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ABSTRACT 
 

We develop a polygonal mesh simplification algorithm based on a novel analysis of the mesh geometry. 

Particularly, we propose first a characterization of vertices as hyperbolic or non-hyperbolic depend-ing 

upon their discrete local geometry. Subsequently, the simplification process computes a volume cost for 

each non-hyperbolic vertex, in anal-ogy with spherical volume, to capture the loss of fidelity if that vertex 

is decimated. Vertices of least volume cost are then successively deleted and the resulting holes re-

triangulated using a method based on a novel heuristic. Preliminary experiments indicate a performance 

comparable to that of the best known mesh simplification algorithms. 
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1. INTRODUCTION 
 
Polygonal mesh models are ubiquitous in computer graphics. They are typically either user-made 

in a 3D design environment, or automatically generated by triangulating point cloud data obtained 

from a digital scan of some real-life object. Polygonal models are widely supported in both design 

and rendering, there being available plentiful high-quality commercial and free software.  

 

The visual quality of a model depends on the number of polygons (the more usually the better) 

and the quality of the polygons themselves (the fewer slivers the better). However, a large 

polygon count while making for a visually attractive surface taxes the resources of the rendering 

device. Particularly, in real-time and interactive applications too large a polygon count may cause 

unacceptable degradation of performance. Applications that require mesh models to be 

transferred over a network are sensitive to polygon count as well.  

 

For these reasons there has been considerable interest over more than a decade in mesh 

simplification algorithms. The goal is to accept as input a com- plex model and simplify it to 

various levels of resolution by reducing the number of polygons, at the same time retaining as far 

as possible fidelity to the original. Figure 1 shows a cow at three different levels of resolution (the 

simplification was done with our new software). 
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Fig. 1. Cow at 3 different resolutions: 5804, 1772 and 328 triangles. 

 

In this paper we propose a new mesh simplification algorithm. We assume as input a triangulated 

mesh (polygonal meshes are straightforwardly triangulated). Our algorithm itself falls within the 

category of simplification algorithms based on vertex decimation. A vertex decimation method 

typically processes the input mesh by iteratively deleting a vertex and its adjacent faces and then 

re- triangulating the resulting hole. A candidate vertex for decimation is commonly chosen by 

minimizing the value of some cost function over the current vertex set. 

 

The novelty in our algorithm lies firstly in a new scheme to classify mesh vertices as hyperbolic 

and non-hyperbolic. This scheme is local and discrete, and not derived from the well-known 

method of differentiating between hyperbolic, parabolic and elliptic points on a smooth surface 

using Gaussian curvature, though the two are not unrelated. (Non-hyperbolic vertices are further 

classified as convex or concave, though we do not apply the distinction in our algorithm itself.) 

This discrete characterization of vertices seems to be new in CG applications, and more 

intrinsically suited to meshed surfaces than existing methods that distinguish vertices by 

estimating pseudo-curvature values on a smooth approximation. 

 

We apply our characterization to select non-hyperbolic vertices, each of which is then associated 

with a measure of the volume that it covers – this so-called volume cost is determined by the 

neighborhood geometry of the vertex. Hyperbolic vertices, on the other hand, do not in any 

natural manner cover a volume, and are always preserved through our algorithm. Non-hyperbolic 

vertices are decimated in order of least volume cost. A new re-triangulation scheme is proposed 

as well to patch the holes arising from vertex decimation. 

 

We have implemented our algorithm and initial experiments suggest a quality of simplification 

comparable to current best-known algorithms. Our software will be made available freely. 
 

The rest of the paper is organized as follows. In Section 2 we briefly discuss the various 

approaches currently to mesh simplification. The theory underlying our approach is described in 

Section 3 and the simplification algorithm itself presented in Section 4. Experimental results are 

discussed and output shown in Section 5. We conclude in Section 6. 

 

2 .BACKGROUND AND RELATED WORK 
 
The problem of mesh simplification has been of interest in the rendering community for several 

years. Various approaches have been developed and implemented. Surveys of these include ones 

by Cignoni et al [4], Garland [5], Luebke [9, 10] and Talton [16]. The best-known approaches to 

mesh simplification can be broadly classified into three categories – vertex clustering, edge 

contraction and vertex decimation – of which ours falls into the latter. 
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The vertex clustering method, introduced by Rossignac and Borrel [13],places a bounding box 

around the model, which is then divided into a uni-form 3D grid of rectilinear cells. Vertices 

inside each cell are merged into a single representative vertex (Figure 2). The representative 

vertex is chosen either from amongst the original ones in the cell – based on a heuristic 

comparison of their contribution to the appearance of the surface in that cell – or as a weighted 

average. 

 

The vertex clustering method is simple, intuitive and easy to implement. Moreover, it lends itself 

to graceful progressive simplification by means of a gradual increase in cell size. However, the 

fidelity to the original resulting from vertex clustering is often poor, particularly as the error 

bounds are not deter- mined intrinsically by the model, but by the size of the grid cells. 

 
Fig. 2. Vertex clustering 

 

In edge contraction, typically, edges are contracted iteratively into a single vertex each, and 

adjacent faces updated accordingly (Figure 3). The difference between edge contracting 

algorithms lies primarily in the cost function which each tries to minimize when choosing a 

candidate to contract. 
 

The most efficient edge contraction algorithm to date seems to be the one by Garland and 

Heckbert [6, 7], which applies a quadric error cost function. This measures the sum of the squares 

of the distances of the vertex to which an edge is collapsed from the faces adjacent to the latter, a 

measure of the loss of quality from that particular collapse. Quadric-based mesh simplification is 

efficient and produces provably high-quality output. Hoppe [8] proposes a notable application of 

the edge contraction approach to produce a continuous range of resolution levels via the so-called 

progressive mesh representation. 
 

 

 

 

 

 

 

Schroeder et al [14] introduce the vertex decimation technique, where vertices are successively 

removed, each together with its adjacent faces (Figure 4). As in edge collapsing, a cost function is 

applied to determine the candidate to remove.The original cost function proposed by Schroeder et 
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al is either the distance of the vertex to the best-fit plane of its neighbors, or that to a boundary 

edge, depending on the type of vertex. 
 

The second step of a vertex decimation method, following the removal of a vertex and its 

adjacent faces, is closing the resulting hole, which is bounded by a loop, by means of re-

triangulation. Schroeder et al apply a recursive procedure, repeatedly splitting the loop into two 

by means of a diagonal chosen to maximize the aspect ratio of the resulting two sub-loops. 

 

 

 

 

 

 

 
Fig. 4. Vertex decimation. 

 

Though there seems to exist little in the literature by way of theoretical proofs, vertex decimation 

methods – many variations of Schroeder’s original have since been proposed and implemented, 

e.g., Tarini et al [17] – seem to work well in practice. 

 

Our method is based on vertex decimation as well. We begin, however, with a novel classification 

of vertices into hyperbolic and non-hyperbolic, and then restrict our search for a candidate to 

decimate amongst non-hyperbolic vertices. This allows application of a volume-based cost 

function which is geometrically meaningful for non-hyperbolic vertices. Minimizing volume loss 

at each step ensures shape fidelity. Proofs of quality are typically difficult for simplification 

algorithms constructed on vertex decimation and we do not as yet have any. How- ever, 

experimentation with numerous surface meshes suggests that our method is competitive with the 

best simplification techniques currently popular in practice. 

 

3.THEORY 
 

3.1 Vertex Classification 

 
To simplify the theoretical development we assume that the input mesh is a topologically closed 

surface, implying that it has a meaningful interior. This assumption is not essential, however, and 

our implementation works for non- closed meshes as well. We assume as well that each mesh 

face is triangular. We begin with a characterization of vertices as convex, concave or hyperbolic. 

 

Definition 1. A vertex V of a mesh M is hyperbolic if it is contained in the interior (as a 

subspace of R3) of the convex hull C of its neighbors. A vertex V that is not hyperbolic is convex 

if there exists a (flat) disc D centered at V which does not intersect the interior of M; otherwise, it 

is concave. 
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Fig. 5. Illustrations of convex, hyperbolic and concave vertices. 

 
For example, the convex hull of the neighbors of V in Figure 5(a) is the triangle W1W2W3, 

which has empty interior in R3. Therefore, V is trivially non-hyperbolic; moreover, the disc D 

proves that V is convex. The vertex V on the saddle-shaped surface in Figure 5(b) is hyperbolic. 

The reader may check in Figure 5(c) that all the vertices on the L-shaped solid are non-

hyperbolic, and that only vertex V is concave, while all the rest are convex. The disc D at a corner 

of the L-shaped solid indicates the reason why we cannot replace the disc in the definition of 

convexity with its containing plane – a plane may intersect the mesh at a distant point. 
 

Our characterization of a mesh vertex is not unrelated to that of a point of a smooth surface as 

hyperbolic, parabolic or elliptic by means of Gaussian cur- vature, but we’ll not explore the 

connection here. It should be observed though that use of discrete local geometry to classify 

vertices seems more natural for a meshed surface than computing pseudo-curvature values, as 

some authors do, on a smooth approximation. 

 
Whether a vertex V is hyperbolic or not is a local decision depending on its disposition with 

respect to its neighbors. However, distinguishing a non- hyperbolic vertex V as either convex or 

concave necessitates one to determine the side of the surface near V that the interior of M lies, 

which requires global knowledge of M. 
 
Our approach though requires only to be able to distinguish if a vertex is hy- perbolic or non-hyperbolic, 

and not further between convex and concave. There- fore, we need know only of the local geometry at each 

vertex. 
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3.2 Volume Cost Estimation 
 

The link of a vertex V of a mesh M is the union of its neighboring vertices and edges between 

them. E.g., the link of V in Figure 5(a) is the boundary of the triangle W1W2W3. 

 
We would like to measure the solid angle subtended at a convex or concave vertex by its link. 

We’ll give a constructive definition of this angle. But, first, we need a classical formula for the 

solid angle subtended by a triangle at a point. 

 
The solid angle  subtended by a triangle T at a point V not belonging to T is the surface area of 

the projection of T onto the unit sphere centered at V (the unit of solid angle is steradians but 

we’ll not use this term). See Figure 6. Van Oosterom and Strackee [12] give the following 

formula if the corners of T are W1, W2 and W3: 

 

where Wi is the position vector of Wi w.r.t. V and [W1W2W3] denotes a scalar triple product. 

 
The preceding formula leads to the following constructive definition of what we call, simply, the 

angle at a non-hyperbolic mesh vertex V and denote by angle(V ). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. Solid angle. 

 

Definition 2. Suppose that V is a non-hyperbolic vertex V of a mesh M. If V lies on the convex 

hull C of its neighbors, then set angle(V ) to 2_. Otherwise,let P be a plane that separates V from 

C, not intersecting either. Suppose the neighbors of V in cyclic order are W1,W2, . . . ,Wk. Let the 

straight line through V and Wi intersect P at W′i . Triangulate the (plane, simple) polygon W′1 W′ 

2 . . .W′ k. Set angle(V ) to be the sum of the solid angles subtended at V by the triangles in this 

triangulation (Figure 7). 
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Note 1. The case that V lies on the convex hull C of its neighbors arises precisely when these 

neighboring vertices all lie on a plane that contains V as well (e.g., imagine an additional vertex 

in the middle of a face of the cube in Figure 5(a)). 

 

Next, we need a measure of the distance of a non-hyperbolic vertex V from its neighbors, which 

are, say, W1,W2, . . . ,Wk. Accordingly: 

 

Definition 3. For a non-hyperbolic vertex V define its height ht(V ) to be the distance of V to 

the best-fit plane Q of W1,W2, . . . ,Wk (Figure 7).Note 2. Neither angle(V ) nor ht(V ) is 

meaningful for a hyperbolic vertex as then V , in a sense, is “enclosed” by its neighbors. 

 

Finally, we would like to estimate the volume “covered” by a non-hyperbolic V and its adjacent 

faces. The reason is that this volume will provide an estimate of the cost of decimating V : 

intuitively, the volume covered by V is lost if V is convex, or added if V is concave. 

Unfortunately, there is generally no well-defined closed space covered by V and its adjacent 

faces, as this requires “filling” the link of V with a 2D surface, which is not possible in an 

unambiguous manner if the link is non-planar (e.g., consider if W1, W2, W3 and W4 are non-

coplana in Figure 7). However, the following formula, based on computing a spherical volume, 

seems a reasonable estimate in most well-behaved situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Using a separating plane to calculate angle(V ) and the best-fit plane to calcu- late ht(V ). 

 
Definition 4. For a non-hyperbolic vertex V define its volume vol(V ) by vol(V ) = angle(V ) × 

ht(V )
3 
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4. SIMPLIFICATION ALGORITHM 
 

Our simplification algorithm is now straightforward to describe. Firstly, we com- pute angle(V ), 

ht(V ) and then vol(V ) for each non-hyperbolic vertex of the in- put mesh M. The value vol(V ) 

is assigned as the cost of decimating V . However, prior to using this cost function, a simple 

heuristic is implemented to preserve sharp-angled features whose volume might be small (e.g., 

Figure 8) as follows: we restrict the competition to find the least-cost vertex to those whose 

angles are at least as large as the median of all angles at non-hyperbolic vertices, effectively 

eliminating the currently sharpest half of features. 

 

 

Once the vertex for decimation has been identified, its removal requires a re-triangulation of the 

hole that its removal leaves. Our scheme to do this is actually an edge-collapse, details of which 

are described later. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Sharp feature. 

 

Here then is pseudo-code for our simplification algorithm given an input mesh M: 

 
Step 1: For each non-hyperbolic vertex V of M compute angle(V ), ht(V ) and vol(V ). 

Step 2: Find the median A of all the angle(V ) values. 

Step 3: From amongst the V such that angle(V ) > A find the one with the smallest value of 

vol(V ). 

Step 4: Decimate V by deleting it and its adjacent edges from M. 

Step 5: Re-triangulate the hole in M resulting from the previous step by ap- plying the routine 

described below. 
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Step 6: If the desired resolution has been reached, then exit; if not, for each neighbor W of the 

most recently deleted vertex V , check if it is non-hyperbolic in the re-triangulated M, and, if so, 

re-compute angle(W), ht(W) and vol(W). Go to Step 2. 

 

4.1 Re-triangulation Routine 

 
Our re-triangulation routine employs a novel but somewhat technical heuristic.Suppose the 

neighbors of the decimated vertex V are W1,W2, . . . ,Wk. Of the O(k
2
) straight lines through a 

pair of distinct vertices in W1,W2, . . . ,Wk, find the one closest to V , say the straight line joining 

Wi and Wj . Without loss of generality suppose that Wi is at least as close to V as Wj . 

 

 
Fig. 9. Re-triangulating after decimating V by collapsing VW4. 

 

We shall “collapse” the edge VWi by deleting V and its adjacent edges, and re-triangulate the 

resulting hole using the fan of triangles with Wi as the common vertex and every other edge of 

the link of V as an opposite edge, except, of course, for the two adjacent to W (Figure 9 indicates 

the scheme by collapsing VW4).Motivation for this heuristic is apparent in Figure 10. One can re-

triangulate the hole left by decimating V in that figure in essentially two different ways – by 

collapsing the edge VW2 or by collapsing the edge VW1. Clearly, the latter choice is more 

faithful to the original shape and our heuristic finds this. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. After decimating V (top figure) the resulting hole can be re-triangulated in two ways: by collapsing 

VW2 (lower left) or VW1 (lower right). Our heuristic chooses the right one which is more faithful to the 

original surface. 
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4.2 Complexity 

 
The complexity of the volume cost based method is fairly straightforwardly seen to be linear in 

the size of the mesh because: (a) the initial classification of vertices in Step 1 requires 

examination only of each vertex’s link (moreover, each edge of a surface mesh can appear in the 

link of at most two vertices); (b) Steps 2 and 3 can be executed in a total of linear time with 

appropriate data structures; (c) Steps 4, 5 and 6 require a total of linear time as well from an 

amortized cost analysis. 

 

5. EXPERIMENTAL RESULTS 

 
We have implemented our volume cost based simplification algorithm using C++ and the STL on 

an Intel platform with 1.66GHz CPU and 1GB RAM. We used several pre-packaged algorithms 

from the CGAL library [2] and the Boost C++ library [1]. Parts of our code have been adapted 

from Jeff Somers [15] simplification routines. 

 

 

Fig. 11. Bunny: (a) Base mesh (69451 triangles) (b) Garland’s quadric-based simplifi- cation to 500 

triangles (c) Volume cost based simplification to 500 triangles. 

 

We have so far applied our method to various input meshes of up to about 100K triangles. Output 

from a fairly small cow mesh was earlier seen in Figure 1. Figures 11 and 12 show much larger 

models reduced to an identically small fraction of about 1% of the original number of triangles, 

using both Garland’s quadric-based method and our volume cost based. Figure 13 similarly 

compares the two again on a smaller mesh. The quality of output of the two methods is clearly 

comparable. 

 

6. CONCLUSIONS AND FUTURE WORK 

 
We propose a novel and simple mesh simplification algorithm that first classifies vertices as 

hyperbolic and non-hyperbolic according to their local geometry, and then iteratively decimates 

vertices after the computation of a volume cost function at non-hyperbolic vertices. Our volume 

cost based simplification algorithm is easy to implement and initial experiments have produced 

good output quality. 
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Fig. 12. Woman: (a) Base mesh (65994 triangles) (b) Garland’s quadric-based simpli- fication to 1000 

triangles (c) Volume cost based simplification to 1000 triangles. 

 

Fig. 13. Pump: (a) Base mesh (2268 triangles) (b) Garland’s quadric-based simplifi- cation to 139 triangles 

(c) Volume cost based simplification to 139 triangles. 

 

More comparative experiments and consequent refinement of the algorithm is the next step. 

Theoretical proofs of error bounds are important as well, and may, possibly, be obtained by 

relating a vertex’s estimated volume cost to some real volume values. Another direction for future 

work is simplification of meshes carrying color and texture data. Largemeshes with polygon 

counts in the millions may require particular optimizations as well. 
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