
International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

DOI : 10.5121/ijcga.2015.5206 53

MESH SIMPLIFICATION VIA A VOLUME COST

MEASURE

Sumanta Guha

Computer Science & Information Management Program, Asian Institute of Technology,

Thailand

ABSTRACT

We develop a polygonal mesh simplification algorithm based on a novel analysis of the mesh geometry.

Particularly, we propose first a characterization of vertices as hyperbolic or non-hyperbolic depend-ing

upon their discrete local geometry. Subsequently, the simplification process computes a volume cost for

each non-hyperbolic vertex, in anal-ogy with spherical volume, to capture the loss of fidelity if that vertex

is decimated. Vertices of least volume cost are then successively deleted and the resulting holes re-

triangulated using a method based on a novel heuristic. Preliminary experiments indicate a performance

comparable to that of the best known mesh simplification algorithms.

KEYWORDS

Hyperbolic vertex, level of detail, local geometry, mesh sim- plification, multi-resolution, vertex

decimation, volume cost

1. INTRODUCTION

Polygonal mesh models are ubiquitous in computer graphics. They are typically either user-made

in a 3D design environment, or automatically generated by triangulating point cloud data obtained

from a digital scan of some real-life object. Polygonal models are widely supported in both design

and rendering, there being available plentiful high-quality commercial and free software.

The visual quality of a model depends on the number of polygons (the more usually the better)

and the quality of the polygons themselves (the fewer slivers the better). However, a large

polygon count while making for a visually attractive surface taxes the resources of the rendering

device. Particularly, in real-time and interactive applications too large a polygon count may cause

unacceptable degradation of performance. Applications that require mesh models to be

transferred over a network are sensitive to polygon count as well.

For these reasons there has been considerable interest over more than a decade in mesh

simplification algorithms. The goal is to accept as input a com- plex model and simplify it to

various levels of resolution by reducing the number of polygons, at the same time retaining as far

as possible fidelity to the original. Figure 1 shows a cow at three different levels of resolution (the

simplification was done with our new software).

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

54

Fig. 1. Cow at 3 different resolutions: 5804, 1772 and 328 triangles.

In this paper we propose a new mesh simplification algorithm. We assume as input a triangulated

mesh (polygonal meshes are straightforwardly triangulated). Our algorithm itself falls within the

category of simplification algorithms based on vertex decimation. A vertex decimation method

typically processes the input mesh by iteratively deleting a vertex and its adjacent faces and then

re- triangulating the resulting hole. A candidate vertex for decimation is commonly chosen by

minimizing the value of some cost function over the current vertex set.

The novelty in our algorithm lies firstly in a new scheme to classify mesh vertices as hyperbolic

and non-hyperbolic. This scheme is local and discrete, and not derived from the well-known

method of differentiating between hyperbolic, parabolic and elliptic points on a smooth surface

using Gaussian curvature, though the two are not unrelated. (Non-hyperbolic vertices are further

classified as convex or concave, though we do not apply the distinction in our algorithm itself.)

This discrete characterization of vertices seems to be new in CG applications, and more

intrinsically suited to meshed surfaces than existing methods that distinguish vertices by

estimating pseudo-curvature values on a smooth approximation.

We apply our characterization to select non-hyperbolic vertices, each of which is then associated

with a measure of the volume that it covers – this so-called volume cost is determined by the

neighborhood geometry of the vertex. Hyperbolic vertices, on the other hand, do not in any

natural manner cover a volume, and are always preserved through our algorithm. Non-hyperbolic

vertices are decimated in order of least volume cost. A new re-triangulation scheme is proposed

as well to patch the holes arising from vertex decimation.

We have implemented our algorithm and initial experiments suggest a quality of simplification

comparable to current best-known algorithms. Our software will be made available freely.

The rest of the paper is organized as follows. In Section 2 we briefly discuss the various

approaches currently to mesh simplification. The theory underlying our approach is described in

Section 3 and the simplification algorithm itself presented in Section 4. Experimental results are

discussed and output shown in Section 5. We conclude in Section 6.

2 .BACKGROUND AND RELATED WORK

The problem of mesh simplification has been of interest in the rendering community for several

years. Various approaches have been developed and implemented. Surveys of these include ones

by Cignoni et al [4], Garland [5], Luebke [9, 10] and Talton [16]. The best-known approaches to

mesh simplification can be broadly classified into three categories – vertex clustering, edge

contraction and vertex decimation – of which ours falls into the latter.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

55

The vertex clustering method, introduced by Rossignac and Borrel [13],places a bounding box

around the model, which is then divided into a uni-form 3D grid of rectilinear cells. Vertices

inside each cell are merged into a single representative vertex (Figure 2). The representative

vertex is chosen either from amongst the original ones in the cell – based on a heuristic

comparison of their contribution to the appearance of the surface in that cell – or as a weighted

average.

The vertex clustering method is simple, intuitive and easy to implement. Moreover, it lends itself

to graceful progressive simplification by means of a gradual increase in cell size. However, the

fidelity to the original resulting from vertex clustering is often poor, particularly as the error

bounds are not deter- mined intrinsically by the model, but by the size of the grid cells.

Fig. 2. Vertex clustering

In edge contraction, typically, edges are contracted iteratively into a single vertex each, and

adjacent faces updated accordingly (Figure 3). The difference between edge contracting

algorithms lies primarily in the cost function which each tries to minimize when choosing a

candidate to contract.

The most efficient edge contraction algorithm to date seems to be the one by Garland and

Heckbert [6, 7], which applies a quadric error cost function. This measures the sum of the squares

of the distances of the vertex to which an edge is collapsed from the faces adjacent to the latter, a

measure of the loss of quality from that particular collapse. Quadric-based mesh simplification is

efficient and produces provably high-quality output. Hoppe [8] proposes a notable application of

the edge contraction approach to produce a continuous range of resolution levels via the so-called

progressive mesh representation.

Schroeder et al [14] introduce the vertex decimation technique, where vertices are successively

removed, each together with its adjacent faces (Figure 4). As in edge collapsing, a cost function is

applied to determine the candidate to remove.The original cost function proposed by Schroeder et

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

56

al is either the distance of the vertex to the best-fit plane of its neighbors, or that to a boundary

edge, depending on the type of vertex.

The second step of a vertex decimation method, following the removal of a vertex and its

adjacent faces, is closing the resulting hole, which is bounded by a loop, by means of re-

triangulation. Schroeder et al apply a recursive procedure, repeatedly splitting the loop into two

by means of a diagonal chosen to maximize the aspect ratio of the resulting two sub-loops.

Fig. 4. Vertex decimation.

Though there seems to exist little in the literature by way of theoretical proofs, vertex decimation

methods – many variations of Schroeder’s original have since been proposed and implemented,

e.g., Tarini et al [17] – seem to work well in practice.

Our method is based on vertex decimation as well. We begin, however, with a novel classification

of vertices into hyperbolic and non-hyperbolic, and then restrict our search for a candidate to

decimate amongst non-hyperbolic vertices. This allows application of a volume-based cost

function which is geometrically meaningful for non-hyperbolic vertices. Minimizing volume loss

at each step ensures shape fidelity. Proofs of quality are typically difficult for simplification

algorithms constructed on vertex decimation and we do not as yet have any. How- ever,

experimentation with numerous surface meshes suggests that our method is competitive with the

best simplification techniques currently popular in practice.

3.THEORY

3.1 Vertex Classification

To simplify the theoretical development we assume that the input mesh is a topologically closed

surface, implying that it has a meaningful interior. This assumption is not essential, however, and

our implementation works for non- closed meshes as well. We assume as well that each mesh

face is triangular. We begin with a characterization of vertices as convex, concave or hyperbolic.

Definition 1. A vertex V of a mesh M is hyperbolic if it is contained in the interior (as a

subspace of R3) of the convex hull C of its neighbors. A vertex V that is not hyperbolic is convex

if there exists a (flat) disc D centered at V which does not intersect the interior of M; otherwise, it

is concave.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

57

Fig. 5. Illustrations of convex, hyperbolic and concave vertices.

For example, the convex hull of the neighbors of V in Figure 5(a) is the triangle W1W2W3,

which has empty interior in R3. Therefore, V is trivially non-hyperbolic; moreover, the disc D

proves that V is convex. The vertex V on the saddle-shaped surface in Figure 5(b) is hyperbolic.

The reader may check in Figure 5(c) that all the vertices on the L-shaped solid are non-

hyperbolic, and that only vertex V is concave, while all the rest are convex. The disc D at a corner

of the L-shaped solid indicates the reason why we cannot replace the disc in the definition of

convexity with its containing plane – a plane may intersect the mesh at a distant point.

Our characterization of a mesh vertex is not unrelated to that of a point of a smooth surface as

hyperbolic, parabolic or elliptic by means of Gaussian cur- vature, but we’ll not explore the

connection here. It should be observed though that use of discrete local geometry to classify

vertices seems more natural for a meshed surface than computing pseudo-curvature values, as

some authors do, on a smooth approximation.

Whether a vertex V is hyperbolic or not is a local decision depending on its disposition with

respect to its neighbors. However, distinguishing a non- hyperbolic vertex V as either convex or

concave necessitates one to determine the side of the surface near V that the interior of M lies,

which requires global knowledge of M.

Our approach though requires only to be able to distinguish if a vertex is hy- perbolic or non-hyperbolic,

and not further between convex and concave. There- fore, we need know only of the local geometry at each

vertex.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

58

3.2 Volume Cost Estimation

The link of a vertex V of a mesh M is the union of its neighboring vertices and edges between

them. E.g., the link of V in Figure 5(a) is the boundary of the triangle W1W2W3.

We would like to measure the solid angle subtended at a convex or concave vertex by its link.

We’ll give a constructive definition of this angle. But, first, we need a classical formula for the

solid angle subtended by a triangle at a point.

The solid angle subtended by a triangle T at a point V not belonging to T is the surface area of

the projection of T onto the unit sphere centered at V (the unit of solid angle is steradians but

we’ll not use this term). See Figure 6. Van Oosterom and Strackee [12] give the following

formula if the corners of T are W1, W2 and W3:

where Wi is the position vector of Wi w.r.t. V and [W1W2W3] denotes a scalar triple product.

The preceding formula leads to the following constructive definition of what we call, simply, the

angle at a non-hyperbolic mesh vertex V and denote by angle(V).

Fig. 6. Solid angle.

Definition 2. Suppose that V is a non-hyperbolic vertex V of a mesh M. If V lies on the convex

hull C of its neighbors, then set angle(V) to 2_. Otherwise,let P be a plane that separates V from

C, not intersecting either. Suppose the neighbors of V in cyclic order are W1,W2, . . . ,Wk. Let the

straight line through V and Wi intersect P at W′i . Triangulate the (plane, simple) polygon W′1 W′

2 . . .W′ k. Set angle(V) to be the sum of the solid angles subtended at V by the triangles in this

triangulation (Figure 7).

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

59

Note 1. The case that V lies on the convex hull C of its neighbors arises precisely when these

neighboring vertices all lie on a plane that contains V as well (e.g., imagine an additional vertex

in the middle of a face of the cube in Figure 5(a)).

Next, we need a measure of the distance of a non-hyperbolic vertex V from its neighbors, which

are, say, W1,W2, . . . ,Wk. Accordingly:

Definition 3. For a non-hyperbolic vertex V define its height ht(V) to be the distance of V to

the best-fit plane Q of W1,W2, . . . ,Wk (Figure 7).Note 2. Neither angle(V) nor ht(V) is

meaningful for a hyperbolic vertex as then V , in a sense, is “enclosed” by its neighbors.

Finally, we would like to estimate the volume “covered” by a non-hyperbolic V and its adjacent

faces. The reason is that this volume will provide an estimate of the cost of decimating V :

intuitively, the volume covered by V is lost if V is convex, or added if V is concave.

Unfortunately, there is generally no well-defined closed space covered by V and its adjacent

faces, as this requires “filling” the link of V with a 2D surface, which is not possible in an

unambiguous manner if the link is non-planar (e.g., consider if W1, W2, W3 and W4 are non-

coplana in Figure 7). However, the following formula, based on computing a spherical volume,

seems a reasonable estimate in most well-behaved situations.

Fig. 7. Using a separating plane to calculate angle(V) and the best-fit plane to calcu- late ht(V).

Definition 4. For a non-hyperbolic vertex V define its volume vol(V) by vol(V) = angle(V) ×

ht(V)
3

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

60

4. SIMPLIFICATION ALGORITHM

Our simplification algorithm is now straightforward to describe. Firstly, we com- pute angle(V),

ht(V) and then vol(V) for each non-hyperbolic vertex of the in- put mesh M. The value vol(V)

is assigned as the cost of decimating V . However, prior to using this cost function, a simple

heuristic is implemented to preserve sharp-angled features whose volume might be small (e.g.,

Figure 8) as follows: we restrict the competition to find the least-cost vertex to those whose

angles are at least as large as the median of all angles at non-hyperbolic vertices, effectively

eliminating the currently sharpest half of features.

Once the vertex for decimation has been identified, its removal requires a re-triangulation of the

hole that its removal leaves. Our scheme to do this is actually an edge-collapse, details of which

are described later.

Fig. 8. Sharp feature.

Here then is pseudo-code for our simplification algorithm given an input mesh M:

Step 1: For each non-hyperbolic vertex V of M compute angle(V), ht(V) and vol(V).

Step 2: Find the median A of all the angle(V) values.

Step 3: From amongst the V such that angle(V) > A find the one with the smallest value of

vol(V).

Step 4: Decimate V by deleting it and its adjacent edges from M.

Step 5: Re-triangulate the hole in M resulting from the previous step by ap- plying the routine

described below.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

61

Step 6: If the desired resolution has been reached, then exit; if not, for each neighbor W of the

most recently deleted vertex V , check if it is non-hyperbolic in the re-triangulated M, and, if so,

re-compute angle(W), ht(W) and vol(W). Go to Step 2.

4.1 Re-triangulation Routine

Our re-triangulation routine employs a novel but somewhat technical heuristic.Suppose the

neighbors of the decimated vertex V are W1,W2, . . . ,Wk. Of the O(k
2
) straight lines through a

pair of distinct vertices in W1,W2, . . . ,Wk, find the one closest to V , say the straight line joining

Wi and Wj . Without loss of generality suppose that Wi is at least as close to V as Wj .

Fig. 9. Re-triangulating after decimating V by collapsing VW4.

We shall “collapse” the edge VWi by deleting V and its adjacent edges, and re-triangulate the

resulting hole using the fan of triangles with Wi as the common vertex and every other edge of

the link of V as an opposite edge, except, of course, for the two adjacent to W (Figure 9 indicates

the scheme by collapsing VW4).Motivation for this heuristic is apparent in Figure 10. One can re-

triangulate the hole left by decimating V in that figure in essentially two different ways – by

collapsing the edge VW2 or by collapsing the edge VW1. Clearly, the latter choice is more

faithful to the original shape and our heuristic finds this.

Fig. 10. After decimating V (top figure) the resulting hole can be re-triangulated in two ways: by collapsing

VW2 (lower left) or VW1 (lower right). Our heuristic chooses the right one which is more faithful to the

original surface.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

62

4.2 Complexity

The complexity of the volume cost based method is fairly straightforwardly seen to be linear in

the size of the mesh because: (a) the initial classification of vertices in Step 1 requires

examination only of each vertex’s link (moreover, each edge of a surface mesh can appear in the

link of at most two vertices); (b) Steps 2 and 3 can be executed in a total of linear time with

appropriate data structures; (c) Steps 4, 5 and 6 require a total of linear time as well from an

amortized cost analysis.

5. EXPERIMENTAL RESULTS

We have implemented our volume cost based simplification algorithm using C++ and the STL on

an Intel platform with 1.66GHz CPU and 1GB RAM. We used several pre-packaged algorithms

from the CGAL library [2] and the Boost C++ library [1]. Parts of our code have been adapted

from Jeff Somers [15] simplification routines.

Fig. 11. Bunny: (a) Base mesh (69451 triangles) (b) Garland’s quadric-based simplifi- cation to 500

triangles (c) Volume cost based simplification to 500 triangles.

We have so far applied our method to various input meshes of up to about 100K triangles. Output

from a fairly small cow mesh was earlier seen in Figure 1. Figures 11 and 12 show much larger

models reduced to an identically small fraction of about 1% of the original number of triangles,

using both Garland’s quadric-based method and our volume cost based. Figure 13 similarly

compares the two again on a smaller mesh. The quality of output of the two methods is clearly

comparable.

6. CONCLUSIONS AND FUTURE WORK

We propose a novel and simple mesh simplification algorithm that first classifies vertices as

hyperbolic and non-hyperbolic according to their local geometry, and then iteratively decimates

vertices after the computation of a volume cost function at non-hyperbolic vertices. Our volume

cost based simplification algorithm is easy to implement and initial experiments have produced

good output quality.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

63

Fig. 12. Woman: (a) Base mesh (65994 triangles) (b) Garland’s quadric-based simpli- fication to 1000

triangles (c) Volume cost based simplification to 1000 triangles.

Fig. 13. Pump: (a) Base mesh (2268 triangles) (b) Garland’s quadric-based simplifi- cation to 139 triangles

(c) Volume cost based simplification to 139 triangles.

More comparative experiments and consequent refinement of the algorithm is the next step.

Theoretical proofs of error bounds are important as well, and may, possibly, be obtained by

relating a vertex’s estimated volume cost to some real volume values. Another direction for future

work is simplification of meshes carrying color and texture data. Largemeshes with polygon

counts in the millions may require particular optimizations as well.

ACKNOWLEDGMENTS

We would like to thank Chansophea Chuon for helping develop our software and collaborating on

preliminary results announced in Chuon and Guha [3].The software was implemented with help

of code from Jeff Somers [15], as well as the CGAL [2] and Boost C++ [1] libraries. We thank

Tep Vuthy for early contributions.

International Journal of Computer Graphics & Animation (IJCGA) Vol.5, No.2, April 2015

64

REFERENCES

[1] Boost C++ Library, url: http://www.boost.org.

[2] CGAL 3.2.1 (Computational Geometry Algorithms Library), url:http://www.cgal.org.

[3] C. Chuon, S. Guha, Volume Cost Based Mesh Simplification, Proceedings 6
th

 International

Conference on Computer Graphics, Imaging and Visualization (CGIV 09), 2009, 164-169.

[4] P. Cignoni, C. Montani, R. Scopigno, A comparison of mesh simplification algo-rithms, Journal of

Computers and Graphics, Vol. 22, No. 1, 1998, 37-54.

[5] M. Garland, Multiresolution modeling: survey & future opportunities, Euro-graphics 99: Proceedings

of Eurographics 99, 1999, 28-35.

[6] M. Garland, P. S. Heckbert, Surface simplification using quadric error metrics,SIGGRAPH ’97:

Proceedings of the 24th annual conference on Computer graph-ics and interactive techniques, ACM,

1997, 209-216.

[7] P. S. Heckbert, M. Garland, Optimal triangulation and quadric-based surfacesimplification, Journal of

Comput. Geom. Theory Appl., Vol. 14, No. 1-3, 1999,49-65.

[8] H. Hoppe, Progressive meshes, SIGGRAPH ’96: Proceedings of the 23rd annualconference on

Computer graphics and interactive techniques, ACM, 1996, 99-108.

[9] D. P. Luebke, A Survey of Polygonal Simplification Algorithms, University of North Carolina at

Chapel Hill, 1997.

[10] D. P. Luebke, A Developer’s Survey of Polygonal Simplification Algorithms,Journal of IEEE

Comput. Graph. Appl., Vol. 21, No. 3, 2001, 24-35.

[11] D. P. Luebke, C. Erikson, View-dependent simplification of arbitrary polygonal environments,

SIGGRAPH 97: Proceedings of the 24th annual conference on Computer graphics and interactive

techniques, ACM, 1997, 194-208.

[12] A. Van Oosterom, J. Strackee, The Solid Angle of a Plane Triangle, IEEE Trans-actions on

Biomedical Engineering, Vol. 30, 2005, 125-126.

[13] J. Rossignac, P. Borrel, Multi-resolution 3D approximations for rendering com-plex scenes, Journal

of Modeling in Computer Graphics., 1993, 455-465.

[14] W. J. Schroeder, J. A. Zarge, W. E. Lorensen, Decimation of triangle meshes,SIGGRAPH ’92:

Proceedings of the 19th annual conference on Computer graph-ics and interactive techniques, ACM,

1992, 65-70.

[15] J. Sommers, Mesh Simplification Viewer, url: http://www.jsomers.com/vipm demo/meshsimp.html.

[16] J. O. Talton, A short survey of mesh simplification algorithms, University of Illinois at Urbana-

Champaign, 2004.

[17] M. Tarini and N. Pietroni, P. Cignoni, D. Panozzo, E. Puppo, Practical quad mesh simplification,

Proceedings of EUROGRAPHICS ’10, 2010, 407-418.

AUTHOR

Sumanta Guha obtained his Ph.D. in Computer Science from the University of Michigan,

Ann Arbor, in 1991. From 1991 to 2002 he taught at the University ofWisonsin-Milwaukee

as a member of the Electrical Engineering & Computer Science faculty. Since 2002 he has

been with the Computer Science & Information Management Program at the Asian

Institute of Technology, Thailand, where he is a professor.

