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ABSTRACT 
This paper presents an efficient image enhancement method by fusion of two different exposure images in 
low-light condition. We use two degraded images with different exposures: one is a long-exposure image 
that preserves the brightness but contains blur and the other is a short-exposure image that contains a lot of 
noise but preserves object boundaries. The weight map used for image fusion without artifacts of blur and 
noise is computed using blur and noise estimation. To get a blur map, edges in a long-exposure image are 
detected at multiple scales and the amount of blur is estimated at detected edges. Also, we can get a noise 
map by noise estimation using a denoised short-exposure image. Ghost effect between two successive 
images is avoided according to the moving object map that is generated by a sigmoid comparison function 
based on the ratio of two input images. We can get result images by fusion of two degraded images using 
the weight maps. The proposed method can be extended to high dynamic range imaging without using 
information of a camera response function or generating a radiance map. Experimental results with various 
sets of images show the effectiveness of the proposed method in enhancing details and removing ghost 
artifacts. 
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1. INTRODUCTION 
Digital camera users want to take good pictures without constraints of time and space, however, 
hand-held camera users are still suffering from many kinds of distortions such as blur and noise 
artifacts. Especially, images captured in low-light condition have dark regions, thus we have a 
difficult in figuring out what appears in them. To overcome the lack of lightness, a user can take 
an image with high International Organization for Standardization (ISO) setting, however, the 
image will contain lots of noise. Another method is to control the exposure time, however, blur 
degrades the image quality by camera shaking during taking a picture. 

If a user takes pictures, then light comes into the camera through the lens. During sensing using 
image sensors such as charge-coupled device (CCD) or complementary metal-oxide 
semiconductor (CMOS), the amount of light determines the quality of an image, which is 
specified according to the shutter speed and the aperture [1].   

In this paper, we use multiple images that are taken with different exposures to reduce the 
distortion in dim-light condition. During taking photos, the amount of light is a very important 
factor that determines the quality of photos, in which the amount of light is controlled, for 
example, according to the shutter speed. With long-exposure time, we get a blurry image by 
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camera shaking, however, brightness of an image is preserved. On the other hand, with short-
exposure time, we get a dark and noisy image according to sensor characteristics or ISO setting, 
however, it is free from blurring. To get a crisp and clear image with adequate brightness and 
clear boundaries, we propose a fusion method of multi-exposure images that are degraded by blur 
and noise. 

The rest of the paper is organized as follows. In Section 2, related image fusion methods are 
described. In Section 3, we propose a ghost-free image fusion method that uses blur and noise 
estimation. Experimental results and comparison of the proposed algorithm with previous work 
are shown in Section 4. Finally, conclusions are given in Section 5. 

2. PREVIOUS WORK 
Various image enhancement methods in low-light condition using different exposure images have 
been proposed. First, a single image is used to produce an acceptable image in low light. For 
reducing noise in a short-exposure image, total variation [2] is used as a regularization term in 
denoising, which is an ill-posed problem. Another denoising methods use a multi-resolution 
bilateral filter [3] and a motion-adaptive spatio-temporal filter [4]. However, these methods are 
not acceptable, because they do not have enough brightness and color information. Also for 
removing motion blur in a long-exposure image, many studies have been done [5]. First, they 
estimate the point spread function (PSF) and perform deconvolution to reconstruct the image [6-
8]. Fergus et al.’s method [6] uses a maximum a priori (MAP) method and Shan et al.’s method 
[7] uses an ensemble learning method to get a clear output image. Yuan et al.’s method [8] uses 
two input images: long- and short-exposure images. It is good to reduce the ringing artifacts, 
which is one of the difficult problems in deblurring. However, the deblurring methods that consist 
of estimation of the PSF and deconvolution method require lots of iterations and thus  have a 
drawback of heavy computation.  
 
Second, fusion methods of multi-exposure images have been proposed to obtain the acceptable 
output image in dim light and they reduce the computation time with simple processing. These 
fusion methods are also used in high dynamic range (HDR) because they give better result 
without any information about the camera response function (CRF) and radiance map [9-13]. 
Raman and Chaudhuri [9] proposed a weighted sum of intensity differences between input images 
and bilateral filtered results. This fusion method of multi-exposure images shows good 
performance in preserving details and weak edges, however, noise in the short-exposure image is 
emphasized in the output image. Zhang and Cham [10] used gradient direction and magnitude as 
weights. Also, Martens et al. [11] proposed a weighted sum method using three quality 
measurements (contrast, saturation, and well-exposedness). Especially, Tico and Pulli [12] and 
Tico et al. [13] proposed fusion methods of two different exposure images: long- and short-
exposure images. These methods perform fusion of luminance in the wavelet domain and then 
chrominance fusion is followed based on luminance fusion. These methods contain the weight 
that considers noise, thus they give better result in view of noise reduction. However, they do not 
reduce blurred edges in a long-exposure image, thus the fused image still suffers from blurring 
artifacts. 
 
2.1. Bilateral filtering based compositing method  
 
Raman and Chaudhuri’s method [9] combines multi-exposure images with weights from bilateral 
filtering [14]. The bilateral filter is a non-linear filter which smoothes flat regions while 
preserving edge regions. It uses two Gaussian weights: one is a range weight considering the 
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intensity difference between neighboring pixels and the other is a domain weight considering the 
spatial distance. Weak edges and details can be detected by the difference between the bilateral 
filtered image and the original image. In their method [9], the difference with the bilateral filtered 
image is used as a weight to preserve both details and weak edges. Let ),( yxI k  represent k th input 
image and  ),( yxI BS

k
 denote a bilateral filtered image, then the weight of k th image at ),( yx  is 

describe as   
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where C is a constant and K is the number of input images. The total sum of weights ),( yxWk is 
equal to one. The final output image using (1), ),,( yxIO  is described as  
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An image with lots of details has a large weight value. The compositing method based bilateral 
filter [9] preserves edges well. This method is easy to implement, but it is difficult to separate 
signal and noise when an input image is noisy. Also more consideration on ghost artifacts is 
required. 
 
2.2. Exposure fusion  
 
Exposure fusion [11] can obtain HDR image using several input images of low dynamic range 
without generating a radiance map or information about camera setting. Quality measurements 
from each image are used to compute weights for image fusion. Quality measurements consist of 
three components: contrast, saturation, and well-exposedness. First, weight for contrast 
measurement has a high value in edge and texture regions that are detected by a Laplacian filter. 
Among the input images, there are images that include saturation region. To avoid artifacts from 
saturation, weight for the saturation is detected by the standard deviation in the RGB color space. 
At last, weight for well-exposedness is used by the value how close the normalized intensity of 
the input image is to 0.5. With three quality measurements, the weighted sum is used for fusion. 
In fusion, input images, which are taken with different exposure times, give some artifacts like 
seams. To remove them, a pyramid decomposition method [15] is used, in which Laplacian 
pyramid is used for input images whereas Gaussian pyramid is used for weights. Therefore, 
exposure fusion suffers from ghost artifacts because this method does not consider motion 
between input images. Also, it is not appropriate for input images that contain lots of noise, thus 
result of exposure fusion is degraded by noise that is contained in input images. 
 
2.3. Image fusion  
 
The goal of image fusion [12] is to get a proper result image by fusion of blurred and noisy 
images that are taken under low-light condition. First, image alignment is performed to remove 
the misaligned region between two images because of the finite time interval during image 
acquisition. Next, photometric calibration is performed to compensate for the brightness change 
between two input images. For photometric calibration, a brightness transfer function, which is 
also called compagram, is estimated using a joint histogram function between two input images. 
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Using this function, a short-exposure image is compensated in view of a long-exposure image. 
Then, two differently exposed images that are aligned and compensated with compagram [16] are 
fused with different weights in luminance and chrominance channels. In the CIE L*a*b* space, 
fusion of luminance channel is performed using the difference of long- and short-exposure images 
in the wavelet transform domain. The difference )(kD is described as   

)()()( kGkGkD SL                                                   (3) 
where k represents kth coefficient, GL denotes a long-exposure image, and GS signifies a short-
exposure image in the wavelet domain. The result wavelet coefficient of luminance fusion  )(ˆ kF  
is described as  

)()()()(ˆ kDkWkGkF S                                                    (4) 
where W is a weight. The weight is calculated as 

])([)()( 22 kDEkkW                                                      (5) 

where ])([ 2kDE  represents expectation of the squared difference )(kD and 2 signifies the 
variance. This weight emphasizes the edge region of the short-exposure image and flat regions of 
the long-exposure image. On the other hand, weight for chrominance fusion is calculated with 
luminance value (0~255) from luminance fusion. The weight of the short-exposure image 

),,( yxIS  which is the brightness-compensated image, is described as 
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and the weight of the aligned long-exposure image ),(
~ yxI L  is expressed as 

).(1)( LWLW SL                                                          (7) 
With an image fusion method [12], a user can get a blur- and noise-free image in low light 
without PSF estimation. However, blur of a long-exposure image still remains and affects the 
quality of the fused image. To reduce blur and ghost artifacts, a motion-blur-free exposure fusion 
method [13] was proposed. 
 
Figure 1 shows performance comparison of existing methods described above. Figure 1(a) shows 
input images with different exposures, which were used in [11]. Figure 1(b) shows a result image 
obtained by a bilateral filter based method [9] and Figure 1(c) shows a result image by the 
exposure fusion method [11]. 
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Figure 1. Comparison of existing methods. (a) Multi-exposure input images [11], (b) Bilateral filtering 

based compositing method [9], (c) Exposure fusion method [11]. 
  
3. PROPOSED IMAGE FUSION METHOD 
 
The proposed method uses input images with different exposure images obtained in low- light 
condition. The characteristics of each exposure image are shown in Table 1. A long-exposure 
image is obtained with enough brightness and proper color, however distorted by blur artifacts. 
Whereas, a short-exposure image is very dark and contains lots of noise, with edges preserved. 
By the pixel-wise fusion method with these two images, blur and noise artifacts in input images 
degrade the fused image. To reduce degradation in the output image, pixel-wise weights that 
reflect the characteristics at pixels of input images are used in fusion. As mentioned in Section 2, 
existing methods [9-11] use multi-exposure images that do not contain lots of blur and noise, so 
they are not appropriate for low-light condition. If the same weights are used for degraded input 
images, the fused image suffers from blur and noise. Therefore, with long- and short-exposure 
images, weights that reflect the characteristics of input images are to be used.  
 

Table 1. Characteristics of images with different exposures. 
 

Exposure time Artifacts Brightness Color Detail 
Long Blur Enough Preserved Blurred 
Short Noise Lack Loss Preserved 
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 3.1. Pre-processing  
 
In this paper, we use two different exposure images that are taken successively. Small motion or 
camera shaking during time interval can produce misaligned regions between two images, which 
are caused by the global motion. Therefore, global registration is required for compensation of the 
global motion between two input images. In this paper, to estimate a single motion model and to 
compensate for global motion, the gradient method [17] is used. For fast computation, a fast 
gradient motion estimation method [18] is used. With the parametric coordinate transformation, 
two images can be represented as 
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where  )1()1( , ii yx  and  )2()2( , ii yx  are corresponding pixel positions of ),( yxI L  and ),( yxI S  images, 
respectively, with ),( yxIL  representing a long-exposure image and  ),( yxIS  denoting a short-
exposure image. f  and g  are defining functions. The global motion method [12] estimates the 
global motion parameter vector p  that minimizes the difference between pixel values of two 
images. The global motion parameter vector is calculated as  
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where i  represents position index of pixel. The relation between ),( yxI L  and ),( yxI S  can be 
described as  
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using the value of pixel-wise first-order Taylor expansion at 0p  . (10) is a linearization of 
Gauss-Newton nonlinear minimization [19]. Let H be the partial differential equation of ,p with 
its elements jiH ,  expressed, by the derivative chain rule, as  
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Then, motion parameter vector p can be described using (10) and (11) as 

  tIHHHp T1T 
  (12) 

where tI  is described as  
     .,...,1

T
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tI  is used as error vector and  itI  is represented as 
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As a result, aligned ),(~ yxI L  can be calculated using .p  Moreover, the fast gradient method [18] 
uses multi-scale structure for better performance and the pixel subset selection [20] for speed. In 
the pixel subset selection method, motion is estimated by dividing the region into several sub-
regions and by using the gradient value which is upper 10% in each region. 
 
After alignment, the short-exposure image should be corrected to compensate for low light 
according to the long-exposure image. As a histogram matching method for color correction of 
the short-exposure image, a cumulative histogram [21] is used in this paper. The histogram of the 
long-exposure image is calculated as  
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where W  is width and H  is depth of an image. The function   is described as  
 



 


otherwise,0

 if,1
),(

ba
ba  

(16) 

where v  is pixel intensity between 0 and 255. LI~  is an aligned long-exposure image. The 
mapping function M  between the short-exposure image SI  and the pixel value to be 
compensated is used in calibration for color correction. The cumulative histogram of LC  can be 
calculated as   
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Also, the cumulative histogram of ,SI  )(vCS  is calculated in the same method. With the 
cumulative histogram, the mapping function is described as  

).1()()(with            )(  uCuCuCuvM LSL  (18) 

If the mapping function in (18) is applied to the image, luminance value of SI  smaller than  
threshold is clipped and mapped into the first active bin. The result image is unnatural, and the 
first and last bins in lower boundary and upper boundary, respectively, should be modified. The 
highest value of the reference image is applied to the clipped interval value. Lower interval is (0, 
…, M(0)) and upper interval is (M(255), …, 255). Using each interval value, the center of mass is 
used by the mapping function. The center of mass value for lower interval ls  and that for upper 
interval us  are described as  
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With (19) and (20), the mapping function can be described as  
lsM )0(  and .)255( usM   (21) 

Using the mapping function ,M  the color-corrected short-exposure image, ),( yxIS  can be 
calculated as  

)).,((),( yxIMyxI SS   (22) 

3.2. Proposed image fusion method  
 
In this paper, the proposed method uses a weighted sum based fusion method and weights are 
obtained by estimating blurriness and noisiness of input images. Aligned long-exposure image LI~  
and color-corrected short-exposure image SI   are used as input images.  LI~  contains blur artifacts 
around edges whereas SI   contains lots of noise which is amplified after color correction. These 
artifacts from two input images affect the final fused image. Also, if there is  motion during the 
time taking two input images, the fused image contains ghost artifacts. Therefore, proper weights 
are required to effectively reduce artifacts in input images and motion detection between two 
input images is needed to reduce ghost artifacts. To explain the proposed fusion method, first, 
image fusion is reviewed and then blur and noise estimation methods are described. At last, a 
motion detection method used in the proposed method is presented. 
 
The final output of the proposed fusion method is obtained using two weights: blur weights WL 
and noise weight WS. WL is applied to the long-exposure image whereas WS to the short-exposure 
image. However, if motion occurs, the fused image is degraded with ghost artifacts. Therefore, 
the motion map is used to remove the ghost artifact. The output image ),( yxI O  is calculated as 
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where MM is the binary motion map obtained from moving object detection. When the value of 
the motion map is one, the denoised image is the output image without fusing processing, 
otherwise, the fused image FI  is used. When motion occurs, fusion processing of images 
degrades the output image, thus fusing is performed at pixels with no motion. The fused image, 

OI  is computed as  
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where the subscript L represents a long-exposure image and the subscript S denotes a short-
exposure image. ),( yxIS  is the color-corrected short-exposure image and ),(, yxI DS  is the 

denoised short-exposure image. Also, ),(~ yxI L  is the aligned long-exposure image. B  is blur 
measurement and N  is noise measurement. TB and TN are threshold values for blur and noise 
estimation, respectively. In experiments, TB and TN are set to 0.1 and 0.2, respectively. ),( yxM M  is 
the binary motion map to reduce the ghost artifacts between two images. If motion occurs, the 
value of MM is 1, otherwise, 0. With the motion map, if motion occurs, result of image fusion uses 
only ),,(, yxI DS  which is the denoised image with the existing denoising method [4]. When motion 
does not occur, the weighted sum of long- and short-exposure images is used. Note that they 
smooth not only noise but also high-frequency component, thus details are not preserved. To 
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preserve details, SI   rather than DSI , is used in fusion process, when blur and noise estimates are 
both smaller than threshold values. If either blur or noise estimate is larger than threshold value, 

SI   produces a fused image with lots of noise remained. ),( yxWS  has a smaller value in noisy 

region of SI   to suppress the noise in the result image. Whereas ),( yxWL  has a smaller value in 
the blur region of ).,(~ yxI L  
 
Each weight is determined depending on the amount of blur and noise in the images and has the 
value between 0 and 1. The normalized blur measurement is computed as  

minmax
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BB
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
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where minB  represents the minimum value of ),( yxB  and maxB  denotes the maximum value. 
Also the normalized noise measurement is expressed as  

minmax
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where minN  represents the minimum value of ),( yxN  and maxN  denotes the maximum value. 
With each normalized measurement of blur and noise, we can get the weight for image fusion. 
First of all, the weight of the long-exposure image ),( yxWL  is calculated as 
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(27) 

where ),( yxN  denotes the noise measurement whereas ),( yxB  represents the blur measurement. 
Also,   is used to scale the parameter value. Then, the weight for the short-exposure image is 
calculated as  

.
),(),(

),(),(
yxByxN

yxByxWS 



 (28)               

Figure 2 shows the block diagram of the proposed image fusion method. There are four steps for 
fusing two degraded images. The first step is global registration to compensate for global motion 
that affects all the pixels in the whole image with a single motion model applied to a long-
exposure image. Then, color correction is performed to adjust brightness of the short-exposure 
image. Compensated input images by two pre-processing steps are fused using appropriate 
weights. These weights are based on two measurements: blur and noise estimation. Blur and noise 
measurements are computed by estimating the amount of blurriness and noisiness from the long-
exposure image and short-exposure image, respectively. Also the motion map is used to remove 
ghost artifacts. Finally, computing the weighted sum of the long-exposure image, short-exposure 
image, and denoised short-exposure image, we can get the output image with acceptable 
brightness and details, with blur and noise artifacts significantly reduced. 
 
The long-exposure image contains blur and produces blur artifacts in the fused image, especially 
around edges. To get the clear fused image, we estimate the amount of blur and apply this 
quantity to compute weights used for fusing a set of input images. A small blur weight is applied 
to ),(~ yxIL  when pixel is degraded by blur. For the same reason, a large weight is applied to SI  , 
therefore, pixel with blur is reduced in the result image. 
 
Generally, blur artifacts occur around the boundary region of an object rather than in flat region 
[22]. Therefore, existing methods detect edges first, and then estimate the amount of blurriness at 
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detected edges [22,23]. In the long-exposure image, it is difficult to detect accurately edges by 
existing edge detection methods, in which edges are detected at wrong locations or represented as 
discontinuous line. Elder and Zucker [22] proposed an edge detection method with blurred 
images. Then, edges are detected by the reliability of the filter response that is obtained using 
threshold at each scale. For selecting the threshold value, prior knowledge such as noise 
characteristics of sensor is needed. Threshold values, c1 and c2 in the first- and second-derivative 
Gaussian filters, respectively, are calculated as 

2
1

11 22

ln2
)(




 pns

c


  
 (29) 

3
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22 34
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c

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  (30) 

where sn represents the noise level of sensor and p  denotes the false positive tolerance. 
The minimum reliable scale is decided when the filter response at each pixel is larger than 
the threshold value. Elder and Zucker’s method [22] detects edges where gradient has 
nonzero value at selected scale and the value of the second-derivative satisfies the zero 
crossing condition. 
 

 
Figure 2. Block diagram of the proposed image fusion method.
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In detected edges, the amount of blurriness is estimated using the difference of extreme values of 
plus and minus of the second-derivative. It can be described as  

  2
2

22  dBM  (31) 

where d is calculated to minimize the least square fitting error at edges. The blur estimation 
methods mentioned previously need post-processing in computing the weights in our fusion 
method because estimated measure of blurriness is discontinuous. For post-processing, we use 
Bae and Durand’s method [24], in which edges are detected and the amount of blur is estimated. 
Then, they used two steps. The first step is refinement, in which a cross bilateral filter [25] is used 
to remove outliers from estimated blur measurement. Then, propagation [26] is performed for 
extending blur measurement from edges to the flat region. This blur measurement is used to 
compute the blur weight in image fusion. 
 
Under low-light condition, an image is degraded mostly by noise. Especially, the short- exposure 
image after color correction is degraded by magnified noise, which affects the quality of the fused 
image. In low-light condition, there are many kinds of noises such as photon noise and dark 
current noise. These noises can be modeled by Gaussian or Poisson distribution. In this paper, we 
classify noise into two types: Poisson counting noise (PCN) and false color noise (FCN) [5]. We 
first detect pixels that are distorted by noise and then estimate the amount of noise at detected 
locations. For detection and estimation of noise, we use a noise adaptive spatio temporal filter 
proposed by Lee et al. [5]. Also, two types of noises are decided as PCN and FCN according to 
motion that is detected by the sum of absolute differences (SAD). This method is for noise 
removal for video in low-light condition. Our proposed fusion method uses two images instead of 
video that consists of a sequence of temporal frames. Even though input type of the proposed 
method is different from that of Lee et al.’s method, noise characteristics in low-light condition 
are the same, so we can apply the noise detection algorithm to the compensated short-exposure 
image.  
 
According to [5], two types of noises are detected. First, using local statistics PCN is detected in 
the short-exposure image that contains lots of low-light noise. Then, PCN noise measurement in 

,SI   ),( yxN P  is calculated as 

),(),(),( yxSyxIyxN NSP   (32) 

where ),( yxSN  represents local statistics. It is described as 

  ),( , ),(),(median),( srsrIyxIyxS SSN  (33) 

where ),( yx  is the coordinate of the center pixel and ),( sr  represent the coordinates of 
neighboring pixels in widow .  
 
Meanwhile, FCN noise is independent of neighboring pixels and it can be detected using statistics 
between two sequential images. The local statistics of the short-exposure image is calculated as  

 
  ),(),(),(),( 22 yxyxIyxIyxS SSSS   (34) 

where ),( yxI S  represents the mean value and ),(2 yxS denotes the variance of the long- 
exposure image. With each local statistics, noise measurement of FCN is calculated as  
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With ),( yxN P  and ),,( yxNF  measurement in low light, N  is computed as  
 

 
otherwise),,(
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P  
(36) 

 

where ),( yxM  is the motion map which is calculated in terms of the SAD. Noise measurement N 
is used as weight in image fusion. 
 
The proposed method uses input images taken consecutively. Motion during time interval 
between two successive images reduces the quality of the fused image. Global motion is reduced 
by registration processing whereas local motion still produces artifacts in the fused image. There 
are many approaches to reducing ghost artifacts [27-28]. In this paper, to reduce ghost artifacts, 
the binary motion map is generated by detecting motion between two input images and by 
applying it to the fusion process. 
 
To detect moving objects, the proposed method uses Markowski’s method [27], which is a  
motion detection method for HDR. This method consists of three steps. First, the initial motion 
map is described as 

 

)),(),,(~(),( yxIyxIFyxM SLM   
(37) 

where F is a de-ghosting comparison function. The function F is computed as  
 

  



































 





bgrc

cL

cS

cS

cL

SL

yxI
yxI

yxI
yxI

yxIyxIF
,,

2035.1
),(~
),(

,
),(
),(~

maxexp1

1),(),,(~

 

(38) 

 
where c represents three color channels in the RGB color space. The comparison function is a 
sigmoid function that compares two images. Then, the normalized motion map is computed as  
 

n

M

MM
MyxMyxM 












minmax

min),(),(
    

(39) 

 

where Mmin (Mmax) represents minimum (maximum) value of the initial  motion map. Artifacts 
such as seams near the detected motion region by the normalized ),( yxM   can occur after images 
with different exposures are fused. For smoothing and reducing artifacts, three morphology 
operations are sequentially used: dilation, erosion, and conversion [27], after which a more 
accurate motion map is obtained. 
 
Figure 3(a) shows blur measurement, Figure 3(b) shows noise measurement, and Figure 3(c) 
shows motion map. With blur and noise measurements, the weight of the short-exposure image, 

),( yxWS  is illustrated in Figure 3(d) and the weight of the long-exposure image, ),( yxWL  is 
shown in Figure 3(e). 
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(a) (b) 

 
(c) 

  
(d) (e) 

 
Figure 3. Results of each step of the proposed image fusion method. (a) Blur 
measurement  ),( yxB ,  (b) Noise measurement  ),( yxN  , (c) Motion map  ),( yxM  , (d) 
Weight of the short-exposure image )),(( yxWS

, (e) Weight of the long-exposure image 
)),(( yxWL

. 
 
4. EXPERIMENTAL RESULTS AND DISCUSSIONS 
Figure 4 shows two test image sets used in our experiments, which are used in the existing image 
fusion method [12] and their size is 1024×1024. Figure 4(a) is a short-exposure image in low-
light condition, which is degraded with lots of noise in flat region, however, preserves details. In 
contrast, Figure 4(b) is a long-exposure image which is degraded with blur artifacts in edges and 
saturated in window of the right side of an image. Also, in bottom left of Figure 4(b), there are 
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ghost artifacts because of motion of people. However, it has proper color with enough light. 
Figure 4(c) is a short-exposure image with noise artifacts in flat region whereas Figure 4(d) is a 
long-exposure image with blurred edges. Figure 4(c) has sharp edges and Figure 4(d) has proper 
color with enough light. 

 
 
 
 
 
 
 
 
 

 
 
In experiments, two methods are used to compare the performance of the proposed method. The 
exposure fusion method [11] explained in Section 2.1 and the image fusion method [12] described 
in Section 2.3 are used. Figures 5(a)-5(d) are result images of image enhancement methods in 
low-light condition. Figure 5(a) shows a color-corrected result of the short-exposure image based 
on color of the long-exposure image. The color-corrected result image in low light is noisy 
because noise is also boosted along with an image signal. Figure 5(b) is a result of the exposure 
fusion method [11] that uses multi-exposure images, in which blur and noise artifacts of input 
images affect the result image. Figure 5(c) is a result of the image fusion method [12], which uses 
two images: long- and short-exposure images. The image fusion method [12] computes weights 

 
Figure 4. Test image set with different exposures. (a), (c) Short-exposure images, (b), 
(d) Long-exposure images. 
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according to the amount of noise to give small weight in noisy region. However, blur artifacts 
from the long-exposure image still remain. Result of the proposed method is shown in Figure 5(d) 
and blur artifacts near edges and noise in flat region are reduced. Also, the proposed method 
reduces ghost artifacts. Figure 6 shows more details on result images. 
 
Figure 6 shows enlarged subimages enclosed by the red box in Figure 5. The subimage enclosed 
by the red rectangle shows preserved details in the image. The subimage enclosed by the blue  
rectangle in Figure 6 shows enhanced performance of removing ghost artifacts caused by a 
moving object or people in the image. Figure 6(a) shows result images of color correction of the 
short-exposure image. The subimage enclosed by the red rectangle in Figure 6(a) shows a sharp 
image that is degraded with lots of  noise  because  noise boosting  of  the  short-exposure image 
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 .  

 

 

Figure 5. Result images with Figures 4(a) and 4(b). (a) Color-corrected short-exposure 
image, (b) Result image of the exposure fusion method [11], (c) Result image of the 
image fusion method [12], (d) Result image of the proposed method. 
 

 

 

 

Figure 6. Enlarged images of Figures 5(a)-(d). (a) Color-corrected short-exposure image, 
(b) Result image of the exposure fusion method [11], (c) Result image of the image 
fusion method [12], (d) Result image of the proposed method. 
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appears with a gain in terms of color correction. Figure 6(b) shows the result of the exposure 
fusion method [11]. The subimage enclosed by the blue rectangle shows ghost artifacts because 
this method uses the weighted sum of multi-exposure images without considering ghost artifacts. 
The subimage enclosed by the red rectangle shows degraded details. It is because blur and noise 
artifacts in input images affect the result image directly. Figure 6(c) shows the result of the image 
fusion method [12] and ghost artifacts are almost removed in the subimage enclosed by the blue 
rectangle, but still blur artifacts in edges and noise in flat and low-light regions are shown in the 
subimage enclosed by the blue rectangle. Also, the subimage enclosed by the red rectangle shows 
blurred edges. Figure 6(d) shows the result of the proposed method. Ghost artifacts are removed 
in the subimage enclosed by the blue rectangle and details of people are preserved. Even though 
noise is still shown in the subimage enclosed by the blue rectangle, the proposed method shows 
better performance in view of details in edges and noise in flat region. 

 

 

 

 
Figure 7. Results images with Figures 4(c) and 4(d). (a) Color-corrected short-exposure 
image, (b) Result image of the exposure fusion method [11], (c) Result image of the image 
fusion method [12], (d) Result image of the proposed method. 

 

  
Figure 7 shows results of three enhancement methods in low-light condition and input images are 
from Figures 4(c) and 4(d). Figure 7(a) shows a color-corrected image which uses only a short-
exposure image with details preserved, however, the image is distorted by the noise of low-light 
condition. Figure 7(b) shows better result of the exposure fusion method [11] than other method, 
with blur artifacts in low-light condition. Figure 7(c) shows the result of the image fusion method 
[12]. The image fusion method gives denoised result, however, blur artifacts are still remain. 
Figure 7(d) shows the result of the proposed method with the reduced noise and details preserved. 

 
Figure 8 shows enlarged images of Figure 7. Figure 8(a) shows preserved detail, but distorted by 
lots of noise. Especially, flat region in the subimage enclosed by the red rectangle is distorted 
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with lots of noise. Figure 8(a) shows the result of the exposure fusion method [11]. In Figure 8(a), 
details are preserved with an image distorted in the subimages enclosed by the red and blue 
rectangles and low-light noise. In Figure 8(b), the subimages enclosed by the red and blue 
rectangles show blur artifacts in the exposure fusion method. In Figure 8(c), the subimage 
enclosed by the red rectangle shows blur artifacts and the subimage enclosed by the blue 
rectangle shows denoised image in flat region. The result image by the proposed method is shown 
in Figure 8(d). In Figure 8(d), the subimage enclosed by the red rectangle shows preserved edges 
and the subimage enclosed by the blue rectangle also shows denoised clear result and preserved 
edges. Flat region in the subimage enclosed by the blue rectangle shows especially denoised and 
preserved edges well. 

 
5. CONCLUSIONS 

In this paper, we propose an image fusion method using two differently exposed images in low- 
light condition. For fusion based on the weighted sum approach, weights are computed by 
estimating the amount of blurriness and noisiness. Blur is measured by detecting edges and 
estimating the amount of blurriness at detected edges in the compensated long-exposure image. 
Then, outliers of blur measurement are removed by a cross bilateral filter. Meanwhile, noise is 
estimated in the color-corrected short-exposure image according to the local statistics using the 
adaptive noise method. Next, the motion map is applied to fusion for removing ghost artifacts. 

 

 

Figure 8. Enlarged image of Figures 7(a)-(d). (a) Color-corrected short-exposure 
image, (b) Result image of the exposure fusion method [11], (c) Result image of the 
image fusion method [12], (d) Result image of the proposed method.  
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With weights and motion map, the final fused image is computed by the weighted sum of short- 
and long-exposure images and denoised short-exposure image. A multi-resolution bilateral filter 
[3] is used for denoising a short-exposure image. The denoised image is clear in flat region, 
however, with details lost. To preserve details in the fused image, a short-exposure image is used 
in region where both amounts of blur and noise are small, i.e., where the blur and noise estimates 
are smaller than the threshold values. 
 
We simulate the exposure fusion and image fusion method for experimental comparison of the 
proposed method. Experimental results show that the proposed image fusion method using two 
different exposure images shows better performance for removing blur and noise artifacts than the 
existing methods. For future work, the proposed method is to be extended to deal with multiple 
exposure images as in HDR imaging. 
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