
International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

DOI : 10.5121/ijcga.2015.5201 1

THE UPLIFT MODEL TERRAIN GENERATOR

J R Rankin

La Trobe University

Bundoora, Australia

Abstract

Terrain generation finds many applications such as in CGI movies, animations and video games. This

paper describes a new and simple-to-implement terrain generator called the Uplift Model. It is based on

the theory of crustal deformations by uplifts in Geology. When a number of uplifts are made on the Earth’s

surface, the final net effect is an average of the influence of each uplift at each point on the terrain. The

result of applying this model from Nature is a very realistic looking effect in the generated terrains. The

model uses 6 parameters which allow for a great variety in landscape types produced. Comparisons are

made with other existing terrain generation algorithms. Averaging causes erosion of the surface whereas

fractal surfaces tend to be very jagged and more suited to alien worlds.

Keywords

Terrain, height map, height field, 3D rendering, fractals

Introduction

Terrain generation [1,3] is the creation of virtual land formations in Computer Graphics. The

objective is to create realistic looking land formations without too much time-consuming

processing especially for interactive CG applications and such as to be compatible with low

resolution devices. Following the ideas introduced by Mandelbrot [6] many fractal algorithms

were explored for creating the shapes of mountains. This has been the best in realism for terrain

generation in the past but it is too computationally intensive for interactive games and in any case

the terrains generated are too rough and alien to suit many modern 3D games and simulations.In

[3] we reviewed 3 main fractal terrain generation algorithms called the Fault Formation algorithm

[8], the Midpoint Displacement algorithm [2,9] and the Particle Deposition algorithm [4,10].

While the construction of fractals involves elegant recursive programming recent terrain

generation algorithms [7] have reverted to the benefits of the iterative approaches. More recent

work has involved using parameters to gain some control of the terrain appearance or using

Evolutionary Algorithms to evolve a terrain into a more suitable form [11]. Thus there is still a

need for a simpler non-recursive terrain generation algorithm that produces believable 3D

outdoors hill or mountain scenes. This paper answers this need.

A 3D terrain is represented by a height field yij where i = 0 to Nx and j = 0 to Nz.The x-z plane is

the horizontal ground level. The base of the terrain is a rectangle which lies in the x-z plane

andhas width Nx*∆x and breadth Nz*∆z. where ∆x is the distance between grid lines along the x-

axis and ∆y is the distance between base grid lines along the z-axis. The Uplift Model is

applicable to any sized base grid. Unlike many fractal algorithms such as the Diamond-Square

algorithm [7] the base does not have to be square or a power of 2 with Nx = Nz = 2
n
+1. The Uplift

Model has more parameters for controlling the appearance of the terrain than most other terrain

generators have. For example thepopular Diamond-Square fractal terrain generation algorithm

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

2

(and also the similar Midpoint Displacement method) has only two parameters H (scaling

exponent) and A(amplitude) [2] and Brownian surfaces [1,5] have only one parameter

(amplitude).

Mountain Skyline Algorithm

A 2D version of the terrain generator algorithm was created and tested first. For a mountain

skyline we only need the one-dimensional array y(x) giving the height y of the far mountain ridge

at position x from left to right across the screen. The horizontal axis from left to right on the

screen is divided into Nx equal intervals each of width ∆x. so therefore we will compute yi for i =

0 to Nx. First we must initialize the horizon as yi = 0.0 for all i = 0 to Nx. Now consider a single

peak of random height yp> 0 at a random horizontal grid position ip across the screen where 0 ≤

ip≤ Nx. This is an uplift from below the surface of the Earth having an influence on all other

points of the terrain. Since we will use the linear approximation, one may at first think that this

influence should be approximated as the inverted V shape in Figure 1 below with (for initial

considerations) unit slope to the left and right.

Figure 1. The inverted V shape representing uplift influence shown with the horizontal ground line.

If we now superimpose two random uplifts with this type of influence curve on the terrain we can

compute the new terrain as the average of the heights of the two uplifts. This is shown as the red

line in Figure 2. It is clear from Figure 2 that the increased height of the peak on the right hand

side has no effect on the averaged curve. Furthermore, the averaged curve looks like nothing

more than another uplift but with the peak cut off to form a plateau. Averaging influence curves

of this type evidently is not going to give us new shapes to form novel and interesting landscapes.

Figure 2. The result of averaging two uplifts based on the inverted V influence curve.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

3

Figure 3. The influence curve of a tented uplift superimposed on the horizontal ground line.

However, a better approach is to use “tenting” wherein the influence is represented by the tent (or

chinaman’s hat) shape shown in Figure 3. It is important to note that the tent shape is clamped flat

at the sides at ground level so that this curve doesn’t go below zero.

To see why tenting is a better approach consider again the simple case of averaging two uplifts

but now using tenting instead of inverted V shapes for the influence curves as in Figure 4 below:

Figure 4. Averaging two uplifts represented as tents.

Comparing Figure 4 with Figure 2 it is clear that tenting provides the better approach to

simulating terra formation with uplifts. In Figure 2 the average effect is a polyline with only 3

line segments whereas in Figure 4 the polyline is more complicated and has 7 line segments. In

Figure 2 the taller uplift did not have an effect on raising the land mass closer to that uplift

whereas in Figure 4 the higher uplift did exert greater influence nearer to its peak.

A feature of this terra formation algorithm is erosion: the averaged curve erodes the sharp corners

of the tent curves.The averaged curve also lies well below the tent curves. It was also observed

that the more peaks used in the Uplift Model the more erosion occurred so that the resulting land

profile is lower (closer to the ground level). This erosion is a significant difference between the

Uplift Model and fractal terra formation algorithms. For example a typical Brownian curve [5]

looks as in Figure 5 below. The Brownian curves are reminiscent of craggy mountain ranges. By

contrast the 2D Uplift Model produces smoother, worn-down mountain ranges as shown in Figure

6 below.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

4

Figure 5. A Brownian curve used as a mountain ridge skyline.

Figure 6. A distant mountain range using the 2D Uplift Model.

We further note that overlap of the tents is necessary for realistic outputs. If there are places with

no overlap then isolated triangles appear on the horizon and these are obviously artificial. To have

overlap we just need to have a sufficient number of uplifts generated. By having 10 or more

random uplifts this algorithm of averaging their tent influences produces believable mountain

range horizons such as shown in Figure 6above. With the horizon computed and displayed, other

aspects of the view can be added to achieve the desired scene effect such as showing the sky

changing tone from light blue to dark blue based on height y above the sea level (y = 0) in the

picture, and such as adding stars or clouds and foreground scene features like trees, rivers and

buildings.

If we now allow for slopes other than unity on the left and right sides of the uplifts we can

generate skylines ranging from gentle hills to high rugged mountains. The 2D Uplift Model

algorithm then uses these 5 parameters: the number of divisions Nx along the x-axis, the number

of peaks (Np), the range of values (i.e. minimum and maximum Ymin and Ymax) of the peak heights

and the steepness R of the tent sides. While Figure 6 uses R = 1, Figure 7 below uses R = 20

resulting in mountains reminiscent of the Andes in Peru.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

5

Figure 7. The 2D Uplift Model with ruggedness parameter R = 20.

The 3D Uplift Model

The same observations of the 2D Uplift Model of the preference for tenting, the requirement for

overlap and erosion and the wide variety of scene types covered apply to the 3D Uplift Model.

Start with choices for the 6 Uplift Model parameters Nx (the number of grid divisions along the x-

axis),Nz(the number of grid divisions along the z-axis), Np (the number of peaks), Ymin and Ymax,

(the range in peak heights) and R (the ruggedness factor) and start with a perfectly flat height

array yij = 0.0. In a loop for 1 to Np, create each peak which requires a random grid position (ip, jp)

and a random height yp between Ymin and Ymax. The grid position (ip,jp) where 0 ≤ ip≤ Nx, 0 ≤ jp≤

Nz is the centre for the peak. Given a peak with values ip, jp and ypwe next compute the influence

y of this peak at all grid points (i,j). For simplicity this influence is supposed to drop off linearly

from yp at (ip,jp) according to the 2DEuclidean distance d of (i,j) from (ip,jp) in the x-z plane. The

3D uplift influence surface is therefore a cone sitting on the horizontal ground plane generalizing

the tent curves of the 2D Uplift Model. Thus we compute:

22])[(])[(zpxp jjiid ∆−+∆−=

from which we calculate the influence y as:

Rdyy p −=

where R is the desired ruggedness factor for the terrain. If y < 0 then it is reset to y = 0. The cone

at (ip,jp) therefore has height yp and base radius yp/R. The influence y of this peak at grid position

(i,j) is then added on to yij and then we can move on to the next grid position. After the influences

of this peak at all the grid positions have been computed and added into the height fields at those

grid positions, then the algorithm does not need to save the ip, jp and yp values and we can

continue in the loop to do the same thing for the next peak. At the end of looping through all

peaks we will divide the resulting yij values by Np, (the number of peaks) to give the average

influence at each grid site of all the peaks and this is the final height field value used for plotting

the new terrain.

In rendering the terrain, first the water table [1] is rendered as the height map yij = 0 in blue. Then

each grid cell is rendered as two shaded triangles in Open GL with their vertex coordinates (xij,

yij, zij) computed by:

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

6

zij

xij

jz

ix

∆=

∆=

and yij given as the computed height field.

Results and Comparisons

The figure below,Figure 8, shows a typical highland terrain generated by the 3D Uplift Model.

When we compare a typical highland scene generated by the Uplift Model as in Figure 8 with a

typical Brownian surface scene shown in Figure 9, it is immediately apparent that the Brownian

surface is far more jagged and alien than the Uplift Model surface. As the Brownian surface (like

the Brownian curve) is based on Brownian Motion the correlation between heights is highest for

neighbouring grid points and decreases linearly with increasing grid distance between the points.

This increasing non-correlation results in the extreme ruggedness of the fractal mountains on all

scales. It also results in the well-known lack of control that designers have on the shape of the

output fractal surfaces [11]. These features of fractal terrains have meant that few fractal terrain

generators have been used in 3D video games where realistic ground motion is required as

pointed out in [11]. This ruggedness down to the smallest visible scales has made it difficult to

accurately render animations and their shadows moving over the fractal surfaces. In contrast the

Uplift Model has a strong erosion effect sharply reducing the jagged appearance of the landscape.

Additionally we must consider that on average 50% of neighbouring height changes in Brownian

surfaces must be reversals and this means that small jagged peaks will arise across the whole

landscape in the fractal approach. As we have seen, this eroding effect of averaging in the Uplift

Model prevents such small scale jagged formations from occurring.

Figure 8. A typical highland landscape produced by the Uplift Model.

The view in the program for which Figure 8 is a snapshot can be turned left or right to reveal a

very pleasing mountainous scene suitable for use in any outside 3D game. In comparison fractal

mountain surfaces look very much like crinkled paper with jagged spurs on smaller and smaller

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

7

scales. Fractal mountains don’t give a feeling of size because fractals by definition are self-

similar on all scales ad infinitum.

Figure 9. A typical Brownian surface to the same resolution NxxNz as in Figure 8.

CONCLUSIONS

The Uplift Model is very easy to implement and generates realistic terrains ranging from, small

islands, to marshlands, to lowlands with rolling hills to highlands with tall peaks, to mountainous

zones and rugged mountain zones with almost vertical slopes as seen in the Peruvian Andes

mountains. It does not suffer from the excessive jaggedness found in fractal landscapes that are

perhaps more appropriate to alien worlds such as planets without atmospheres or for generating

useful texture maps and height maps for representing hazy cloud cover. The Uplift Model should

therefore find more applications in 3D video games and simulations of natural terrestrial

weathered landscapes.

References

[1] Bessant, C “Computers and Chaos”, Sigma Press, Wilmslow, UK, 1992, pp 131-144.

[2] Bird A.K., Dickerson B.T and George C.J.”Techniques For Fractal Terrain Generation”,

Dickerson_Terrain.pdf available at

http://web.williams.edu/Mathematics/sjmiller/public_html/hudson/Dickerson_Terrain.pdf

[3] Boyapati M and Rankin J.R., “Fractal Terrain Generation for SIMD Architectures”Rankin,

J.R.|Boyapati, M International Journal of Computer Applications in Technology, 2009, Vol 34, No 4,

pp 298-302

[4] Habrador, “How to Generate A Random Terrain” August 2014 at

http://blog.habrador.com/2013/02/how-to-generate-random-terrain.html

[5] Lauwerier, H “Fractals, Images of Chaos”, Penguin Books, 1991, pp114-116.

[6] Mandelbrot, BB “The Fractal Geometry of Nature”, WH Freeman and Company, New York, USA,

1983, pp 232-243 & 256-264.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

8

[7] Martz, P, “Generating Random Fractal Terrain”, August 2014 at

http://www.gameprogrammer.com/fractal.html

[8] Shankel J. “Fractal Terrain Generation – Fault Formation”, Game Programming Gems 8, vol 1, pp

499-502, 2000.

[9] Shankel J. “Fractal Terrain Generation – Midpoint Displacement”, Game Programming Gems 10, vol

1, pp 503-507, 2000.

[10] S hankel J. “Fractal Terrain Generation – Particle Deposition”, Game Programming Gems 12, vol 1,

pp 508-511, 2000.

[11] Affe W.L., Zambetta F. and Xiaodong L. “A Survey of Procedural Terrain Generation using

Evolutionary Algorithms”, IEEE World Congress on Computational Intelligence, WCC! June 2012,

Brisbane, Australia

