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ABSTRACT 
 

This paper presents a hybrid algorithm that combines features form both Sqrt(3) and Loop Subdivision 

schemes. The algorithm aims at preserving sharp features and trim regions, during the surfaces 

subdivision, using a set of rules. The implementation is nontrivial due to the computational, topological, 

and smoothness constraints, which should be satisfied by the underlying surface. The fundamental 

innovation, in this research work, is the ability to preserve sharp features anywhere on a surface. In 

addition, the resulting representation remains within the multiresolution subdivision framework. 

Preserving the original representation has a core advantage that all the applicable operations to the 

multiresolution subdivision surfaces can subsequently be applied to the edited model. Experimental 

results, including surfaces coarsening and smoothing, were performed using the proposed algorithm for 

validation purposes, and the results revealed that the proposed algorithm outperforms the other recent 

state of the art algorithms. 
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1. INTRODUCTION 
 

Subdivision surfaces have been in the highlights of the computer graphics community for the 

past few years. One of the greatest advantages of subdivision algorithms is that they produce 

smooth surfaces from an arbitrary control mesh. Nowadays, subdivision algorithms are popular 

for many kinds of applications, such as mechanical design, geometric modeling, simulation and 

movie character creation [1]. Many different schemes have been proposed [2], [3], [4], [5], [6], 

[7]. However, subdivision rules can be derived in the regular case only. Consequently, 

subdivision surfaces are also famous to exhibit severe artifacts around so called "extraordinary 

vertices" [8] for which no ideal subdivision rule can be derived. It is interesting to observe that, 

in all existing schemes, most of the effort concentrated on the design of the smoothing operator. 

In fact, almost all of them adopt the same standard refinement operators. One characteristic of 

these refinement operators is that they do not depend on the geometry of the mesh under 

consideration. 

 

Most of the geometric models include special regions, which do not need to be smoothed. These 

regions have special properties, which are called sharp features (sharp edges, sharp faces, 

corners, etc). In the algorithms of Sqrt(3), after several subdivision steps, the surface 

experiences enough smoothness to represent a fine shape. But, after few subdivision steps, as a 

consequence, the sharp features are lost and could not be captured within the new mesh. 
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Therefore, the sharp edges and corners of the original shape are lost through the sampling 

process and replaced in the result of the subdivision scheme. Hence, the edge flipping, in the 

Sqrt(3) method, seems to be fundamentally inappropriate for surfaces with sharp features. In 

this paper, the proposed algorithm allows to preserve the sharp features in the Sqrt(3) 

subdivision meshes by combining Loop Subdivision, at certain mesh regions, corresponding to 

these features. Therefore, both the Loop scheme and the 4-8 schemes [9] were adapted naturally 

to cope with sharp edges while the Catmull-Clark scheme [10] was excluded. The Sqrt(3) 

scheme is a little more complicated to adapt. This scheme also moves its existing points, but at 

the same time, it restructures the connections of the edges, so that an edge is only at its same 

topological position every two steps. 

 

2. RELATED WORK  
 

Subdivision surfaces are not limited to completely smooth surfaces. For example, in the 

Catmull-Clark scheme [10], sharp edges can be generated by keeping the points of the sharp 

edges in their original place instead of relaxing them by the normal subdivision rules [1]. The 

surrounding points keep following the standard rules of the scheme. Earlier Hugues Hoppe [11] 

described similar approaches for Loop’s scheme, for which he also added corners and cusp and 

conical points. These extensions were further analyzed and formalized by the work of Jean 

Schweitzer [12].  

 

Hugues Hoppe et. al., [13] presented a general method for automatic reconstruction of accurate, 

concise, piecewise smooth surface models from scattered range data. Novel aspects of the 

method are its ability to model surfaces of arbitrary topological type and to recover sharp 

features, such as creases and corners. The method can be used in a variety of applications, such 

as reverse engineering — the automatic generation of CAD models from physical objects. 

Instead of completely sharp edges, also semi-sharp edges are a desired feature, both for 

modeling artists and for industrial designers. These semi-sharp edges can be generated in a way 

similar to the sharp ones. Geri’s Game [1] shows an example of sharp and semi-sharp features 

in Pixar’s short animation. Sharp edges are most easily implemented on schemes where the 

original points and edges do not get replaced by multiple new points, but instead are only 

moved to relax the scheme. Fully interpolating schemes are also difficult to adapt to allow sharp 

edges, as the existing points are already kept in their place and the surrounding new points 

would have to fulfill too many constraints. 

 

In a different approach, when the sharp features are identified on the mesh file, modified 

subdivision rules may be used to subdivide the mesh in order to obtain sharp features in the 

limit surface [14]. This is particularly useful for multiresolution editing purposes, where, in 

order to put a curved sharp edge on the limit surface, the user can simply draw a piecewise 

linear curve on the base domain. Then, this curve will be subdivided through the modified rules 

that guarantee its eventual sharpness. Ivrissimtzis [15] has done some elegant work on the 

support of recursive subdivision, which explicitly shows that Sqrt(3) has fractal support. 

Attene M. et. al, [16] introduced a simple and efficient edge-sharpening procedure designed to 

recover the sharp features that are lost by reverse engineering or by remeshing processes, which 

use a non-adaptive sampling of the original surface. The procedure starts by identifying smooth 

edges. Then, it performs six trivial filters that identify chamfer edges, which in turn define the 

chamfer and corner triangles. The chamfer edges and triangles are subdivided by inserting new 

vertices and moving them to strategic locations where the sharp feature is estimated through 

extrapolation of abutting smooth portions of the surface. 
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3. OUR PROPOSED SUBDIVISION ALGORITHM 
 

Because standard subdivision approaches would round off the sharp features, we have 

developed a new subdivision scheme that preserves the sharpness of sharp faces, sharp edges 

and corners. Our scheme is based on combining both the Sqrt(3) scheme and Loop scheme, with 

special rules applied on the boundary of the feature regions. 

 

3.1. Definition of the scheme  
 

In order to preserve the integrity of the triangle mesh, we group the triangle faces into two 

groups. The first is called the smooth-face; the normal face that need to smooth during the 

subdivision process. The second is called the sharp-face; all three boundary edges are tagged as 

sharp edges and need to preserve during the subdivision process. Indeed, we will differentiate 

between the face that has three boundary edges as the sharp-edge and the face tagged as the 

sharp-face. The sharpness features of the first type occur at the boundary of the face, and it is 

not need to smooth at the inner of the face. But, in the second type, the sharp feature occurs on 

both the inner and on the boundary of this face. The two cases are illustrated in Section 5 as 

experimental results. 

 

To define a subdivision scheme for a mesh, we need to specify rules for computing positions of 

the new vertices that we insert during subdivision process, according to the face and edge type 

and rules to update the positions of the existing vertices. The rules that we propose are given in 

Figure 1 and described as follows: 

 

 
Figure 1. Choose locations for new vertices P' as weighted average of original 

vertices in local neighborhood for our scheme. Sharp edges are shown in red. 
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Smooth-Face rule (R1): As in the Sqrt(3) scheme, each new vertex is inserted as a result of 

centeroid refinement of a basic block, i.e., the average point of the vertices of that face; 

Sharp-Face rule (R2): As in the Loop scheme, each face split into four new subfaces by 

inserting three new vertices on each edge, according to the rule (R4) and each vertex updated 

with the new position; 

Sharp-Edge rule (R4): As in the Loop scheme, inserting new vertex on the sharp edge that 

sharing with at least one sharp face or separate two smooth-faces. For boundaries and edges 

tagged as crease edges, special rules are used (B1, B2). These rules produce a cubic spline 

curve along the boundary/crease. The curve only depends on control points on the 

boundary/crease. 

Vertex rule (R3): the new position of an existing vertex P' is computed as the average of the 

old position of P, according to the following equation 







1

0

1
1

n

i

inn P
n

PP  )(
'

  (1) 

where n  is a scaling factor. For 3n  (boundary vertex), n  is three sixteenths [16]. For 

63  n  (vertex created on sharp-edges and extraordinary vertex), n is three eighths. For 

6n  (regular and extraordinary vertex), n  is as Sqrt(3) subdivision scheme. 

 

The basic idea of our proposed algorithm is as follows: if the type of the face is smooth-face, 

then apply the smooth-face rule, according to R1 rule. Otherwise, apply sharp-face rule, 

according to R2 rule. If the edge is sharp-edge, then apply R4 rule. The modification of the 

algorithm is to insert new vertices on each edge tagged as sharp and inside the corner triangles 

also where several sharp features meet. After few subdivision steps, the generated faces are 

tagged as smooth and non-smooth faces. Those non-smooth faces preserve the sharp features, 

during the subdivision scheme. The new algorithm optimizes the surface continuity without 

losing the sharp features in the special regions, during the construction process, and increases 

the smoothness of the generated surface in the other regions.  

 

3.2. Algorithm Steps 
 

Our algorithm assumes that all of the sharp edges have been identified and tagged. We wish to 

smooth the triangle mesh to bring it closer to the original curved surface. Because we assume 

that the vertices are not lie on the original surface, we use an approximation subdivision 

scheme.  

 

The algorithm can be described as follows. Let k be the number of iterations of the subdivision 

process and 
kP  be the polyhedron produced after these k subdivisions. When k is 0, 

0P  is the 

initial polyhedron. Let F be the set of all faces that construct 
k

iP  and S be the set of sharp faces, 

FS  . 

 

1. For each face )( SF k

i  of
k

iP , a new point 
1k

jV is made up by the smooth-face rule. 

 If )( SF k

i  , construct four new subfaces by using sharp-rule and mark these new   

subfaces as the new sharp faces. 

2. For every vertex 
k

iV of the polyhedron 
kP , a new vertex 

1k

iV , termed image, is 

created by the vertex-rule. 
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3. For every sharp edges 
k

iE , a new vertex 
1k

iV is created by the sharp-edge rule. 

4. For each vertex 
k

iV  , if 
k

iV  is interior point then a new face 
1k

iF  is made by 

connecting the images of 
k

iV  on the faces meeting at 
k

iV  in clockwise or counter 

clockwise direction and take the new vertex created on one of the sharp edges with this 

rotation. Otherwise, 
k

iV  is boundary vertex then a new face 
1k

iF  is made by 

connecting every adjacent boundary vertex belongs to the same face with the 

corresponding new point 
1k

jV  of this face. 

 

The polygons generated through this refinement steps become the input set of polygons for the 

next iteration step. 

 

4. SMOOTHNESS AND NON-SMOOTHNESS ANALYSIS 
 

Since our scheme will be local, we need to analyze only a small number of possible cases of the 

relationship between the new vertex and the topology of its neighborhood. The two cases of 

primary importance are the regular sites (all vertices are regular), and the extraordinary sites 

(adjacent to a non-regular vertex.) After several subdivision steps, at most one vertex in the 

neighborhood has valence not equal to 6, so it is sufficient to analyze behavior of the scheme 

only on regular and n-regular triangulations, with only one extraordinary vertex of valence n. 

Hence our subdivision scheme produces a surface that its smoothness depends on the 

smoothness of Sqrt(3) and Loop subdivision schemes. The smoothness of the limit surface using 

Sqrt(3) is 
2

C  everywhere except for the extraordinary points where it is 
1

C  [4]. The Loop 

scheme applied for all the regions that contain the sharp features. Then it produces surfaces that 

are 
1

C -continuous for valences up to 150, including the boundary case, was proved by 

Schweitzer [12]. When the two schemes are combined at sharp features (edges or faces) then we 

will concentrate on analysis of the behavior of the scheme near sharp edges. Figure 2 illustrates 

that the relation between two adjacent faces with three different cases. Case 1: two smooth-faces 

are common in sharp-edge. Case 2: one of these faces is sharp. Case 3: two faces are tagged as 

sharp-face. In all cases, and after several subdivision steps, the created vertices are inserted on 

the each sharp-edge. This procedure can save the feature attributes of the sharpness either for 

the edges or for the faces and ensure that no flipping for these type of edges. 

 

 

Case 1 Case 2 Case 3 
Figure 2. The relation between two adjacent faces with three different cases. 
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However, itf is often necessary to model surfaces with boundary, which may contain sharp 

features as well. Thus, it is of practical importance to extend our subdivision scheme to support 

surfaces with smooth boundaries and creases. Furthermore, it is often useful to have surfaces 

with piecewise smooth boundary. We have already seen that the subdivision scheme create new 

vertices of valence 6 in the interior. On the sharp-edges, the newly inserted vertices have 

valence 4, 5 and 6. On the boundary, the newly inserted vertices have valence 3. Hence, after 

several subdivision steps, most vertices in a mesh will have one of these valences ( 6n  in the 

interior for smooth-vertices, 63  n  in the interior for all vertices that are inserted on sharp-

edges, 3n  on the boundary). This means that the surfaces generated using our subdivision are 

regular except the near of the sharp features and the boundary vertices.  

 

In an extended appendix, we perform a mathematical analysis of the smoothness of the scheme 

using a combination of regularity and irregularity analysis [12], [13], [17], [18]. Hence the 

surfaces generated by our scheme are (at least) 
2

C -continuous everywhere [6] except at 

extraordinary and boundary vertices, where they are 
1

C -continuous. While the surface near 

curves that bound the sharp face is 
0

C -continuous. 

 

5. RESULTS AND COMPARISON 
 

Our subdivision surface representation enables to represent sharp features as internal, 

boundaries or creases by tagging the control mesh edges. Based on our proposed algorithm, 

several experimental results with animation have been performed over an arbitrary initial 

control mesh. The creation of the sharp features and trim regions is illustrated with different 

levels, from an arbitrary control mesh, using our proposed algorithm. Figure 3 illustrates these 

rules for different types of faces and edges. It shows how our proposed algorithm applied on 

sample of mesh surface with sharp features on one triangle (all cases), and its 1-neighborhood. 

For the smooth mesh, which does not contain any sharp features, we apply Sqrt(3) subdivision 

scheme for all faces of the mesh. While the mesh surface contains sharp features tagged with 

red edges, our proposed algorithm will apply Loop subdivision scheme on these edges (faces). 

We note that the region of sharp edges (faces) and after applied one iteration of Loop 

subdivision scheme on these edges (faces) the new subfaces does not flipping the edges. Figures 

4, 5, 6 and 7 demonstrate the subdivision rule of the proposed algorithm for the surface contains 

sharp-edges.  

 

Figures 4, 5, 6(a), illustrate the Mannequin, the Teapot and the Cat and its Sqrt(3) subdivision 

surface algorithms in different subdivision steps. Figures 4, 5, 6(b) show an animation sequence 

of the same models using our proposed algorithm, respectively. Figure 4(d) illustrates how the 

sharp-edges will appear with our subdivision algorithm verses Sqrt(3) algorithm by zooming in 

the ear, and the adjacent region of the eye as the special parts of the Mannequin. Other 

subdivision process of the Teapot and the HeadCat models using the Sqrt(3) scheme compared 

with our proposed algorithm is shown in Figures 5, 6 (c) and Figures 5, 6 (d), respectively. 

Figure 7 illustrates other models in (a) that apply our subdivision scheme to obtain the surface 

in (b) very close to the limit surfaces in (c).  

 

From these experimental results one can see that, in comparison with Sqrt(3) subdivision 

algorithm, our proposed subdivision algorithm possesses the following merits. First, it produces 

good-quality surface approximation with save the sharp features during the construction 

process. Second, the surface continuity is adaptive. Finally, the proposed technique is still 

efficient in time complexity and simple to implement, consequently, fast enough for an 
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interactive environment. Such advantages are proved in terms of the analysis given in the 

previous section. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

In this paper we present an algorithm for embedding sharp features in Sqrt(3) subdivision.. Our 

scheme is based on the combination of the Sqrt(3) scheme and Loop scheme, with special rules 

applied in the boundary of the feature regions. This algorithm automatically identifies these 

sharp features and replaces them with refined portions of the mesh that more accurately 

approximate the original shape. This edge-sharpening process works well for meshes generated 

by various kinds of uniform samplings and does not introduce undesirable sideffects away from 

sharp features. We can apply Loop [4] subdivision scheme for the region of mesh that contains 

the sharp features. 

 

The original contribution and advantages of the proposed algorithm compared with previous 

techniques are that, it produces good-quality surface approximations without too many faces 

during the construction process, simple and straightforward to implement, reliable in which it 

can be applicable to any surface mesh, has certain desirable properties, and its computations are 

fast enough for an interactive environment. 

 

Our future work will focus on extending our proposed algorithm based on multi-resolution 

subdivision surfaces [20]. Multi-resolution subdivision surfaces are a natural extension of 

subdivision surfaces that accommodates editing of details at different scales, allowing general 

shape deformations as well as the creation of minute features. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison between applied Sqrt(3) scheme and our subdivision scheme 

with sharp features on one triangle (all cases) and its 1-neighborhood. 
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Figure 4. An illustration of the subdivision process of the Mannequin model using  

(a) Sqrt(3) and (b) Our proposed subdivision algorithm. 

 
Figure 5. An illustration of the subdivision process of the Teapot model using 

(a) Sqrt(3) and (b) Our proposed subdivision algorithm with red sharp-edges.
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Figure 6. An illustration of the subdivision process of the Cat model using  

(a) Sqrt(3) and (b) Our proposed subdivision algorithm with red sharp edges. 

 

 
Figure 7. Our subdivision was made to show a closer approximation to the smooth limit surface 

with sharp features. 

 

APPENDIX: SMOOTHNESS ANALYSIS 
 

Let S  be the subdivision scheme which maps control vertices )(kp  from the 
th

k  refinement 

level to the st
k )( 1  refinement level )( 1kp = )(kpS . If we consider the action of S  on a local 

neighborhood V  only, we can represent S  by a matrix with each row containing an affine 

combination that defines the position of one new control vertex. 
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We know that applying the Sqrt(3)-subdivision operator two times corresponds to a tri-adic 

split. So instead of analyzing one single subdivision step, we can combine two successive steps 

since after the second application of S, the neighborhood of )( 1

2
vS  is again aligned to the 

original configuration around 1v  as illustrated in Figure 8. The 1-ring neighborhood 

],,,[ nvvv 21
of a vertex 1v  is mapped to itself ],,,[ nwww 21

 under application of the 

subdivision scheme. This is reflected by the matrix S. If we compute the 
th

m  power of the 

subdivision matrix, we find in the first row a linear combination of ],,,[ nvvv 21
 which directly 

yields )( 1vS
m . 


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Hence, we can set-up an )( nn  matrix which maps S and its n neighbors to the next refinement 

level. 
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Figure 8. The neighborhood of )( 1

2
vS  is again aligned to the original configuration around 1v . 
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In particular, our smoothness analysis considers four cases: 

 1v  lies on the interior of a smooth-face, 

 1v  lies on the interior of a sharp-face, 

 1v  lies on the interior of sharp-edge, 

 1v  lies at a vertex of the base mesh, 

 

A. Smooth-faces of the base mesh 
 

The smoothness of our subdivision scheme on the interior of a smooth-face follows by the 

smoothness of sqrt(3)-subdivision scheme [6].  

 

Analyzing the action of the Sqrt(3)-subdivision operator on arbitrary triangle meshes, we found 

that all newly inserted vertices have exactly valence six. The valences of the old vertices are not 

changed such that after a sufficient number of refinement steps, the mesh has large regions with 

regular mesh structure which are disturbed only by a small number of isolated extraordinary 

vertices. Hence the Sqrt(3)-subdivision generates semi-regular meshes since all new vertices 

have valence six. After an even number 2k of refinement steps, each original triangle is replaced 

by a regular patch with 9k triangles. To prove that our scheme is 
2

C  on the given smooth-face 

of the base mesh, we use the analyzing of the smoothness of triangle subdivision. For Sqrt(3) 

scheme [9],  [25], the resulting matrix has the correct eigenstructure for the analysis. Its 

eigenvalues are: 








 
 )

1
2cos(22,),

1
2cos(22,)32(,9

9

1 2

n

n

n
n  

 (7) 

It is known that for the leading eigenvalues the following necessary conditions have to hold 

 
1,,4,1 321  nii 

  (8) 

 

B. Sharp-faces of the base mesh 
 

The smoothness of our subdivision scheme on the interior of a sharp-face follows by the 

smoothness of Loop-subdivision scheme [4]. In our subdivision scheme, to identify the sharp-

faces we use Loop scheme for special region in the mesh. This is because Loop scheme 

preserves the existing of the edges during the iteration of the subdivision process. While Sqrt(3) 

scheme flipping the edges with every subdivision process. 
1

C -continuity of the Loop scheme 

was verified in [12] for valences up to 150. 

 

If we assume regularity of the characteristic map for the subdivision rule, then the subdivision 

rule will converge to a well defined tangent plane if 

3210 1  
  (9) 

For Loops scheme [4], we find the sub-dominant eigenvalues are 

822321 /))/cos(( n    (10) 

Since 84233 /))/cos(( n   is smaller than 1  and 2  the condition is satisfied. 
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C. Sharp-edges of the base mesh 
 

In the case of the sharp-edge there are three cases as illustrated in Figure 2. Along every sharp-

edge there are two types of the vertices. Vertex will inserted as a new one on the middle edge 

according to the rule (R4), we tagged this vertex of type B. Two new vertices will generated as 

the new position for the old two end vertices for that edge according to the rule (R3), we tagged 

this vertex of type A. 

 

To analyze the smoothness of our scheme along edges of the base mesh is more difficult than 

the face case since the structure of the vertex whose valence changes between subdivision levels 

l . Let )( lAVal  is the valence of the vertex A at level l . Figure 9 shows that the valence of the 

new inserted vertices of type B on the interior of sharp-edge and the two end-vertices of type A 

for that edge increased by 2 (for the interior) and by 1 (for the boundary) of the sharp-edge with 

every level l . At level 1l , the valence of the vertex of type A and B is calculated as 
)()()( AEAValAVal shll  1  and )()()( BEBValBVal shll  1 , respectively. Where )(VE sh

 is the number of 

sharp-edges that incident by the vertex V . This means that, the valence of the vertex V  on the 

sharp-edge at level l  will increased by the number of incident sharp-edges )(VEsh
. In practice, 

we know of no analysis technique capable of establishing the smoothness of our scheme along 

this edge. However, we can consider that at every subdivision level 1l , the vertex of valence 

not equal to 6 is an extraordinary vertex. Then all we need to analyze the smoothness near the 

extraordinary vertices. 

 
Figure 9. The valence of the new inserted vertices of type B = 4 on the  

interior of sharp-edge and the two end-vertices of type A = 7, 8 for that edge. 

 

On regular meshes, subdivision matrices of 
1

C -continuous schemes always have subdominant 

eigenvalue 1/2. When the eigenvalues of subdivision matrices near extraordinary vertices 

significantly differ from 1/2, the structure of the mesh becomes uneven: the ratio of the size of 

triangles on finer and coarser levels adjacent to a given vertex is roughly proportional to the 

magnitude of the subdominant eigenvalue. To do this a different modification can be used. 

Rather than modifying the rules for a crease, and making them dependent on the valence of 

vertices, it is need to modify rules for interior odd vertices adjacent to an extraordinary vertex. 

For 6n , no modification is necessary. For 6n , it is sufficient to use the mask in [19]: 

instead of 1/2 and 1/4 we can use 1/4+1/4cos(2/(n-1)) and 1/2-1/4cos(2/(n-1)) respectively, 

where n is the valence of the extraordinary/boundary vertex.  Note that for the Loop scheme the 

size of the hole in the ring (1-neighborhood removed) is very small relative to the surrounding 

triangles for valence 3 and becomes larger as k grows. For the modified Loop scheme this size 

remains constant. Then the limit surface can be shown to be 
1

C -continuous at the extraordinary 

and boundary vertex.  
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While the continuous of the curves that bound a sharp face is different. Figure 3 suggests these 

curves can be wiggly and not smooth.  This curve is only 
0

C -continuous, and then the surface 

near such curves also should be. 

 

D. Vertices of the base mesh 
 

An important aspect of subdivision is the fact that all newly inserted vertices are regular, i.e., 

their valence is six. Consequently the refined control surface consist of ever larger sections of 

mesh which are entirely regular with only isolated vertices whose valence is other than six 

(irregular vertices). In the regular setting when all vertices have valence six the subdivision 

rules reproduce the refinement rules for quartic box splines. Consequently the limit surface 

consists of quartic box spline patches almost everywhere. The irregular vertices are at the center 

of irregular patches which can be thought of as consisting of an infinite geometric sequence of 

rings of regular patches. 

 

Because of these observations the analytic properties of the limit surface are given by the 

properties of quartic box splines, except at the irregular vertices. The behavior of the surface at 

the irregular vertices can be determined by analyzing the local subdivision operator around 

these vertices, its eigenvalues and (generalized) eigenvectors, and the characteristic map [18]. In 

the case of the Loop scheme the surface is globally 
2

C  except at the irregular vertices where it 

is only 
1

C  [12]. 

 

The principal result allowing one to analyze 
1

C -continuity of most subdivision schemes is the 

sufficient condition of Reif [18]. This condition reduces the analysis of stationary subdivision to 

the analysis of a single map, called the characteristic map, for each valence of vertices in the 

mesh. The analysis of 
1

C -continuity is performed in two steps for each valence: 

 

1. Compute the control net of the characteristic map; 

2. Prove that the characteristic map is regular and injective. 

 

The exact condition on the eigenvectors and the injectivity of the corresponding characteristic 

map are quite difficult to check strictly. As mentioned in [6], we therefore restrict ourselves to 

the numerical verification by sketching the iso-parameter lines of the characteristic map. For 

completeness we mention that one can develop appropriately modified stencils for boundaries 

and surface features such as creases and corners [12], [13], [17]. 
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