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Abstract 

Terrain generation finds many applications such as in CGI movies, animations and video games. This 

paper describes a new and simple-to-implement terrain generator called the Uplift Model. It is based on 

the theory of crustal deformations by uplifts in Geology. When a number of uplifts are made on the Earth’s 

surface, the final net effect is an average of the influence of each uplift at each point on the terrain. The 

result of applying this model from Nature is a very realistic looking effect in the generated terrains. The 

model uses 6 parameters which allow for a great variety in landscape types produced. Comparisons are 

made with other existing terrain generation algorithms. Averaging causes erosion of the surface whereas 

fractal surfaces tend to be very jagged and more suited to alien worlds. 
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Introduction 

Terrain generation [1,3] is the creation of virtual land formations in Computer Graphics. The 

objective is to create realistic looking land formations without too much time-consuming 

processing especially for interactive CG applications and such as to be compatible with low 

resolution devices. Following the ideas introduced by Mandelbrot [6] many fractal algorithms 

were explored for creating the shapes of mountains. This has been the best in realism for terrain 

generation in the past but it is too computationally intensive for interactive games and in any case 

the terrains generated are too rough and alien to suit many modern 3D games and simulations.In 

[3] we reviewed 3 main fractal terrain generation algorithms called the Fault Formation algorithm 

[8], the Midpoint Displacement algorithm [2,9] and the Particle Deposition algorithm [4,10]. 

While the construction of fractals involves elegant recursive programming recent terrain 

generation algorithms [7] have reverted to the benefits of the iterative approaches. More recent 

work has involved using parameters to gain some control of the terrain appearance or using 

Evolutionary Algorithms to evolve a terrain into a more suitable form [11]. Thus there is still a 

need for a simpler non-recursive terrain generation algorithm that produces believable 3D 

outdoors hill or mountain scenes. This paper answers this need. 

 

A 3D terrain is represented by a height field yij where i = 0 to Nx and j = 0 to Nz.The x-z plane is 

the horizontal ground level. The base of the terrain is a rectangle which lies in the x-z plane 

andhas width Nx*∆x and breadth Nz*∆z. where ∆x is the distance between grid lines along the x-

axis and ∆y is the distance between base grid lines along the z-axis. The Uplift Model is 

applicable to any sized base grid. Unlike many fractal algorithms such as the Diamond-Square 

algorithm [7] the base does not have to be square or a power of 2 with Nx = Nz = 2
n
+1. The Uplift 

Model has more parameters for controlling the appearance of the terrain than most other terrain 

generators have. For example thepopular Diamond-Square fractal terrain generation algorithm 
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(and also the similar Midpoint Displacement method) has only two parameters H (scaling 

exponent) and A(amplitude) [2] and Brownian surfaces [1,5] have only one parameter 

(amplitude). 

 

Mountain Skyline Algorithm 

 
A 2D version of the terrain generator algorithm was created and tested first. For a mountain 

skyline we only need the one-dimensional array y(x) giving the height y of the far mountain ridge 

at position x from left to right across the screen. The horizontal axis from left to right on the 

screen is divided into Nx equal intervals each of width ∆x. so therefore we will compute yi for i = 

0 to Nx. First we must initialize the horizon as yi = 0.0 for all i = 0 to Nx. Now consider a single 

peak of random height yp> 0 at a random horizontal grid position ip across the screen where 0 ≤ 

ip≤ Nx. This is an uplift from below the surface of the Earth having an influence on all other 

points of the terrain. Since we will use the linear approximation, one may at first think that this 

influence should be approximated as the inverted V shape in Figure 1 below with (for initial 

considerations) unit slope to the left and right. 

 

 

Figure 1. The inverted V shape representing uplift influence shown with the horizontal ground line. 

 

If we now superimpose two random uplifts with this type of influence curve on the terrain we can 

compute the new terrain as the average of the heights of the two uplifts. This is shown as the red 

line in Figure 2. It is clear from Figure 2 that the increased height of the peak on the right hand 

side has no effect on the averaged curve. Furthermore, the averaged curve looks like nothing 

more than another uplift but with the peak cut off to form a plateau. Averaging influence curves 

of this type evidently is not going to give us new shapes to form novel and interesting landscapes. 

 

 

Figure 2. The result of averaging two uplifts based on the inverted V influence curve. 
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Figure 3. The influence curve of a tented uplift superimposed on the horizontal ground line. 

 

However, a better approach is to use “tenting” wherein the influence is represented by the tent (or 

chinaman’s hat) shape shown in Figure 3. It is important to note that the tent shape is clamped flat 

at the sides at ground level so that this curve doesn’t go below zero. 

 

To see why tenting is a better approach consider again the simple case of averaging two uplifts 

but now using tenting instead of inverted V shapes for the influence curves as in Figure 4 below: 

 

 

Figure 4. Averaging two uplifts represented as tents. 

 

Comparing Figure 4 with Figure 2 it is clear that tenting provides the better approach to 

simulating terra formation with uplifts. In Figure 2 the average effect is a polyline with only 3 

line segments whereas in Figure 4 the polyline is more complicated and has 7 line segments. In 

Figure 2 the taller uplift did not have an effect on raising the land mass closer to that uplift 

whereas in Figure 4 the higher uplift did exert greater influence nearer to its peak. 

 

A feature of this terra formation algorithm is erosion: the averaged curve erodes the sharp corners 

of the tent curves.The averaged curve also lies well below the tent curves. It was also observed 

that the more peaks used in the Uplift Model the more erosion occurred so that the resulting land 

profile is lower (closer to the ground level). This erosion is a significant difference between the 

Uplift Model and fractal terra formation algorithms. For example a typical Brownian curve [5] 

looks as in Figure 5 below. The Brownian curves are reminiscent of craggy mountain ranges. By 

contrast the 2D Uplift Model produces smoother, worn-down mountain ranges as shown in Figure 

6 below. 
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Figure 5. A Brownian curve used as a mountain ridge skyline. 

 

 

Figure 6. A distant mountain range using the 2D Uplift Model. 

 

We further note that overlap of the tents is necessary for realistic outputs. If there are places with 

no overlap then isolated triangles appear on the horizon and these are obviously artificial. To have 

overlap we just need to have a sufficient number of uplifts generated. By having 10 or more 

random uplifts this algorithm of averaging their tent influences produces believable mountain 

range horizons such as shown in Figure 6above. With the horizon computed and displayed, other 

aspects of the view can be added to achieve the desired scene effect such as showing the sky 

changing tone from light blue to dark blue based on height y above the sea level (y = 0) in the 

picture, and such as adding stars or clouds and foreground scene features like trees, rivers and 

buildings. 

 

If we now allow for slopes other than unity on the left and right sides of the uplifts we can 

generate skylines ranging from gentle hills to high rugged mountains. The 2D Uplift Model 

algorithm then uses these 5 parameters: the number of divisions Nx along the x-axis, the number 

of peaks (Np), the range of values (i.e. minimum and maximum Ymin and Ymax) of the peak heights 

and the steepness R of the tent sides.  While Figure 6 uses R = 1, Figure 7 below uses R = 20 

resulting in mountains reminiscent of the Andes in Peru. 
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Figure 7. The 2D Uplift Model with ruggedness parameter R = 20. 

 

The 3D Uplift Model 

 
The same observations of the 2D Uplift Model of the preference for tenting, the requirement for 

overlap and erosion and the wide variety of scene types covered apply to the 3D Uplift Model. 

Start with choices for the 6 Uplift Model parameters Nx (the number of grid divisions along the x-

axis),Nz(the number of grid divisions along the z-axis), Np (the number of peaks), Ymin and Ymax, 

(the range in peak heights) and R (the ruggedness factor) and start with a perfectly flat height 

array yij = 0.0. In a loop for 1 to Np, create each peak which requires a random grid position (ip, jp) 

and a random height yp between Ymin and Ymax. The grid position (ip,jp) where 0 ≤ ip≤ Nx, 0 ≤ jp≤ 

Nz is the centre for the peak. Given a peak with values ip, jp and ypwe next compute the influence 

y of this peak at all grid points (i,j). For simplicity this influence is supposed to drop off linearly 

from yp at (ip,jp) according to the 2DEuclidean distance d of (i,j) from (ip,jp) in the x-z plane. The 

3D uplift influence surface is therefore a cone sitting on the horizontal ground plane generalizing 

the tent curves of the 2D Uplift Model. Thus we compute: 

22 ])[(])[( zpxp jjiid ∆−+∆−=  

from which we calculate the influence y as: 

Rdyy p −=  

where R is the desired ruggedness factor for the terrain. If y < 0 then it is reset to y = 0. The cone 

at (ip,jp) therefore has height yp and base radius yp/R. The influence y of this peak at grid position 

(i,j) is then added on to yij and then we can move on to the next grid position. After the influences 

of this peak at all the grid positions have been computed and added into the height fields at those 

grid positions, then the algorithm does not need to save the ip, jp and yp values and we can 

continue in the loop to do the same thing for the next peak. At the end of looping through all 

peaks we will divide the resulting yij values by Np, (the number of peaks) to give the average 

influence at each grid site of all the peaks and this is the final height field value used for plotting 

the new terrain. 

 

In rendering the terrain, first the water table [1] is rendered as the height map yij = 0 in blue. Then 

each grid cell is rendered as two shaded triangles in Open GL with their vertex coordinates (xij, 

yij, zij) computed by: 
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and yij given as the computed height field. 

 

Results and Comparisons 

 
The figure below,Figure 8, shows a typical highland terrain generated by the 3D Uplift Model. 

When we compare a typical highland scene generated by the Uplift Model as in Figure 8 with a 

typical Brownian surface scene shown in Figure 9, it is immediately apparent that the Brownian 

surface is far more jagged and alien than the Uplift Model surface. As the Brownian surface (like 

the Brownian curve) is based on Brownian Motion the correlation between heights is highest for 

neighbouring grid points and decreases linearly with increasing grid distance between the points. 

This increasing non-correlation results in the extreme ruggedness of the fractal mountains on all 

scales. It also results in the well-known lack of control that designers have on the shape of the 

output fractal surfaces [11]. These features of fractal terrains have meant that few fractal terrain 

generators have been used in 3D video games where realistic ground motion is required as 

pointed out in [11]. This ruggedness down to the smallest visible scales has made it difficult to 

accurately render animations and their shadows moving over the fractal surfaces. In contrast the 

Uplift Model has a strong erosion effect sharply reducing the jagged appearance of the landscape. 

Additionally we must consider that on average 50% of neighbouring height changes in Brownian 

surfaces must be reversals and this means that small jagged peaks will arise across the whole 

landscape in the fractal approach. As we have seen, this eroding effect of averaging in the Uplift 

Model prevents such small scale jagged formations from occurring. 

 

 

Figure 8. A typical highland landscape produced by the Uplift Model. 

 

The view in the program for which Figure 8 is a snapshot can be turned left or right to reveal a 

very pleasing mountainous scene suitable for use in any outside 3D game. In comparison fractal 

mountain surfaces look very much like crinkled paper with jagged spurs on smaller and smaller 
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scales. Fractal mountains don’t give a feeling of size because fractals by definition are self-

similar on all scales ad infinitum. 

 

 

Figure 9. A typical Brownian surface to the same resolution NxxNz as in Figure 8. 

 

CONCLUSIONS 

 
The Uplift Model is very easy to implement and generates realistic terrains ranging from, small 

islands, to marshlands, to lowlands with rolling hills to highlands with  tall peaks, to mountainous 

zones and rugged  mountain zones with almost vertical slopes as seen in the Peruvian Andes 

mountains. It does not suffer from the excessive jaggedness found in fractal landscapes that are 

perhaps more appropriate to alien worlds such as planets without atmospheres or for generating 

useful texture maps and height maps for representing hazy cloud cover. The Uplift Model should 

therefore find more applications in 3D video games and simulations of natural terrestrial 

weathered landscapes. 
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