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ABSTRACT

The Domain Name System (DNS) is a hierarchical distributed naming system for computers, services, or
any resource connected to the internet or a private network. It associates several of information with
domain names assigned to each of the participating entities. Moreover, DNS distributes the responsibility
of assigning domain names and mapping those names to IP addresses by designating authorities name
servers for each domain. In general, the DNS stores other types of information, such as the list of mail
servers that accept email for a given Internet domain. It also specifies the technical functionality of this
database service and as a part of the Internet Protocol Suite. The Berkeley Internet Name Domain (BIND)
is the most widely used DNS software. It was originally written by four graduate students at the Computer
System Research Group at the University of California, Berkeley (UCB). The original name is Berkeley
Internet Name Domain. Current solution to select the proper operating system that is BIND for DNS server
with configures the server in to the BIND operating system. Besides that, used to run the server and find out
the DNS server IP addresses
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1. INTRODUCTION

BIND (Berkeley Internet Name Domain) is an implementation of the DNS protocols and provides
an openly redistributable reference implementation of the major components of the Domain
Name System, including Domain Name System server, Domain Name System resolver library
and tools for managing and verifying the proper operation of the DNS server. It provides a robust
and stable platform on top of which organizations can build distributed computing systems with
the fully compliant with published DNS standards. Moreover, BIND is open source software that
implements the Domain Name System (DNS) protocols for the internet. The BIND DNS Server,
“named”, is used on the vast majority of name serving machines on the Internet, providing a
robust and stable architecture on top of which an organization's naming architecture can be built
[1-4].

The resolver library included in the BIND distribution provides the standard APIs for translation
between domain names and Internet addresses and is intended to be linked with applications
requiring name service. Besides that, it is reference for implementation of those protocols, but it
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is also production of grade software suitable for use in high volume and high reliability
applications. BIND is available for free download under the terms of the ISC License that is BSD
style license [5-7].

1.1 Problems

It is a typical problem in organizations that are growing that they have to resolve two problems at
once; to have a DNS server for the internal network of the company because long ago there were
already too many computers to remember their IPs and even too many computers to maintain a
set of host files.

To have a DNS server for the external servers, for external clients, etc. To solve this problems
become a bigger problem when the growing organization can't supply more resources than one
DNS server. It is a bigger problem because if you just configure your server with all your names,
public and private, you'll end up polluting the Internet with private addresses, something that is
very bad, and also showing the world part of the topology of your internal network. Something
you don't want a possible attacker/cracker to have [8-10].
The other part of the problem is that for efficiency you may want to resolve to internal IPs when
you are inside and external IPs when you are outside. Here I am taking about computers which
have public and private connections. There are many different solutions to this problem and I
remember solving it even with BIND4, but now I am going to use BIND9 to make a solution that
is very clean. This was deployed in a Ubuntu 10.10 server but it should also work for other
operating systems that run BIND9, just be sure to change your paths appropriately.

2. BIND CONFIGURATION

$ sudo passwd root

Password: (Enter the password for current user)

Enter new UNIX password: (Enter the password you want to set for root)

Retype new UNIX password: (Retype root password)

passwd: password updated successfully

$ su -

Password: (Enter root password here)

# apt-get update; apt-get upgrade

# apt-get install bind9

zone "linux.lan" {

type master;
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file "/etc/bind/zones/linux.lan.db";

};zone

"0.10.10.in-addr.arpa" {

type master;

file "/etc/bind/zones/rev.0.10.10.in-addr.arpa";

};

# mkdir /etc/bind/zones

linux.lan. IN SOA ns1.linux.lan. admin.linux.lan. (

2006081401

28800

3600

604800

38400 )

linux.lan. IN NS ns1.linux.lan.

IN A 10.10.0.77

mail.linux.lan. IN MX 10 mail.linux.lan.

linux.lan. IN MX 10 mail.linux.lan.

www IN A 10.10.0.77

mail IN A 10.10.0.77

ns1 IN A 10.10.0.77

# host linux.lan 127.0.0.1

linux.lan has address 10.10.0.7

linux.lan mail is handled by 10 mail.linux.lan.
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# dig linux.lan

; QUESTION SECTION:

;linux.lan. IN A

;; ANSWER SECTION:

linux.lan. 38400 IN A 10.10.0.77

;; AUTHORITY SECTION:

linux.lan. 38400 IN NS ns1.linux.lan.

;; ADDITIONAL SECTION:

ns1.linux.lan. 38400 IN A 10.10.0.77

The BIND DNS Server, named, is used on the vast majority of name serving machines on the
Internet, providing a robust and stable architecture on top of which an organization's naming
architecture can be built. The resolver library included in the BIND distribution provides the
standard APIs for translation between domain names and Internet addresses and is intended to be
linked with applications requiring name service.

2.1 Differences in BIND8 and BIND9

Apart from being multi-threaded, and a complete code rewrite - which should provide better
stability and security in the long term, there are other differences If there is a syntax error in
named.conf, BIND9 will log errors and not reload the named server. BIND8 will log errors and
the daemon will die! Extensive support of TSIGs (shared keys) for access control, for example,
“update-policy” can be used for fine grained access control of dynamic updates. The tool for
starting/stopping/reloading etc., rndc is different from the v8 ndc - different communications,
authentication and features.

• Syntax in zone files is more rigorously checked (e.g. a TTL line must exist)

• In named.conf

• V8 options ‘check-names’ and ‘statistics-interval’ are not yet implemented in V9.
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• The default for the option ‘auth-nxdomain’ is now ‘no’, if you don’t set this manually,
BIND 9 logs a corresponding message on startup.

• The root server list, often called named.root or root.hints in BIND8 is not necessary in
BIND 9, as it is included within the server.

Figure 1. RAD is a software development methodology

3. METHODOLOGY

RAD is a software development methodology that uses minimal planning in favour of rapid
prototyping. The planning of the software developed using RAD is interleaved with writing the
software itself. The lack of extensive pre planning generally allows software to be written much
faster, and makes it easier to change requirements. Structured techniques and prototyping are
especially used to define user’s requirements and to design the final system. The development
process starts with the development of preliminary data models and business process models
using structured techniques. As below Figure 1 shows RAD methodology.

In the next stage, requirements are verified using prototyping, eventually to refine the data and
process models. These stages are repeated iteratively, further development results in a combined
business requirements and technical design statement to be used for constructing new systems.
RAD approaches may entail compromises in functionality and performance in exchange for
enabling faster development and facilitating applications maintenance. Furthermore, RAD
promotes strong collaborative atmosphere and dynamic gathering of requirements. RAD contains
four phases that is requirements planning phase, user design phase, construction phase and
cutover phase.

3.1. How DNS works

Suppose that local client wishes to learn the IP address of www.sans.org. The client contacts a
local name server which has been configured on the local client by the administrator (statically or
via DHCP, etc.). The local DNS server actually does all of the work required to resolve the IP
address and then will hand the result back to the client. As below Figure 2 shows DNS works.

www.sans.org
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Figure 2. Process of DNS works

The local name server first attempts to contact one of the several root name servers that have
been deployed on the Internet. Root name servers maintain a mapping between domains
(sans.org) and name servers (ns1.sans.org)– when your local name server asks for the IP
address of www.sans.org, it receives a referral from the root name servers which essentially
says "unable to answer your question, but here is the name/address of somebody who can". In
order to be able to contact a root name server, your local name server must be statically
configured with the names and IP addresses of the available root name servers.

This information is maintained by the InterNIC and downloaded by the administrator into a static
file on the local name server. Having received the names and IP addresses of the name servers for
sans.org from the root name server, your local name server then contacts one of these
machines and asks for the IP address of www.sans.org. The name server for sans.org
returns the IP address to your local name server and the local name server hands the information
back to your client.

3.2. Security Issues

The primary risk with running DNS is that you give away too much information that can be used
by people who wish to attack your systems and networks.  BIND has historically had buffer
overflow problems in various releases. Some have led to root compromise attacks; others have
simply been denial-of-service type attacks. The best defences against these attacks is to stay up to
date on the version of BIND you are running, though the Running a Name Server section suggests
how to configure BIND to run in a chroot()ed environment, which can help protect you in the
event of an exploitable buffer overflow. As below Figure 3 shows cache poisoning.

www.sans.org
www.sans.org
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Figure 3. Cache Poisoning – Spoofing

Cache poisoning occurs when a name server has been tricked into believing erroneous
information from some external source. Sometimes this occurs by accident, but most often it is
used by attackers who wish to embarrass an organization or exploit trust relationships based on
hostname/address information. As below Figure 4 shows unauthorized zone transfer

Figure 4. Block Unauthorized Zone Transfer

Generally, each organization runs one master DNS server and one or more slave servers for
redundancy. Periodically, the slaves must contact the master and download any updates to the
local DNS database– this is referred to as a zone transfer. By default, name servers running BIND
allow any remote system to perform a zone transfer– whether that system is a legitimate name
server for that domain or not. Zone transfers can even be requested from the slave name servers
for the domains. Attackers often attempt zone transfers in order to gather information about client
local network. If they succeed then they have instantly gotten all of the information about your
internal hosts and networks with very little effort. Of course, a split horizon DNS configuration
can limit the amount of information an attacker will receive, but it is still a good idea to prevent
unauthorized hosts from downloading from zone databases. Figure 5. Show the DNS Firewall
Architecture.
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Figure 5. DNS Firewall Architecture

Typical DNS firewall configuration in use at many organizations today. The organization has a
multi-legged firewall which connected the external Internet to both a semi-private de-militarized
zone (DMZ) network and a private internal corporate network. The DMZ network is where an
organization would put its Web and FTP servers and any other machines that the outside world
needed to reach– and for purposes of this example a machine called bastion which will be the
"external" DNS server for our split-horizon example. On the internal network there is a machine
mailhub which acts as the primary server for the "internal" DNS.

3. CONCLUSIONS

BIND 4 and BIND 8 have both had a substantial number of serious security vulnerabilities over
the years, and as such their use is now strongly discouraged. While BIND 9 was a complete
rewrite, ostensibly to mitigate these on-going security issues, it has also experienced a large
number of serious security vulnerabilities Bind listens on port 53 UDP and TCP. TCP is normally
only used during zone transfers so it would appear that you could filter it if you have no slaves.
However If the response to a query is greater than 1024 bytes, the server sends a partial response,
and client and server will try to redo the transaction with TCP. Responses that big do not happen
often, but they happen. And people do quite often block 53/tcp without their world coming to an
end. But this is where one usually inserts the story about the Great DNS Meltdown when more
root servers were added. This made queries for the root list greater than 1024 and the whole DNS
system started to break down from people violating the DNS spec (RFC1035) and blocking TCP.
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