
 Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

 1

DESIGNING AND CREATING A GAME
ENGINE FOR USE IN THE CLASSROOM

Robert Spears, Cary Rivet, Stephen Killingsworth, Ashok Kumar and

Jim Etheredge

School of Computing and Informatics, University of Louisiana at Lafayette,

Lafayette, Louisiana, USA

ABSTRACT

This paper describes the creation of a 2D game engine, the ULL Introductory Game Engine (UIGE), for

use in an introductory video game programming course as part of an undergraduate computer science

curriculum. Having the right tools available can make illustrating the concepts of game development and

design substantially easier. In creating the engine, a number of factors such as ease of use and

accessibility, were considered. Furthermore, course instructors must determine how much assistance (in

the form of tools for the engine) is too much assistance, as students may miss core principles if development

with the engine is made too abstract. Successful implementation of tools like UIGE allow students to

produce games quickly and the concepts of game development to be taught more effectively.

KEYWORDS

Game Design, Game Engine, Game Class, XNA, C#, DigitalRune

1. INTRODUCTION

Teaching game design, programming, and theory is a challenging task. Illustrating the concepts

useful in game programming is a multistep process that involves much more than simply

illustrating how to use code. Other topics such as game management, asset and pipeline

management, and group dynamics must also be incorporated. The concept of adhering to

deadlines and milestones is also a crucial part of the process, as most of the projects are iterative

min nature. Missing one milestone immediately impacts the schedule of the rest of the project.

Therefore, the goal for course administrators is to create an environment where coding and

designing are as easy as possible. This is crucial, as the time participants have to complete their

video game projects is dramatically smaller than what is allotted to game developers in the

industry.

One way to achieve high productivity in a video game project course is to provide its participants

with a game engine that is both accessible and equipped with all the necessary tools needed for

development. The engine can be relatively flexible and modifiable, but should guide its users to a

particular game type. This gives the developers of the engine the opportunity to establish a solid

foundation upon which its users can expand. The inclusion of useful classes, functions, and

overall structure allow for a greater efficiency in the development process.

This paper discusses the planning and implementation of such an engine, dubbed the ULL

Introductory Game Engine (UIGE) [wee-gee], for use by computer science majors in an

introductory game development course. Section 2 of the paper provides an overview of the

engine’s characteristics, and explains how it was tailored toward students of a particular skill

level. Section 2 also outlines the general layout of the course in which the engine was used. In

Section 3, UIGE is described with greater depth, with its creation presented in a chronological

fashion. Section 4 exhibits sample projects created with the engine, and offers a timeline of the

projects’ development. In Section 5, works related to UIGE’s construction are visited.

Finally,Section 6 gives some conclusions on the production and use of UIGE, and highlights how

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

2

continued development of tools like UIGE will help improve future versions of the course. This

paper assumes that the reader is familiar with the object oriented paradigm, as well as general

video game and programming concepts and technologies

2. PROJECT OVERVIEW

The School of Computing and Informatics at the University of Louisiana at Lafayette offers its

Computer Science students a number of concentrations to choose from. The video game

concentration is one such option. It offers those enrolled a number of game design focused

electives such as Artificial Intelligence, Graphics, Game Algorithms, as well as 2D and 3D

project courses. These courses are offered in addition to the core computer science curriculum.

UIGE was designed and implemented specifically to be used by students taking the course. Also

known as An Introduction to Video Game Design and Development, the course is the first those

in the video game concentration are required to take. Participants in the course have already

completed a number of courses in the main curriculum, and as such, they possess extensive

knowledge on advanced data structures, efficient searching and sorting algorithms, and memory

management techniques. However, most students enrolled in the course have not yet been

exposed to the paradigms of video game development and design.

2.1. Course Layout

During the Fall semester of 2012, students in the class were assigned two video game projects.

The first was a solo effort using YoYo Game's GameMaker: Studio [1], while the second was a

group project using UIGE. The first project ran for three weeks, and its objective was to give

students a brief introduction to game design theory. After being exposed to C#, XNA (see Section

2.2), and UIGE through various tutorials, students started their second project. This group project

continued through the remainder of the semester, and was a vehicle for participants to explore

their first game engine.

In addition to illustrating the principles of game development, the course’s other objective is to

see students create two fully functional games by the end of the semester. Each game is unique,

so a general list of features required for all games would be ambiguous. However, some of the

goals for the course are:

Each game must have at least one feature complete level.

Each game must have a demo mode that showcases at least one completed level.

Each game must have interaction so that there is a definite winning and losing condition.

There were several group projects and one solo project that used UIGE, with students’ skill levels

ranging from knowledgeable to first time game developers (the latter being the majority). The

classroom was a mix of both graduate and undergraduate students. The class consisted of the

developers who created the engine, students, and the professor.

2.2. Choosing the Engine’s Framework

The course’s goal is to introduce established programmers to the principles behind game

development. Taking that into account, UIGE needed to be robust enough so that its users didn’t

feel limited, and also highly structured so that the core components of video game design could

be easily taught.

Before it was constructed, UIGE’s creators established a few simple criteria the engine’s

framework needed to meet:

The engine should use a high-level, versatile language

The framework for the engine should provide a number of necessary libraries and

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

3

functions (game loop, math libraries, graphics device manager, etc.), and allow for easy

integration of content into its pipeline

Other libraries could be easily included to enhance the engine’s toolset

After considering various free-to-use options, the DigitalRune Engine [1] was chosen as the

platform UIGE would be built on top of. The DigitalRune Engine uses the Microsoft XNA Game

Studio 4.0 [2], which includes the XNA Framework 4.0. The XNA Framework provides the basic

libraries needed for game development, such as game components and device managers. The

DigitalRune Engine expands upon the framework, adding a 3D physics simulation, particle

manager, user interface controls, and other useful libraries. These libraries are linked and made

usable in the XNA Game Studio, which is a programming environment within Microsoft Visual

Studio 2010.

The benefits to using the XNA Game Studio are numerous. XNA allows students to implement

their games in a streamlined environment. It uses the self-managed and easy to use programming

language, C#. The libraries provided by the XNA Framework contain all the basic necessities

used in game development. Because of XNA’s widespread use, there is a large user community

and tutorials readily available for students. In addition, a lightweight engine built on the XNA

framework was used in previous semesters and proved to be a powerful and easily teachable

framework to course participants.

The DigitalRune Engine provides a number of additional capabilities. DigitalRune is constructed

to be highly modular. One can use all of its libraries in tandem, or pick and choose which ones are

needed for their application. Inclusion of libraries from other parties can be easily combined with

DigitalRune’s various library packages. The DigitalRune Physics package provides a superb 3D

simulation, and contains a robust controllable character object. Key-frame animations for sprite

sheets and continuous, animatable properties are easily implemented with DigitalRune’s

Animation package. A variety of useful user interface controls (sub-windows, menus, sliders,

etc.) are included with DigitalRune’s Game UI module.

For all the reasons listed above, it is easy to see why UIGE was built upon the DigitalRune Game

Engine. Additionally, it was prefered that the engine used the C# programming language over a

more accessible language, like C++. C# is self-managed and does not allow for direct address

manipulation, and although students in the course have advanced knowledge on memory

management techniques, they are still prone to one-off errors and faulty memory deallocation

mistakes. Debugging such errors tends to take a significant amount of time. Thus, it was

determined an engine that used C# would allow its users to concentrate on all other aspects of

their applications, and therefore increase productivity.

2.3. Molding an Engine for Students

In addition to the criteria listed in Section 2.1., further standards were established by UIGE’s

developers to improve the engine’s usability and overall productivity:

The engine should lock objects’ movements in the game’s simulation to two dimensions. Those

objects have 3D bodies, but should have 2D textures (sprites) attached to represent

A basic game or set of tutorials should be provided for users to expand upon. This foundation

should showcase the major components of the engine

Additional classes and tools (such as a robust camera, object and state managers, level editor,

etc.) should be added to reduce the workload on students

Limiting objects to two dimensions within UIGE was done for a several reasons. For one, most

students enrolled in the course do not yet posses 3D math, linear algebra, or 3D graphics skills.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

4

Also, 3D objects need 3D models, which require modeling tools to create. Thus, allowing

students in the course to work with 3D objects would be a mistake, as a major portion of their

development time would have to be diverted to learning these tools and techniques. Participants

only have a few weeks to create their games, so time is better spent elsewhere.The desire to

provide a basic game for students to expand upon stemmed from past experiences

UIGE’s developers had when they were first introduced to video game development. When

exploring a large file system such as a game engine for the first time, it is easy to feel lost. It helps

to have examples available that guide attention to the major components of the system. Including

a basic game or set of linked tutorials is even more desirable, as they can highlight how each

component works together to form a fully realized product.

Part of the reason the DigitalRune Engine was chosen as UIGE’s foundation is because it offers a

number of examples that showcase its various packages. Particularly, the Character Controller

example in the Physics package (see section 3.3.1) proved to be a great resource when UIGE’s

creators were attempting to produce a basic game for the engine. The controllable object in the

example had tight controls, fluid movement, and was easily extensible. Hence, this object was

integrated into a special type of Object2D (see section 3.2.1.), and then given to course

participants through a tutorial. This tutorial and others (Sections 3.3) cover the basic components

of UIGE. Additional classes, such as a camera object, object manager, game states, etc. were

appended to UIGE so that students would not have to construct their own. The level editor is

especially important, because it allows students to quickly create levels (traditionally a tedious

task).

2.4. Characteristics of the ULL Introductory Game Engine

A more in depth look at the design process and construction of UIGE can be found in Section 3,

but here are a few characteristics of the engine:

UIGE expands the DigitalRune Engine, so nearly all of the benefits given by the DigitalRune

Engine and XNA Framework as listed previously still hold true

It includes a game object class, Object2D, that allows for easy integration of sprite sheets for

animation, a 3D geometric body, distinct types of interaction within the simulation

(static, dynamic, kinematic), and various other options

It comes equipped with an object manager that organizes and handles all Object2Ds in the

simulation

The provided camera class projects the 3D world space into 2D. It can be zoomed in or out,

controlled via input, and attached to objects in the simulation

The state manager and game state classes help organize levels and menus

A special game state, named the level editor, can be added to and accessed through the state

manager. With the editor, one can add objects to a level in real-time, save the level to an XML

file, and load the level later as one of the game states

3. ENGINE DEVELOPMENT TIMELINE

3.1. Planning Stage

After the engine’s developers had chosen the Digital Rune Engine to be UIGE’s foundation, they

explored the various packages its framework provided. Digital Rune offers a number of modules

that contain analogous libraries. For example the physics namespace encapsulates related libraries

such as force effects, simulation, rigid body, etc. together under one roof. UI, animation,

mathematics, particles, and physics are some of the packages Digital Rune includes, and each

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

5

were explored thoroughly when UIGE was being planned. This gave its developers an idea of the

tools available, and allowed them to begin forming a general layout for UIGE’s architecture (Fig

2.).

After examining what DigitalRune had to offer, UIGE’s developers believed a dedicated object

manager needed to be included. This would necessitate a wrapper to make DigitalRune’s physics

libraries compatible with the object manager. Components that could be salvaged from engines

previously used in the course, such as sound and alarm managers, should be reused and integrated

into UIGE. Most importantly, ease-of-use tools such as a robust level editor and state manager

should be constructed. These tools would allow students to rapidly create and deploy levels in

their games.

One of the constraints imposed on UIGE was that the engine should only be able to create games

locked to a two-dimensional plane. This was an issue, because DigitalRune’s physics libraries

were designed for three dimensional games. UIGE’s developers solved this problem by locking

objects within the simulation to two axes of movement, and by creating a specialized object,

named Object2D (Section 3.2.1).

In order to have UIGE ready by the start of the students’ group projects, its development was

separated into the following sequence of milestones (Fig 1):

Figure 1. Development Strategy.

This sequential approach made the creation of the engine within the allotted time possible.

Breaking down development into short term goals not only made the project seem more feasible

from a developer standpoint, but also illustrates the large project development strategy that is

anticipated to be used by students developing with UIGE.

3.2. Implementation

When implementing UIGE, it was a necessity to create an easy to use coding base capable of

creating games of multiple 2D genres. Using UIGE should introduce students to common game

development methods and practices, such as working with update and draw functions,

inheritance, abstract and virtual classes. The engine’s design should allow for a great deal of

flexibility to facilitate its use in the development of games spanning several genres. After

researching the available resources given by DigitalRune and XNA, the development team

decided upon the following architecture (Fig 2):

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

6

Figure 2. Engine Architecture

This layered approach allows for a great deal of developer freedom while still being manageable

and efficient. In the implementation of UIGE, a number of DigitalRune’s modules were

expanded, while other components were constructed from scratch. The various components of the

engine are described with greater detail in the following sections.

3.2.1. ObjectSprite / Object2D / Camera

The first step of implementation was to create a base 2D object that UIGE’s users could expand.

This was a challenge, since DigitalRune is implemented as a 3D game engine. Its objects needed

to be modified in order to be presented properly for two dimensional use. To have DigitalRune’s

3D objects display in 2D, a sprite object, named ObjectSprite, was implemented. ObjectSprites

generate billboard-like objects that are referred to as a quads. When instantiated, this quad object

defines four points in the 3D game world that are aligned with the object being represented, and a

2D texture is projected onto it (Fig 3). Each object of the game world that is displayed creates and

maintains an ObjectSprite object.

Figure 3. ObjectSprite Representation

Once created and given a height and width, the ObjectSprite generates a quad that can be

manipulated by the object. The ObjectSprite contains several manipulatable properties such as tint

colors, pose, and the texture that is applied to the quad. It provides several functions to changes

these values, as well as resizing tools. ObjectSprites also contain initialization, content loading,

updating, and drawing functions that are called by their respective game objects. Each game

object can create and maintain multiple ObjectSprites.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

7

In order for UIGE’s objects to be compatible with the physics simulation that is used by Digita

lRune, three dimensional rigid bodies were used within each force affected object (static, non-

collidable objects don’t require rigid bodies). In the initialization of an object, the user can pass a

shape from the DigitalRune geometry namespace with a specified size. This shape is used when

applying any forces, or when detecting collision with other objects.

To ease the learning curve of the engine, an abstract class, named Object2D, was provided that

handles some of the common functions of game objects. It contains overridable virtual functions,

such as initialization, content loading, update, draw, and cleanup functions. It also contains virtual

functions that handle any internal functionality that is required to be compatible with the game

engine, as well as any managers that handle the objects.

Every user-created game object that inherits the Object2D class has the ability to override and add

functionality to almost any function of the abstract class. This allows users to create dramatically

different game objects that are still compatible with UIGE. For example, it is possible to create a

static background object that is purely aesthetic, a platformer player character that is controllable

via user input and affected by its own gravity, and a top-down style AI driven creature that is

interactive and has its own animations. Each object, if implemented correctly, can be created,

managed, and destroyed by the game engine. It also allows for the creation and cleanup of child

objects within Object2Ds. If Object2Ds are used to their full potential, it is possible to create very

dynamic and complex game objects that can be used in interesting ways within the game world,

all while being fully managed.

All of the features described above would be rendered pointless if not displayed properly. To

effectively display Object2Ds so that they appear two dimensional, DigitalRune’s existing camera

object had to be modified. The primary adjustment made to the camera was to set its projection

matrix to an axially aligned orthographic view; meaning that the camera was set to view down the

game world’s Z axis and all objects are displayed without foreshortening due to distance of the

object from the camera. This sufficed to properly display the objects in the game world. Other

modifications were made to the camera strictly for convenience. Included in the updated camera

object were methods to lock the camera to an Object2D, follow a defined path, dynamically add

waypoints to the camera’s path, and animate the camera motion. These additions assisted greatly

in making a very believable 2D environment.

3.2.2. Managers

3.2.2.1. Object Manager

The Object Manager handles Object2Ds. The manager is what calls the common methods of the

Object2Ds; such as Update, Draw, Cleanup. Managed objects are given a unique identifier and

placed within a private dictionary that is only handled by the manager. The object manager also

contains lists for objects that are being added to or removed from it. This is done because an

object added during a program’s execution must be initialized and have its content loaded before

it can be updated to avoid crashes and instability. Also, similar steps must be taken when

removing an object from the game world to avoid references to an object that is no longer in the

manager. The object manager has functions to append objects to the add and destroy lists which

can be called at any point in the execution of the game. Then, once the manager reaches its update

nfunction it first handles the initialization and loading of newly added objects, gives them each a

unique identifier, adds them to the dictionary of game objects, and clears the added objects list

since they are now accounted for in the dictionary. Next, all of the objects are updated as normal.

Finally, the objects in the destroyed list are disposed of and removed from both the dictionary of

game objects and the list of objects to be destroyed. This process is illustrated in Figure 4.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

8

Figure 4. Object Management Flow Chart

Other functions of the object manager include the abilities to easily check for the existence of

objects and to be able to pull data from the objects within the dictionary. To do this, the object

manager class implements an interface that contains methods for selecting game objects or lists of

game objects based on several criteria, such as the object’s unique id, the rigid body of the object,

the collision body of the object, a type name, etc.

To find the objects that meet the search criteria in the dictionary, the manager queries the

dictionary using C#’s Linq library. The System.Linq namespace provides classes and interfaces

that support queries that use Language-Integrated Query (LINQ). This avoids manual searching

through the dictionary object by object and cleans up the code greatly. The manager makes

referencing other game objects a very simple and painless process, and through use of the Linq

library, querying objects is efficient enough to happen multiple times per update without

significant degradation of performance.

3.2.2.2. Alarm Manager

The alarm manager handles alarm objects. Alarm objects are timers that raise an event whenever

their timer expires. Whenever a programmer wants to have an event trigger after a certain amount

of time, they create an alarm object, give it an expiration time, and a string message to associate it

with an event. When the timer expires, the message included with the timer is sent to the event

listener, where any function associated with the particular message will be triggered.

3.2.2.3. Animation Manager

The animation manager is similar to the alarm manager. However, rather than associating specific

events with a timer, it updates a value based property over time. A programmer may create an

animatable property, decide how the property will change over time, and then push the property

into the animation manager. The manager updates the property accordingly and the animatable

property can be used as though it were any other variable of its type.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

9

Figure 5. Animated Sprite Sheet

For example, consider an animatable integer property used to animate a game object's sprite. An

animation clip is created with a starting and ending value, as well as a duration to preside over. In

addition, the clip may loop in a number of ways (constant, cyclic, etc.) and have a blending factor

(such as ease-in or ease-out) to smooth out the animation. Once added to the animation manager,

the clip will animate the targeted integer property. The property is then used as an index

corresponding to a subimage of the sprite sheet (Fig 5). When a game object is created, it pushes

the integer property into the manager which updates it automatically rather than having

toexplicitly update the subimage index from within the object. When the object is drawn, it will

display the currently selected subimage.

3.2.2.4. State Manager

The state manager controls the flow of the game from one state to another, including substates.

The manager is inherited from XNA’s drawable game component class. This allows it to be

added to a game’s list of components, meaning that its content loading, update, and draw methods

are automatically called as the game progresses without explicitly being called by the

programmer. The game states themselves have their methods called from within the manager.

This implementation allows for the manager to handle states with different priority levels

depending on their type (gamestate, substate, pausestate). As for the game states themselves, the

implementation is similar to that of object2D’s. An abstract class is provided that contains virtual

functions which handle most of the required actions for the manager, as well as references to

necessary game components and managers. This abstract class can be inherited and its methods

overridden and expanded to meet the developer’s needs.

Included in the state manager are multiple private data structures to contain the game states. In the

simplest multi-state game implementation, game states can be added to a straightforward list of

game states within the manager. The manager handles this list by keeping a reference to the

position of the active game state and only calling the methods of that state. Game states can be

transitioned by calling methods within the state manager and passing the unique name of the

game state. If the game states were added in the appropriate order, they can be cycled through

using manager methods for swapping to the next and previous states.

Also included in the manager is a list of substates for a currently active game state. This allows

for the inclusion of separate rooms, battles, menus, etc. within the same game state. The list of

substates is managed similarly to the list of game states. The index of the active substate is stored

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

10

within the manager. Notable properties of substates are:

When a substate is added, the currently active game state is still allowed to update and has the

option to continue drawing in the background of the substate, but it loses the focus of the manager

A state that loses the manager’s focus calls a virtual method within the state that sets several

variables which determine capabilities of the state; such as the ability to draw its game objects,

the ability to update, as well as any other functionality that is defined by the user

If the current active game state is changed, the list of its substates is cleared before the new

game state gains the game’s focus

The last data structure included within the manager is a pause stack. If a game state is added to

the pause stack, the manager immediately removes focus from active game states and substates

and gives the pause state the manager’s full attention. This stack is checked before any other

state’s update is considered. If the manager’s focus is on a pause state and the state manager is

signaled to change substates, the pause stack is cleared and the new substate gains focus. If a

pause state has the manager’s focus and the manager is signaled to change the active game state,

the pause stack is cleared along with the list of substates and the new game state becomes the

manager’s focus. A representation of how the state manager prioritizes what state has focus is

presented in Figure 6.

Figure 6. State Manager Focus Examples

3.2.2.5. Built-in Managers

The UI, input, graphics device, and particle system managers are tools built into either

DigitalRune or XNA that were not directly modified for students. The UI manager handles

interface elements such as buttons, sliders, windows, and the events tied to those controls. The

input manager handles keyboard, mouse, and gamepad input events. The graphics device manager

handles window and viewport manipulation, such as resolution and full screen mode. The particle

system manager handles any particle system added to the game.

3.3. Tutorials

A series of tutorials were created to illustrate the main components of UIGE. Each is described

briefly in the sections that follow.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

11

Figure 7. First Game Objects Tutorial

3.3.1 First Game Objects

The first tutorial that students explore (Fig. 7) instructs them on how to craft dynamic game

objects within UIGE. The object they create can move around via player input and interact with

other objects in an environment. This tutorial also guides students through the process of creating

a sprite sheet for an object, adding the texture to the object, and cycling through sheet to see the

object animate on screen. The controllable object given to students in this tutorial was taken from

the Character Controller Example in DigitalRune’s Physics package. The object can be given a

custom kinematic or dynamic physics body. The kinematic body is not affected by force effects

present in the simulation but instead applies its own force effects, such as gravity, to itself. Using

a kinematic body can make interactions with other objects more customizable. The dynamic body

is treated as any other object in the simulation, and as such is less customizable. However, the

default kinematic body has some issues with fluid movement, so a dynamic body is a good choice

if the user doesn’t wish to expand the body’s abilities. Groups were encouraged to use and expand

this object in their games, especially if they were creating a platforming or top down game. This

object, along with the level editor (see 3.4) and other tools, were key components of UIGE’s

design.

3.3.2 Alarms, Collisions, and Sounds

The second tutorial teaches students the principles of collision detection, how to manage alarm

events, and how to add and trigger sound effects and songs with UIGE. These components are

sometimes dependant on one another, so grouping them under one tutorial was an easy choice.

For example, consider a missile object colliding with another object. The missile explodes, which

requires an explosion sound to be played. In addition, the other object takes damage. An alarm in

the form of a cooldown may then be triggered so that the object won’t take additional damage for

some short period of time.

 3.3.3 States and User Interface Controls

The third tutorial shows students how to create and link game states. The example also introduces

participants to user interfaces and controls, and demonstrates how to add them to game states.

Students were required to implement buttons that traversed through states in the state machine

when clicked. In addition, they studied the implementation of a pause state and adjusted menu

controls that were included with it.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

12

3.4. Level Editor

Increasing development speed with UIGE had always been its developers first priority. After

implementing the engine’s core components, UIGE’s developers deemed the addition of a real

time editor to be the optimal way to improve throughput. If one were to look at the most popular

game engines used today by both professionals and amateurs, the common feature they’d find

between them is the inclusion of a robust level editing tool. See Unreal Game Editor [4] and the

Unity Editor [5].

Figure 8. Level Editor

Figure 8a. Level Editor Placeables Window

The benefits of UIGE’s level editor include:

● Allows users to quickly create environments and view them in real time, with no hard coding

necessary

● Can quickly test the functionality of objects in a number of scenarios, again in real time

● C# offers extensive support for reflection. Developers can append their objects to a singular

namespace and have the editor instantiate the objects automatically at runtime. The list in Figure

8a. contains all the objects under the namespace, Placeables. Clicking on an entity in the list will

create an instance of that object

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

13

Figure 8b. Level Editor Properties Window

The ability to place and test objects in a real time simulation is a useful tool for visualization and

debugging purposes, but the experience can be improved with added functionality. UIGE’s

developers wanted the editor to have the ability to manipulate key attributes of objects placed in

the world, such as position, scale, and rotation. A number of input controls were added to

manufacture such modifications, and a properties window (see table in Figure 8b.) was included

to give users control over objects’ spawning options.

Figure 8c. Level Editor Save and Load Windows

Of course adding and manipulating objects in real time is pointless if levels cannot be saved and

reloaded. These options are included with UIGE’s editor and can be seen in Figure 8c. C#

provides a serializer that can store properties of objects into an XML file format, which can then

be loaded at a later time. Spawners, which spawn objects after some criteria is met, may also be

saved using the editor.

The editor provided with UIGE is robust, but there are number of potential enhancements.

Currently, the editor supports the manipulation of objects placed within its world space, but any

modifications made are to properties common to all objects (such as position and scale). Consider

an elevator object. This object has a starting and ending position (offset by its world position) that

it animates to and from when the player activates it. Unless the user wants all of their elevators to

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

14

be displaced by the same amount when activated, they would have to hardcode these properties.

Also, they wouldn’t be able to place the elevators into world using the editor because the editor

can’t save the properties (it won’t let them be edited either). A solution that allows for the

alteration of properties specific to each object would be more desirable, as it would spare users

the need to hardcode any of their objects!

4. STUDENT PROJECTS

4.1. Development Timeline

4.1.1. Game Maker Project

Upon entering the course, students are introduced to basic game logic (update and draw loops) m

through examples created with GameMaker. They are then given the task of constructing a game

proposal document for their first game. The document illustrates the student’s ideas and goals

they have for their games, and also serves as a guideline for grading once projects are submitted.

A proposal can be rejected if administrators deem the plan either too simple or too ambitious.

Once the game proposal is completed and approved, students have approximately three weeks to

construct their GameMaker games. During this time, course administrators will check on each

mstudent’s progress and assist them if needed. After the students finish their games, they are

required to demonstrate their results to the class. Other classmates will offer criticism (positive

and negative) during the presentation and then again with the submission of a peer review

document.

4.1.2. XNA/C#/DigitalRune Tutorials

After completing their GameMaker games, students are introduced to C# and Microsoft’s XNA

Game Studio through a series of short lectures. Participants are then given access to UIGE and

tasked with completing three tutorials (described in section 3.3). The examples provided by

Digital Rune are also made available for optional viewing. The DigitalRune simulations and

guides are not all applicable with UIGE (some are 3D specific, whereas UIGE is 2D), but each of

them takes a thorough look into the engine’s architecture.

4.1.3. Group Project, Milestone One (The Gray Box)

Once participants are more comfortable with C# and UIGE, they are partitioned into teams of

three or four and tasked with creating a game proposal document (similar to the one created for

their GameMaker games). Larger groups aren’t allowed, as that would limit the range of

applications created and potentially overwhelm students with group management issues. After the

document is submitted, it is reviewed so that the first milestone of the project can be established.

Three to four weeks are spent working towards the milestone.

In addition to specific implementation goals, each project must have a functioning gray box

completed by the first milestone’s deadline. A gray box, in this case, is a real-time simulation

showcasing the core systems of the game without the inclusion of any bells or whistles (such as

art assets). For example, the gray box for a platformer game might consist of a controllable player

character that can move and jump around in a basic world space without clipping.

Students are also instructed in version control techniques during this time via Subversion (SVN)

[6], an open source version control software. These techniques, in conjunction with the group

project, teach students how to function in a larger group environment (where more than one

teammate may be submitting adjustments to the project simultaneously).

4.1.4. Group Project, Milestone Two

After the gray box has been submitted, each group presents their partially finished game for

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

15

review.

The projects are critiqued by the rest of the class, who offer advice on which features to scrap,

which to keep implementing, etc. Using that feedback, groups then construct a final milestone.

Typically, the second half of development will see rapid improvements and additions, as students

are better adjusted to using UIGE. This phase lasts four weeks, and concludes with a final

submission of the game’s executable and game assets.

4.1.5. Final Presentation

On the day of the final, the groups are each given five to ten minutes to present a live

demonstration of their (hopefully) completed games. Each member of the team discusses their

role and contribution to the project, and are encouraged to provide feedback pertaining to their

experiences using UIGE. Other groups may offer any final criticisms and then conclude by

submitting a game evaluation document.

4.2. Games Developed Using UIGE

Here are a few of the games created with UIGE.

4.2.1. Oncomon

Figure 9. Oncomon Gameplay Screenshot

Oncomon is a menu based monster breeder and battle game. Players are given a set of monsters

which battle other monsters in the wild in order to collect their DNA. The genetic material can be

spliced together to create new, more powerful creatures. The goal of the game is to create the

perfect monster, which can only be crafted after collecting and experimenting with a substantial

amount of DNA.

The game makes heavy use of DigitalRune’s UI package. Everything in the game is controlled

via UI controls, and the only input required is the left mouse button. Oncomon makes up for the

lack of quick, reflex based combat by providing players with truly deep game systems. Oncomon

surprised UIGE’s developers because they were not expecting to see students veer far from the

platforming genre with their games. In that sense, Oncomon is a good example of the range of

applications UIGE supports.

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

16

4.2.2. Portal Hoppers

Figure 10. Portal Hoppers Gameplay Screenshot

Portal Hoppers (Fig 10) is a platforming game with a twist. The playable character, Paul, is lost in

space and needs to traverse a series of portals to return to his home dimension. Paul needs the

assistance of his object spawning ability to safely make it to each portal. Once an object has been

spawned into the world, Paul can connect it to other objects in order to create a path to the portals.

Portal Hoppers takes some of the techniques used in UIGE’s level editor to spawn and manipulate

objects. Players can manipulate spawned objects in a variety of ways via input controls.

4.2.3. Hubris

Figure 11. Hubris Gameplay

Hubris [7] is a sidescrolling platformer created by one of UIGE’s developers The project was a

solo effort on his part; all code and assets were created by a single programmer with the exception

of the playable character’s sprite sheet. The game was constructed in six weeks. Hubris consists

of five levels, and the goal is to make it to the portal at the end of each stage. It takes

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

17

advantage of a number of UIGE’s components, such as the level editor, state machine, and

collision event functions provided by Object2Ds. The ray tracer and particle systems (see bullet in

Fig. 11) included with DigitalRune are used by a number of the game’s objects.

5. RELATED WORK

Masuch and Rueger [8] discuss teaching game design at a university level. They describe how

they balance their curriculum to ensure their students are not overwhelmed. They take care to m

expose their students to a wide range of tools and systems to broaden the skills gained while also

being careful not to delve so deep into a specific topic that the student becomes lost in the detail.

The authors also discuss the differences between a professional and educational game

development environment in terms of resources with regard to time, experience, and budget. The

authors also describe their past experiences in the classroom with different game development

environments ranging from GameMaker to the game engine that they used, Impara. The systems

included are discussed including examples of how they were used in the games created by the

students.

Ryoo, Fonseca, and Janzen [9] utilize game design theory in order to teach object oriented

programming (OOP) and software engineering. They explain that the difficulty in teaching object

oriented programming to inexperienced students can be lessened by making the experience more

hands on. Some of the challenges faced in teaching OOP are similar to the topics discussed by

Masuch and Rueger such as fighting time constraints and ensuring to not overemphasize a minute

facet of a concept and instead maintaining a broad focus on a variety of topics. The solution

examined is the breaking up of course into four phases: inception, elaboration, construction, and

transition. Boudreaux, Kumar, and Etheredge [10] explain the steps to take a game from concept

to product and the tools used to do so. The authors discuss the game design course and the steps

taken by the students to arrive at a completed game. The course is divided into multiple

milestones beginning with a 2D project in GameMaker to grasp the basic concepts of

programming a game. The next project tasks the students with creating a full 3D game in OGRE.

The article also breaks down an individual project into the pieces that compose the created game.

Shabanah, et al, in [11] describe designing computer games in order to teach algorithms. They

first explain how teaching algorithms is difficult because they are usually applied to complex

problems such as variances in data structures, or complicated mathematical theories. To alleviate

this difficulty, they propose the use of games to simplify the learning process allowing students to

learn about algorithms on a more friendly level. They accomplish this by juxtaposing algorithm

visualizations and games which makes learning the algorithms easier to understand and

implement.

Mark Overmars in [12] discusses tools available to developers used to make games. He also

considers how to use these tools in order to teach computer science. He assesses GameMaker and

walks through certain facets of its user interface and also describes its usefulness in teaching

object oriented programming in a similar fashion to Ryoo, Fonseca, and Janzen from [9].

6. CONCLUSIONS

The objective of the course is twofold -- To impart the principles of video game design and

development to its participants, and to have students see their projects through to fruition.

Striking a balance between these goals has always been a difficult challenge for course

administrators. Past versions of the course tended to adhere to one goal while sacrificing the

other. For example, GameMaker: Studio had been used in past semesters to create both the solo

and group projects. This allowed students to successfully produce finished products; however, the

abstract nature of GameMaker’s scripting language resulted in a lack of exposure to the

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

18

interworking systems under the hood. On the other end of the spectrum, more recent editions of

the course had participants using a more bare bones game engine. It was a great tool for

illustrating the core components of game development, but a majority of groups who used the

engine failed to present a completed game by their project’s deadline.

UIGE was designed to achieve a reasonable balance between the two goals. It provides its users

with a variety of tools and a strong foundation to expand upon, while still making available all of

the engine’s components. The group projects constructed in the Fall 2012 edition of the course

illustrate UIGE’s strength as an engine and teaching device. The games created were some of the

best to come out of the course, and students praised the complexity UIGE had over GameMaker.

The engine is not without its faults, of course. The Fall semester of 2012 had a particularly large

amount of graduate students taking the class, and their shared criticism was that UIGE was too

restrictive in the range of applications it could support (efficiently). Because the engine requires

there to be a physics simulation added to each game state, users who do not use rigid bodies for

their objects, or need use of physics in general, are forced to have an impractical component in

their levels. Many of the tools added to UIGE also rely on the simulation (such as collision

detection), and to have them function without a simulation would require modification on the

student’s part. A rebuttal to these criticisms is that UIGE is not meant for advanced users, and hat

the loss of efficiency shouldn’t impact the quality of any of the games created within the scope of

the course (most games created in the course are fairly resource light).

Having students craft a fully fleshed out game in six to seven weeks, while still allowing them the

full catalog of tools available to a game engine, is unrealistic. UGIE was crafted by students who

had inherited the experiences of engine development from previous administrators of the course.

Continued development of the engine or new engines in the future will benefit from knowledge

aggregated through the iterative construction of tools like UIGE. This paper will provide future

instructors of the course insight into the development of such tools, and should give instructors of

similar programs a reference to use when constructing their own introductory to video game

development courses.

REFERENCES

 [1] GameMaker: Studio. http://www.yoyogames.com/gamemaker/studio

[2] DigitalRune. http://www.digitalrune.com/

[3] Microsoft XNA Game Studio. http://msdn.microsoft.com/en-us/centrum-xna.aspx

[4] Unreal Game Editor: http://www.unrealengine.com/features/editor/

[5] Unity Editor: http://unity3d.com/unity/workflow/integrated-editor

[6] Apache Subversion. http://subversion.apache.org/

[7] Hubris: https://sites.google.com/site/robertmspearsiii/c/senior-project---hubris

[8] Maic Masuch and Michael Rueger. Challenges in Collaborative Game Design Developing Learning

 Environments for Creating Games. In Creating, Connecting and Collaborating through Computing,

 pages 67-74, Los Alamitos, CA, USA, 2005.

[9] Jungwoo Ryoo, Frederico Fonseca, and David Janzen. Teaching Object-Oriented Software

 Engineering through Problem-Based Learning in the Context of Game Design. In Software

 Engineering Education and Training, pages 137-144, Altoona, PA, USA, April 2008

[10] Hollie Boudreaux, Ashok Kumar, and Jim Etheredge. An Algorithmic and Software Engineering

 Based Approach to Robust Video Game Design. In International Journal of Software Engineering &

Computer Game Development and Education: An International Journal(CGDEIJ) Vol.1, No.1

19

 Application (IJSEA), Vol. 2, pages 35-48, July 2011.

[11] Sahar Shabanah, Jim Chen, Harry Wechsler, Daniel Carr, and Edward Wegman. Designing Computer

 Games to Teach Algorithms. In Information Technology: New Generations (ITNG), pages 1119-

 1126, Fairfax, VA, USA, April 2010.

[12] Mark Overmars. Teaching Computer Science through Game Design. In Computer Vol. 37, Issue 4,

 pages 81-83, Netherlands, April 2004.

