitation on obtaining a high-quality HDRI. 

 

Khan et al. proposed a method to remove ghost artifacts in an HDRI without object detection and 

motion estimation [9]. The key idea is to reduce the contribution of the pixels in the non-static 

part of the scene in constructing the final radiance map. The result of the algorithm seems quite 

promising. However, the algorithm is slow due to iteration process and shows poor results if the 

scene does not predominantly represent a static background. Pedone and Heikkila [10] extended 

Khan et al.’s method by introducing the weight propagation scheme which propagates the low 

weight of the object pixels to the surrounding pixels within the same object. Gallo et al. divided 

each of the LDRIs into the patches and then measured the consistencies of irradiance values 

between the corresponding patches [11]. They assumed that the irradiance at a given pixel 

remains the same unless the scene changes. One of disadvantages of the methods described above 

is that the overall performance of the algorithms can be affected by misalignment and small errors 

in camera response function estimation because they find the object motion in the radiance 

domain after camera response function estimation. 

 

Jinno and Okuda used a Markov random field (MRF) model to estimate the displacement 

between two LDRIs [12]. Jacobs et al. proposed an entropy-based method [13]. They assumed 

that the local entropy does not change between differently exposed images. So they computed the 

entropy of each LDRI and then compare the difference of entropies with a pre-defined threshold 

to find the motion regions. In addition, because they found the object motion in the intensity 

domain before estimation of camera response function, the performance of motion detection is 

independent of the estimation accuracy of camera response function. Min et al. proposed a 

histogram based ghost removal method [14]. They used multi-level threshold maps, a modified 

version of the median threshold bitmap (MTB), to detect the local motion regions. This method is 

simple and fast, however a large portion of false detection exists, causing artifacts in an HDRI. 

 

On the other hand, a single image based HDR imaging method [15] produces multiple LDRIs 

from a single image using local histogram stretching. Since it uses a single input image, it 

inherently does not need to remove ghost artifacts from global and local motion during exposure 
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time. However, there is a limit to cover a wide range of radiance values when compared to other 

HDR imaging methods using LDRIs captured with different exposure. 

 

3. HDRI GENERATION 
 

HDRI reconstruction begins with estimation of camera response function, which is a non-linear 

function that converts irradiance values to image intensity values [16]. Once the camera response 

function is estimated, we can obtain the irradiance map for each image by converting intensity 

values to relative irradiance values. The log-irradiance of the image can be written as  

 

                                         jjj tyxZgyxE  ln)),((),(ln                                                       (1) 

 

where Ej(x, y) denotes the irradiance at (x, y) in j-th image and g represents the estimated inverse 

camera response function. Zj(x, y) is the intensity value at (x, y) in j-th image and Δtj denotes the 

exposure time of j-th image. Ideally, the irradiances of the corresponding pixels over multiple 

images with different exposure settings should be the same except for the pixels located in 

moving area or non-stationary regions. 

 

However, due to nonlinearity introduced by quantization process, which transforms the irradiance 

value to the intensity value, and errors in estimation of camera response function, the recovered 

irradiance can be slightly different from the actual radiance values. Additionally, the recovered 

irradiances consist of the finite number of values since g(Zj(x, y)) can take only discrete values 

due to quantization of Z,j(x, y). Inaccurate estimation of irradiance values causes degradation in 

the signal to noise ratio (SNR) in a final HDRI. We need as many irradiance values at each pixel 

as possible to increase the SNR of the final HDRI. 

  

4. PROPOSED GHOST REMOVAL METHOD 
 

In this section, we propose a ghost-free HDRI generation method. Figure 1 shows the overall 

block diagram of the proposed method. Let J denote the total number of LDRIs. We define input 

LDRI set as Z = {Z1(x, y), Z2(x, y), … , ZJ(x, y)} with in order of increasing exposure, where (x, y) 

is the two-dimensional (2-D) pixel coordinates. For example, ZJ(x, y) is the LDRI with the longest 

exposure time among the input LDRI set Z. 

 

First, we select a reference image among LDRIs. The reference image is selected so that it does 

not contain the objects that we do not want to have in an HDRI [11]. Or simply select a mid-

exposure image in the input LDRI set Z, because in general a mid-exposure image contains the 

least number of over-/under-saturated regions. Then, we use a scale-invariant feature transform 

(SIFT) based alignment method [17] that finds translation as well as rotation of a camera in order 

to generate aligned LDRIs ),,(
~

yxZ j  where tilde represents the image alignment. Next, we find 

motions using luminance images ),(
~

yxL j  of each )(),(
~

RjyxZ j   [2], where R represents index 

of the reference image. Pixels with ,,1),( RjyxM j   give locations of the pixels corrupted by 

object motion in ).,(
~

yxZ j  After weight maps Wj(x, y) and weighting factors MEj(x, y) for ghost 

removal are calculated for each aligned LDRI, a final radiance map ),(ˆ yxE is generated by a 

weighted average of irradiance maps in the logarithm domain, where all aligned LDRIs are 

transformed into irradiance maps with inverse camera response function ).(g  The irradiance 

values of the pixels in the final motion maps with ,),,( RjyxM j  will be disregarded during this 

process. 
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Figure 1. Block diagram of the proposed method in HDR imaging. 

4.1. Saturated Region Separation 
 

Saturated region separation is required for preventing false detection that can produce artifacts in 

a final HDRI. When false detection occurs, motion region contains the pixels that are not 

corrupted by a moving object. Thus, some valuable irradiance information may be lost during the 

process of generating the HDRI. The regions where false detection mainly occurs are over-

/under-saturated in the reference image. Therefore, before finding the motion regions, we need to 

divide the reference image into the over-/under-saturated and non-saturated regions as 

 

                                              









NUO

yxLyxN

yxLyxU

yxLyxO

R

R

R



 },254),(
~

10|),{(

}10),(
~

|),{(

 },254),(
~

|),{(

                                    (2)                    

where O  denotes the set of pixels that gives the over-saturated regions and U signifies the set of 

pixels that gives the under-saturated regions. N  represents the set of pixels that gives the non-

saturated regions. Performance depends on selection of threshold values, with different values for 

images with different characteristics. They are experimentally selected so that the number of 

measurements used for radiance map generation is as large as possible with the ghost artifacts 

minimized. Figure 2(a) shows three regions classified in the reference image (white: over-

saturated regions, gray: non-saturated regions, and black: under-saturated regions). 

 

Because result of motion detection is unreliable in over-/under-saturated regions, we do not find 

motion regions in these regions. Note that the subscript j in ),(
~

yxL j  denotes the image index, in 

which large j represents longer exposure time. For ,),(and OyxRj   ),(
~

yxL j  appears as over-

saturated values, which do not contribute to extending dynamic range. However, for Rj   and 

,),( Oyx   ),(
~

yxL j  have irradiance values (not saturated) that are accurately recorded at lower 

exposure setting than that of the reference image. It is possible that the images that are exposed 

shorter than the reference image contain a lot of details for the regions corresponding to the over-

saturated regions in the reference image. We have to preserve the details in order to extend the 
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dynamic range of the regions. However, if we find motion in over-saturated regions, some of 

details are falsely detected as motion and may not be used for generating an HDRI. 

 

To exclude unreliable measurements in generating a final radiance map, we do not find object 

motion in the saturated region and use all the irradiance values in ),,(
~

yxL j ,Rj   ,),( Oyx   to 

make the final radiance map ).,(ˆ yxE  Also, we ignore the irradiance values of pixels in 

),,(
~

yxL j ,Rj   ,),( Oyx   in the longer exposure images because those pixels are also saturated. 

 

4.2. Feature Map Generation 
 

After separating saturated regions from the reference image ),,(
~

yxLR we need to find motions 

between the non-saturated regions in the reference LDRI and the corresponding regions in the 

other LDRIs. If we apply the conventional motion detection algorithms to differently exposed 

images, intensity shift or variation caused by illumination change makes it difficult to find 

accurate motions. Therefore, it is difficult to discriminate between motions caused by a moving 

object and motions caused by illumination changes when two differently exposed images are 

compared. We tackle the problem by using illumination invariant features that do not change its 

value under varying illuminations. Edge maps [18], image intensity derivations [19], Gabor-filter 

based features [20] and the zero-mean normalized cross correlation (ZNCC) [21] have been 

proposed as features robust to illumination changes. In the proposed motion detection method, we 

use the ZNCC value as a feature. It is also possible to use other features to find correspondences 

between LDRIs. The ZNCC has been widely used as a function to measure the degree of 

similarity between two image patches due to its robustness to illumination changes [21–23]. Two 

patches are compared after luminance and variance normalization so that the ZNCC is robust to 

illumination variations. The ZNCC is basically computed pixel by pixel, which means that it can 

capture substantial shape differences and pixel-wise variations between aligned LDRIs. Therefore, 

we use the ZNCC value at each pixel as a feature to decide whether the pixel is located in motion 

region or static region. We generate 1J  feature maps ),( Rj   which are defined in (3), where 

),(~ yxR  and ),(~ yxj  are the sample averages of the windowed sub-images )( ss centered at (x, 

y) in the reference LDRI and j-th )( Rj  aligned LDRIs, respectively. The square window size s 

is assumed to be odd, e.g., selected experimentally as 11 in our experiments. Note that feature 

values are computed only in non-saturated regions. 

 

 

 

(a) 

 
(b) 
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Figure 2. Intermediate results of the motion detection (Building). (a) saturated regions in ),,(
~

2 yxL  (b) 

feature maps ),(1 yxF  and ),(3 yxF  generated from the luminance images, (c) motion maps 

),(1 yxM and ),(3 yxM  by thresholding of (b), (d) motion maps ),(1 yxM  and ),(3 yxM   by 

reclassifying undefined pixels in (c), (e) final motion maps ),(1 yxM  and ),(3 yxM  after motion map 

clustering. 

 

   

   





























  

 

























otherwise,1

),(,

   ),(~),(
~

       ),(~),(
~

     

),(~ ),(
~

),(~),(
~

       

),(

2/)1(

2/)1(

2/)1(

2/)1(

2
2/)1(

2/)1(

2/)1(

2/)1(

2

2/)1(

2/)1(

2/)1(

2/)1(
Nyx

yxvyuxLyxvyuxL

yxvyuxLyxvyuxL

yxF

s

su

s

sv

jj

s

su

s

sv

RR

jj

s

su

s

sv

RR

j



                                                                                                                                                                             

                                                                                                                                                    (3) 

Figure 2(b) shows the feature maps using the luminance images. The ZNCC value at each pixel 

ranges from –1 to 1. If a pixel is located in a moving object, the ZNCC value will be close to 0. 

On the contrary, if a pixel is located in a static region, it will be close to 1 or –1. Although most of 

the pixels in motion region have low ZNCC values, some pixels in motion region have high 

ZNCC values. This situation occurs, especially when the pixels are located in homogeneous part 

of the object that moves across homogenous part of the static region. In homogenous regions, 

there is not enough structural information to detect motion between given patches. Thus, moving 
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pixels may be misclassified into the non-moving pixels. We solve this problem by adaptive local 

thresholding that gives more accurate classification results. 

 

4.3. Adaptive Local Thresholding 
 

Feature maps )(),( RjyxFj   need to be converted into motion maps )(),( RjyxM j   that 

classify a motion/static region by thresholding with a pre-defined global threshold TG. By 

choosing an appropriate global threshold value, we can divide the entire image into two regions: 

motion region and static region. The disadvantage of global thresholding is that a single threshold 

value determines the accuracy of a motion map ).(),( RjyxM j   There are two cases when false 

detection occurs. First, non-moving pixels are incorrectly detected as moving pixels (e.g., edges 

of the building in Figure 2(b)) when TG is too large. Second, moving pixels are incorrectly 

detected as non-moving pixels (e.g., backs of two persons in the background in Figure 2(b)) when 

TG is too small. Therefore, global thresholding with a single threshold has a limitation on 

detecting the motion region accurately. For better motion detection performance, we present a 

local thresholding method that adapts the threshold value at each pixel according to the local 

image characteristics.  

 

Canny used thresholding with hysteresis for edge detection [24]. Chen et al. proposed a two-stage 

approach of entropic thresholding based on 2-D histogram, providing a good quality of 

segmentation [25]. Yan et al. proposed a multistage adaptive thresholding method for image 

segmentation [26]. They first segmented an image by global thresholding and made use of local 

image statistics of mean and variance in neighborhood to obtain local threshold for each pixel. 

 

Adaptive local thresholding proposed in this paper is described as follows. After generating J–1 

feature maps )(),( RjyxFj  , we classify the whole pixels into three groups: 1) moving pixels, 

2) undefined pixels, and 3) non-moving pixels. We begin by introducing two thresholds: low 

threshold TL and high threshold TH. Figure 2(c) shows tri-level motion maps )(),( RjyxM j  of 

thresholding by TL and TH. Pixels whose feature value is less than low threshold TL are classified 

as moving pixels (white) whereas pixels whose feature value is larger than high threshold TH are 

classified as non-moving pixels (black). Pixels whose feature value is larger than TL and smaller 

than TH are classified as undefined pixels (gray). The use of two thresholds with hysteresis gives 

more flexibility than a single global threshold approach.  

 

However, there is still a problem related to selection of optimal threshold values of TL and TH that 

work well on various images of different characteristics. We observe that the pixels having 

feature values )(),( RjyxFj   between 0.6 and 0.8 have a high probability of being 

misclassified. Therefore, we set TL to 0.6 to assure that the pixels having whose feature values are 

smaller than 0.6 are moving pixels. In the same manner, we set TH to 0.8 to assure that the pixels 

whose feature values are larger than 0.8 are non-moving pixels. The undefined pixels, whose 

feature values are between 0.6 and 0.8, need to be reclassified into moving and non-moving 

pixels.  

We notice that moving pixels are clustered by a moving object. Undefined pixels located in 

motion regions where moving pixels are densely populated (e.g., two persons in the background 

and branches of trees in Figure 2(c)), are likely to have feature values larger than those of 

neighboring pixels, which are smaller than TL. Whereas undefined pixels located in static regions 

where non-moving pixels and undefined pixels are a majority tend to have smaller feature values 

than those of neighboring pixels, which are larger than TL. Thus, if we adaptively select threshold 

value )(),( RjyxT j   by considering ZNCC feature values of neighboring pixels, we can 



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 2013 

 

30 

correctly reclassify undefined pixels into moving pixels and non-moving pixels. Based on this 

observation, the threshold value for undefined pixels is set to the local mean. We define the 

pixelwise threshold value for the feature value in the non-saturated region of each LDRI )( Rj   

as 
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where Rj   and ),( yxj is the mean of absolute ZNCC values of neighboring pixels in ws×ws 

square window centered at (x, y). Window size ws is a user-defined parameter, which affects the 

accuracy of local thresholding. A too small window size makes local thresholding sensitive to 

noise and false detection. On the other hand, a too large window size increases the computational 

complexity. We change window size ws and select the window size experimentally as 13×13 for 

reliable local thresholding. 
 

After calculating )(),( RjyxT j   using (4) for all the pixels in non-saturated regions, we generate 

J–1 binary motion maps )(),( RjyxM j  by 
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where pixels labeled as 1 correspond to those in motion regions while pixels labeled as 0 

correspond to those in static regions. Based on the threshold value ),(),( RjyxT j   we 

determine whether a pixel is in motion regions or not. In order to exclude unreliable 

measurements, we deal with the over-/under-saturated regions in different ways as follows. We 

ignore the irradiance values of pixels in ),,(
~

yxL j ,Rj   ,),( Oyx   in the longer exposure images 

by labeling the corresponding pixels )(),( RjyxM j   by 1. Whereas we use all the irradiance 

values in ),,(
~

yxL j ,Rj   ,),( Oyx   in the shorter exposure images by labeling the corresponding 

pixels )(),( RjyxM j   by 0. Similarly, the under-saturated regions are handled. Figure 2(d) shows 

the result of motion maps ),(1 yxM  and ),(3 yxM  where we can see that false detection is decreased. 

 

4.4. Motion Map Clustering 
 

Although the moving pixels are well clustered, there still remain some isolated pixels and holes 

inside the moving object in the motion maps ).(),,( RjyxM j   In order to remove ghost artifacts 

clearly, we need to eliminate the isolated pixels and fill the holes in the moving object. First, we 

remove isolated pixels that are surrounded by pixels labeled as 0. Then, we link the pixels that are 

separated by one-pixel gaps and fill the holes in the moving object by using a fast hybrid 

reconstruction algorithm proposed in [27]. We extract the connected components of the motion 

map and perform iteratively dilation from boundaries of the image to the connected components 
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until further dilation ceases to change the motion map. We use the motion map as a mask image. 

Marker images are labeled as 0 except that the boundary pixels (starting points) are labeled as 1. 

Figure 2(e) shows the results of the final motion maps ),(1 yxM  and ),(3 yxM  after applying the 

morphological reconstruction algorithm. We can see that isolated false detection is decreased and 

the pixels in holes are clustered to adjacent motion regions. 

 

4.5. Radiance Map Generation 
 

Once the final motion map )(),( RjyxM j   is found, we can reduce ghost artifacts. HDRI 

generation proceeds depending on whether the pixel is included in the motion region or not. For 

the former case, the weight for the pixels that are inside the motion region is set to zero so that the 

irradiance values at these pixels do not contribute to computation of the final radiance value. For 

the latter case, the conventional method [2] is used. The final radiance map is a weighted average 

of the corresponding irradiance values obtained from aligned LDRIs in the logarithm domain for 

each color channel independently. Based on Debevec and Malik’s method [2], we describe the 

ghost-free HDRI generation process as follows: 
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where g(·) is the inverse camera response function and Δtj is the exposure time of j-th aligned 

LDRI. J denotes the total number of LDRIs and ),(
~

yxZ j
represents the intensity of j-th aligned 

LDRI. The weighting factor is defined as 
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where )(),( RjyxM j   is the final motion map. We generate motion maps in luminance channel 

and the weighting factor is used for each color channel. Several weighting functions have been 

proposed to produce better results by increasing the weights of the reliable pixels while 

decreasing those of the noisy and saturated pixels [2, 28, 29]. Debevec and Malik proposed a hat-

shaped weighting function where the pixels in the middle of the intensity range are given higher 

weights and those near extremes get lower weights. They assumed that the pixels in the middle 

range have more reliable irradiance values. We generate J weight maps using a hat-shaped 

weighting function proposed by Debevec and Malik [2]. With image alignment, the modified 

weight map is defined as 
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where ),(
~

yxZ j
is the intensity of j-th aligned LDRIs. min~

jZ  and max~
jZ  denote the minimum and 

maximum intensity values of ),(
~

yxZ j
 for each color channel, respectively. 
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5. EXPERIMENTAL RESULTS AND DISCUSSIONS 
 

In this section, we discuss how LDRI capture setting can influence the final HDRI result in terms 

of ghost removal. Then, we provide experimental results of the proposed ghost removal method 

and compare them with those of existing methods. All HDRIs are created using a number of 

LDRIs captured with hand-held cameras with different exposure time ranging from 1/8000 s to 

1/50 s. 

 

5.1. Image Capture Setting and Discussions 
 

LDRIs can be captured with various settings: exposure time, number of images, and EV spacing. 

Generally, more LDRIs with small EV spacing guarantee that there are less artifacts and noise in 

an HDRI [6, 30]. One of the advantages generating an HDRI with many LDRIs is that we can 

obtain multiple irradiance values or measurements at each pixel between LDRIs so that the SNR 

of the final radiance map ),(ˆ yxE can be improved [6, 31]. However, a large exposure set 

accompanies the increased processing time, memory requirement, and the increased acquisition 

time. These are major restrictions on consumer applications such as a digital camera and mobile 

phone which have a limited computing power. Moreover, as the total capture time increases, 

object motion would be larger and more frequent so that more ghost artifacts will appear in an 

HDRI. Therefore, we mainly generate HDRIs using LDRIs with three different exposure times 

(J=3) to apply consumer applications. 

 

In general, LDRIs with 2 EV spacing can capture a wider dynamic range than LDRIs with 1 EV 

spacing. However, a large EV spacing is necessarily undesirable because large illumination 

changes between LDRIs can decrease the accuracy of motion detection. Let us consider the case 

in which a static region is detected as motion region because of large intensity changes due to 

large illumination changes. In this case, the information of irradiance at pixels in the false 

detection region is not used for the merging process. This can result in the dynamic range 

decrease and the SNR degradation in the final HDRI. However, a large EV spacing is inevitable 

to obtain a wider dynamic range with the fixed number of LDRIs, thus it is important to minimize 

the possibility of false detection in LDRIs with a large EV spacing. 

 

5.2. Performance Comparison of Ghost Removal Methods 
 

We compare the proposed method with three existing methods: Jacobs et al.’s method [13], Khan 

et al.’s method (10 iterations) [9], and Min et al.’s method [14]. For a fair comparison, a SIFT 

based alignment method [14] is used to generate aligned LDRIs as input of the proposed method 

and three existing methods. In addition, the camera response estimation method by Debevec and 

Malik [2] and tone-mapping method by Reinhard et al. [32] are used in all experiments. In 

experiments, we select a mid-exposure image as the reference image, because, in general, over-

/under-saturated region is the least in the mid-exposure image. Although three exposure images 

are used in experiments, these methods including the proposed method can cope with more 

exposures such as 5, 7, or 9. This paper shows results of the proposed and existing methods in 

general case (Figure 3) and more complex cases (Figures 4–6). 

 

Figures 3(a)–(e) show the HDRI by conventional method [2] without ghost removal, and ghost 

artifacts reduced HDRIs by three existing methods [13, 9, 14] and proposed method. All HDRIs 

are generated from the aligned version of LDRIs. For each image, left image shows the HDRI, in 

which the regions of ghost artifacts are marked with boxes. Cropped images of these regions are 

shown in top right and bottom right. As shown in Figures 3(b) and 3(c), Jacobs et al.’s method 

and Khan et al.’s method do not remove two persons walking in the background and the artifacts 



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 2013 

 

33 

on the face of a man standing in front of the building. In Figure 3(d), Min et al.’s method removes 

most of the ghost artifacts, while some artifacts caused by false detection or saturated regions 

(clouds) still remain. Figure 3(e) shows that the proposed method gives better results than three 

existing methods in terms of ghost removal. The proposed method clearly removes ghost artifacts 

caused by small motion of a man and occlusion. 

 

 
(a)                                                 (b) 

 
(c)                                                   (d) 

 
(e) 

Figure 3. Performance comparison of ghost removal methods (Building, left: HDRI, right: cropped 

images). (a) conventional method [2] (without ghost removal), (b) Jacobs et al.’s method [13], (c) Khan 

et al.’s method [9], (d) Min et al.’s method [14], (e) proposed method. 
 

Figure 4(a) shows a set of aligned LDRIs (Cafeteria, size: 2192×1644, J=3, R=2, exposure time 

(from left to right): 1/1280 s, 1/320 s, 1/80 s). Figures 4(b)–4(f) show the HDRI by conventional 

method [2] without ghost removal, and ghost artifacts reduced HDRIs by three existing methods 

[13, 9, 14] and proposed method. In Figures 4(b)–4(f), left image shows the HDRIs, in which the 

regions of ghost artifacts are marked with boxes. Cropped images of those regions are shown on 

the top right and bottom right. The ghost artifacts are shown on windows that reflect the crowd 

with various motions. This is a special case because the motions include reflections and low 

contrast regions altogether. Note that the proposed method clearly removes the ghost artifacts, as 

shown in Figure 4(f). In three existing methods, there still remain ghost artifacts as well as 

artifacts on the texture of the floor caused by false detection in saturated regions of the reference 

image. 
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(a) 

 
(b) (c) 

 
(d) (e) 

 
(f) 

Figure 4. Performance comparison of ghost removal methods. (a) a set of aligned LDRIs 

),(
~

and),,(
~

),,(
~

321 yxZyxZyxZ  (Cafeteria, size: 2192×1644, J = 3, R = 2, exposure time (from left 

to right): 1/1280 s, 1/320 s, 1/80 s), in (b)–(f), left: HDRI,  right: cropped images from the HDRI, (b) 

conventional method [2] (without ghost removal), (c) Jacobs et al.’s method [13], (d) Khan et al.’s 

method [9], (e) Min et al.’s method [14], (f) proposed method. 
 

Figure 5(a) shows a set of aligned LDRIs of an indoor scene (Laboratory, size: 2192×1644, J=3, 

R=2, exposure time (from left to right): 1/2000 s, 1/500 s, 1/125 s). Figures 5(b)–5(f) show the 

HDRI by conventional method [2] without ghost removal, and ghost artifacts reduced HDRIs by 

three existing methods [13, 9, 14] and proposed method. In Figures 5(b)–5(f), left images show 

the HDRIs. Right images show cropped images of those regions. In this set of aligned LDRIs, a 

man in the right side of the image moves and the lamps that are strongly illuminated are located 

right over a man’s head. False detection is likely to occur when the moving object (a man) is 
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influenced by strong illumination changes. In the three existing methods, false contour is visible  

inside the face of a man. In addition, some artifacts still remain in a man’s hands as shown in  

Figures 5(b) and 5(c). The proposed method clearly removes both artifacts. This is because we 

ignore the irradiance values of pixels in saturated regions and do not find motions in a man’s face. 

Figure 5(a) shows a good example. There are lens-flare artifacts around an illuminator in ),(
~

2 yxZ  

and ).,(
~

3 yxZ  Since we select ),(
~

2 yxZ  as a reference image to generate an HDRI, lens-flare 

artifacts are still shown in the HDRIs in Figures 5(b)–5(f). In ),,(
~

1 yxZ  there are not lens-flare 

artifacts around an illuminator. Thus, if we remove the artifacts in the HDRI, this part of 

),(
~

1 yxZ can be used as the reference instead of the region in the reference image ).,(
~

2 yxZ  

 

Figure 6(a) shows a set of aligned LDRIs with large motion (Warehouse, size: 2336×1552, J=3, 

R=2, exposure time (from left to right): 1/4000 s, 1/1500 s, 1/350 s). The LDRIs are affected by 

camera rotation as well as translation. We align ),(1 yxZ and ),(3 yxZ  with respect to the reference 

LDRI ),,(2 yxZ  using the SIFT based method [16], which this alignment causes the black regions 

in boundaries in ),(
~

1 yxZ  and ),,(
~

3 yxZ  and the green regions in the boundaries of Figures 6(b)–(f). 

Figures 6(b)–6(f) show the HDRI by conventional method [2] without ghost removal, and ghost 

artifacts reduced HDRIs by three existing methods [13, 9, 14]  and proposed 

 

 
(a) 

 
(b) (c) 

 
(d) (e) 
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(f) 

 
Figure 5. Performance comparison of ghost removal methods. (a) a set of aligned LDRIs 

),(
~

and),,(
~

),,(
~

321 yxZyxZyxZ  (Laboratory, size: 2192×1644, J = 3, R = 2, exposure time (from 

left to right): 1/2000 s, 1/500 s, 1/125 s), in (b)–(f), left: HDRI, right: a cropped image from the HDRI, 

(b) conventional method [2] (without ghost removal), (c) Jacobs et al.’s method [13], (d) Khan et al.’s 

method [9], (e) Min et al.’s method [14], (f) proposed method. 
 

method. In Figures 6(b)–6(f), left images show the HDRIs, in which the regions of ghost artifacts 

are marked with two boxes (two persons walking in the background and a person standing next to 

a garbage wagon). Right images show cropped images of those regions. Ghost artifacts shown in 

Figure 6(b) are removed in Khan et al.’s method and Min et al.’s method as well. However, ghost 

artifacts still remain inside a person and garbage wagon as shown in Figures 6(c)–6(e). The 

proposed method clearly removes both artifacts as shown in Figure 6(f). 

 

 
(a) 

 
(b) (c) 

 
(d) (e) 
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(f) 

 
Figure 6. Performance comparison of ghost removal methods. (a) a set of aligned LDRIs 

),(
~

and),,(
~

),,(
~

321 yxZyxZyxZ  (Warehouse, size: 2336×1552, J = 3, R = 2, exposure time (from 

left to right): 1/4000 s, 1/1500 s, 1/350 s), in (b)–(f), left: HDRI, right: cropped images from the HDRI, 

(b) conventional method [2] (without ghost removal), (c) Jacobs et al.’s method [13], (d) Khan et al.’s 

method [9], (e) Min et al.’s method [14], (f) proposed method. 
 

6. CONCLUSIONS 
 

We propose a feature based ghost removal method in HDRI generation. In order to minimize the 

influence of saturated regions in ghost removal process, we detect non-saturated regions in the 

reference LDRI. For the non-saturated regions, we find correspondences between LDRIs using 

the ZNCC and then find object motion region through post processing such as adaptive local 

thresholding and motion clustering. We also concentrate on reducing false detection regions 

because false detection decreases the dynamic range of the HDRI and causes artifacts in the 

HDRI. We discuss the effect of EV setting as well as the number of LDRI for HDRI generation. 

Experiments with LDRIs sets captured with different exposure time show that the proposed 

method gives better performance than the existing methods. Future work will focus on the 

selection of the self-consistent reference image. 
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