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ABSTRACT 

 
This paper derives new results for the adaptive control and synchronization design of the Cai system 

(2007), when the system parameters are unknown. Cai system is one of the paradigms of 3-D chaotic 

systems discovered by Cai and Tan (2007). In this paper, we first construct an adaptive controller to 

stabilize the Cai system to its unstable equilibrium at the origin. Then we build an adaptive synchronizer to 

achieve global chaos synchronization of the identical Cai systems with unknown parameters. The results 

derived for adaptive stabilization and adaptive synchronization for the Cai systems have been established 

using adaptive control theory and Lyapunov stability theory. Numerical simulations have been shown to 

demonstrate the effectiveness of the adaptive control and synchronization schemes derived in this paper for 

the Cai system. 
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1. INTRODUCTION 

 
Nonlinear dynamical systems, which are extremely sensitive to changes in initial conditions, are 

known as chaotic systems. Chaotic systems exhibit random-like behaviour in its deterministic 

motion. Experimentally, chaos was first discovered by Lorenz ([1], 1963), while he was 

simulating weather models. A chaotic system simpler than the Lorenz system was proposed by 

Rössler ([2], 1976).   

 

The control of chaotic systems is to design state feedback control laws that stabilizes the chaotic 

systems around the unstable equilibrium points. Active control technique is used when the system 

parameters are known and adaptive control technique is used when the system parameters are 

unknown [3-4]. 

 

Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic 

attractors are coupled or when a hyperchaotic attractor drives another hyperchaotic attractor. In 

the last two decades, there has been significant interest in the literature on the synchronization of 

chaotic and hyperchaotic systems [5-16].  

 

In 1990, Pecora and Carroll [5] introduced a method to synchronize two identical chaotic systems 

and showed that it was possible for some chaotic systems to be completely synchronized. From 

then on, chaos synchronization has been widely explored in a variety of fields including physical 

systems [6], chemical systems [7], ecological systems [8], secure communications [9-10], etc. 
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The pioneering work by Pecora and Carroll (1990) has been followed by a variety of impressive 

approaches in the literature such as the sampled-data feedback method [11], OGY method [12], 

time-delay feedback method [13], backstepping method [14], active control method [15-20], 

adaptive control method [21-25], sliding mode control method [26-28], etc. 

 

This paper is organized as follows. In Section 2, we give a description of the Cai chaotic system 

(Sprott, [29], 1994). In Section 3, we derive results for the adaptive control of Cai chaotic system 

with unknown parameters. In Section 4, we derive results for the adaptive synchronization of the 

identical Cai chaotic systems with unknown parameters. Section 5 contains a summary of the 

main results derived in this paper. 

 

2.  SYSTEM DESCRIPTION 

  
The Cai system ([29], 2007) is described by the 3D dynamics 

 

1 2 1

2 1 2 1 3

2

3 1 3

( )x a x x

x bx cx x x

x x dx

= −

= + −

= −

&

&

&

                (1) 

 

where
1 2 3, ,x x x are the state variables of the system and , , ,a b c d are constant, positive parameters 

of the system. 

 

The system (1) is chaotic when the parameter values are taken as 

 

  20,   14,  10.6a b c= = =  and 2.8d =                (2) 

 

Figure 1 describes the strange attractor of the Cai system (1). 

 

 

Figure 1. The Strange Attractor of the Cai System 
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When the parameter values are taken as in (2) for the Cai chaotic system (1), the system 

linearization matrix at the equilibrium point 0 (0,0,0)E = is given by 

 

20 20 0

14 10.6 0

0 0 2.8

A

− 
 

=  
 − 

 

 

which has the eigenvalues 

 

  
1= 27.3736,λ − 2 2.8λ = −    and   

3 17.9736λ =  

 

Since 3λ is an unstable eigenvalue of ,A it follows from Lyapunov stability theory [30] that the 

Cai system (1) is unstable at the equilibrium point 0 (0,0,0).E =  

 

3. ADAPTIVE CONTROL OF THE CAI CHAOTIC SYSTEM 

 
3.1 Theoretical Results 

 
In this section, we design adaptive control law for globally stabilizing the Cai system (2007), 

when the parameter values are unknown.  

 

Thus, we consider the controlled Cai system, which is described by the 3D dynamics 

 

1 2 1 1

2 1 2 1 3 2

2

3 1 3 3

( )x a x x u

x bx cx x x u

x x dx u

= − +

= + − +

= − +

&

&

&

                         (3) 

 

where 1 2,u u and 3u are feedback controllers to be designed using the states 1 2 3, ,x x x and 

estimates ˆ ˆˆ ˆ, , ,a b c d of the unknown parameters , , ,a b c d of the system. 

In order to ensure that the controlled system (3) globally converges to the origin asymptotically, 

we consider the following adaptive control functions 

 

1 2 1 1 1

2 1 2 1 3 2 2

2

3 1 3 3 3

ˆ( )

ˆ ˆ

ˆ

u a x x k x

u bx cx x x k x

u x dx k x

= − − −

= − − + −

= − + −

               (4) 

 

where ˆˆ ˆ, ,a b c  and  d̂ are estimates of the parameters , ,a b c and ,d respectively, and 

, ( 1, 2,3)ik i =  are positive constants. 

 

Substituting the control law (4) into the controlled Cai dynamics (3), we obtain 
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1 2 1 1 1

2 1 2 2 2

3 3 3 3

ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ( ) 

x a a x x k x

x b b x c c x k x

x d d x k x

= − − −

= − + − −

= − − −

&

&

&

               (5) 

 

Let us now define the parameter errors as 

 

       ˆ,ae a a= −  ˆ,be b b= −   ˆ
ce c c= −   and ˆ

de d d= −              (6) 

 

Using (6), the closed-loop dynamics (5) can be written compactly as 

 

    

1 2 1 1 1

2 1 2 2 2

3 3 3 3

( )

 

a

b c

d

x e x x k x

x e x e x k x

x e x k x

= − −

= + −

= − −

&

&

&

                (7) 

 

Next, we consider the quadratic Lyapunov function 

 

  ( )2 2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , , )

2
a b c d a b c dV x x x e e e e x x x e e e e= + + + + + +                 (8) 

which is a positive definite function on 
7.R  

 

Note also that 

  ˆ ˆˆ ˆ,   ,   ,   a b c de a e b e c e d= − = − = − = −
& && && & & &                 (9) 

 

Differentiating V along the trajectories of (7) and using (9), we obtain   

 

( )
( ) ( )

2 2 2

1 1 2 2 3 3 1 2 1 1 2

2 2

2 3

ˆˆ ( )

ˆˆ      

a b

c d

V k x k x k x e x x x a e x x b

e x c e x d

 = − − − + − − + − 

+ − + − −

&&&

&&

         (10) 

 

 In view of Eq. (10), the estimated parameters are updated by the following law:   

 

     

1 2 1 4

1 2 5

2

2 6

2

3 7

ˆ ( )

ˆ

ˆ

ˆ

a

b

c

d

a x x x k e

b x x k e

c x k e

d x k e

= − +

= +

= +

= − +

&

&

&

&

                     (11) 

 

where 
4 5,k k , 

6k and 
7k are positive constants. 

 

Next, we prove the following result.  
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Theorem1. The controlled Cai system (1) with unknown parameters is globally and exponentially 

stabilized for all initial conditions 
3(0)x R∈ by the adaptive control law (4), where the update 

law for the parameters is given by (11) and ,  ( 1, ,7)ik i = K are positive constants.   

 

Proof. Substituting (11) into (10), we get 

 

          
2 2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 7   a b c dV k x k x k x k e k e k e k e= − − − − − − −&              (12) 

which is a negative definite function on 
7.R  

 

Thus, by Lyapunov stability theory [30], it is immediate that the controlled Cai system (7) is 

globally exponentially stable and also that the parameter estimation errors , , ,a b c de e e e  

exponentially converge to zero with time. 

 

This completes the proof. � 

 

3.2 Numerical Results 

 
For the numerical simulations, the fourth order Runge-Kutta method is used to solve the chaotic 

system (3) with the adaptive control law (4) and the parameter update law (11). 

 

The parameters of the Cai system (3) are selected as   

 

 20,   14,   10.6a b c= = =  and  2.8d =                

       

For the adaptive and update laws, we take  

 

5,   ( 1, 2, ,7).ik i= = K  

 

Suppose that the initial values of the estimated parameters are  

 

           ˆ ˆˆ ˆ(0) 9,   (0) 22,   (0) 14,   (0) 5a b c d= = = =  

 

The initial state of the controlled Cai system (3) is taken as  

 

1 2 3(0) 9,   (0) 24,   (0) 20x x x= = = −  

 

When the adaptive control law (4) and the parameter update law (11) are used, the controlled 

modified Cai system converges to the equilibrium 0 (0,0,0)E = exponentially as shown in Figure 

2.  

 

The time-history of the parameter estimates is shown in Figure 3.  

 

The time-history of the parameter estimation errors is shown in Figure 4. 
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Figure 2. Time Responses of the Controlled Cai System 

  

 

 

Figure 3.  Time-History of the Parameter Estimates ˆ ˆˆ ˆ( ),  ( ),  ( ),  ( )a t b t c t d t  
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Figure 4.  Time-History of the Parameter Estimates , , ,a b c de e e e  

 

4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL CAI CHAOTIC SYSTEMS 

 
4.1 Theoretical Results 

 
In this section, we discuss the adaptive synchronization of identical Cai systems (2007) with 

unknown parameters. 

 

As the master system, we consider the Cai dynamics described by 

 

             

1 2 1

2 1 2 1 3

2

3 1 3

( )x a x x

x bx cx x x

x x dx

= −

= + −

= −

&

&

&

                                    (13) 

 

where , ( 1, 2,3)ix i = are the state variables and , , ,a b c d are unknown system parameters.                  

As the slave system, we consider the controlled Cai system described by 

 

   

1 2 1 1

2 1 2 1 3 2

2

3 1 3 3

( )y a y y u

y by cy y y u

y y dy u

= − +

= + − +

= − +

&

&

&

                                       (14) 
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where , ( 1, 2,3)iy i = are the state variables and , ( 1, 2,3)iu i = are adaptive controllers to be 

designed. 

 

The synchronization error is defined by 

 

    

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= −

= −

                       (15) 

 

Then the error dynamics is obtained as 

 

  

1 2 1 1

2 1 2 1 3 1 3 2

2 2

3 3 1 1 3

( )e a e e u

e be ce y y x x u

e de y x u

= − +

= + − + +

= − + − +

&

&

&

               (16) 

 

Let us now define the adaptive control functions 1 2 3( ), ( ), ( )u t u t u t as 

 

  

1 2 1 1 1

2 1 2 1 3 1 3 2 2

2 2

3 3 1 1 3 3

ˆ( )

ˆ ˆ

ˆ

u a e e k e

u be ce y y x x k e

u de y x k e

= − − −

= − − + − −

= − + −

                 (17) 

 

where ˆˆ ˆ, ,a b c and d̂ are estimates of the parameters , ,a b c and ,d  respectively, and 

, ( 1, 2,3)ik i = are positive constants. 

 

Substituting the control law (17) into (16), we obtain the error dynamics as 

 

   

1 2 1 1 1

2 1 2 2 2

3 3 3 3

ˆ( )( )

ˆ ˆ( ) ( )

ˆ( )

e a a e e k e

e b b e c c e k e

e d d e k e

= − − −

= − + − −

= − − −

&

&

&

                    (18)         

       

Let us now define the parameter errors as 

 

    ˆ ˆˆ ˆ,   ,   ,   a b c de a a e b b e c c e d d= − = − = − = −                 (19) 

 

Substituting (19) into (18), the error dynamics simplifies to 

 

      

1 2 1 1 1

2 1 2 2 2

3 3 3 3

( )a

b c

d

e e e e k e

e e e e e k e

e e e k e

= − −

= + −

= − −

&

&

&

                           (20) 

 

Consider the quadratic Lyapunov function 

 



International Journal on Cybernetics & Informatics ( IJCI) Vol.1, No.3, June 2012 

 

25 

 

         ( )2 2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , , ) ,

2
a b c d a b c dV e e e e e e e e e e e e e e= + + + + + +               (21) 

 

which is a positive definite function on 
7.R  

 

Note also that 

 

  ˆ ˆˆ ˆ,   ,   ,   a b c de a e b e c e d= − = − = − = −
& && && & & &                     (22) 

 

Differentiating V along the trajectories of (20) and using (22), we obtain   

 

   
( )

( ) ( )

2 2 2

1 1 2 2 3 3 1 2 1 1 2

2 2

2 3

ˆˆ( )  

ˆˆ       

a b

c d

V k e k e k e e e e e a e e e b

e e c e e d

 = − − − + − − + − 

+ − + − −

&&&

&&

               (23) 

 

In view of Eq. (23), the estimated parameters are updated by the following law: 

 

  

1 2 1 4

1 2 5

2

2 6

2

3 7

ˆ ( )

ˆ

ˆ

ˆ

a

b

c

d

a e e e k e

b e e k e

c e k e

d e k e

= − +

= +

= +

= − +

&

&

&

&

                       (24) 

 

where 4 5 6, ,k k k and 7k are positive constants. 

 

Theorem 2.  The identical Cai systems (13) and (14) with unknown parameters are globally and 

exponentially synchronized for all initial conditions by the adaptive control law (17), where the 

update law for parameters is given by (24) and , ( 1, ,7)ik i = K are positive constants.   

 

Proof. Substituting (24) into (23), we get 

 

    
2 2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 7   a b c dV k e k e k e k e k e k e k e= − − − − − − −&            (25) 

 

From (25), we find that V&  is a negative definite function on 
6.R  

 

Thus, by Lyapunov stability theory [30], it is immediate that the synchronization error and the 

parameter error decay to zero exponentially with time for all initial conditions. � 

 

4.2 Numerical Results 

 
For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two 

systems of differential equations (13) and (14) with the adaptive control law (17) and the 

parameter update law (24). 

 

We take the parameter values as in the chaotic case, viz. 
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  20,   14,   10.6,   2.8a b c d= = = =       

   

We take the positive constants ,  ( 1, ,7)ik i = K as  

 

5ik =   for  1,2, ,7.i = K  

 

Suppose that the initial values of the estimated parameters are 

 

    ˆ ˆˆ ˆ(0) 16,   (0) 4,   (0) 8,    (0) 5a b c d= = = =  

 

We take the initial values of the master system (13) as 

 

1 2 3(0) 5,   (0) 25,   (0) 14x x x= − = =  

 

We take the initial values of the slave system (14) as  

 

1 2 3(0) 24,   (0) 10,   (0) 9y y y= = = −  

Figure 5 shows the adaptive chaos synchronization of the identical Cai systems. 

 

Figure 6 shows the time-history of the synchronization error 1 2 3, , .e e e  

 

Figure 7 shows the time-history of the parameter estimates ˆ ˆˆ ˆ( ), ( ), ( ), ( ).a t b t c t d t    

 

Figure 8 shows the time-history of the parameter estimation errors , , , .a b c de e e e  

 

 

 

Figure 5. Adaptive Synchronization of the Cai Systems 
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Figure 6. Time-History of the Synchronization Error 1 2 3, ,e e e  

 

 

 

Figure 7. Time-History of the Parameter Estimates ˆˆ ˆ( ), ( ), ( )a t b t c t  
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Figure 8.  Time-History of the Parameter Estimation Error , ,a b ce e e  

 

5. CONCLUSIONS 

 
In this paper, we derived new results for the design of adaptive control and synchronization of the 

Cai system (2007) with unknown system parameters. First, we designed adaptive control laws to 

stabilize the Cai system to its unstable equilibrium point at the origin based on the adaptive 

control theory and Lyapunov stability theory. Then we derived adaptive synchronization scheme 

and update law for the estimation of system parameters for the identical Cai systems with 

unknown parameters. Our synchronization schemes were established using Lyapunov stability 

theory. Since the Lyapunov exponents are not required for these calculations, the proposed 

adaptive control method is very effective and convenient to achieve chaos control and 

synchronization of the Cai system. Numerical simulations are shown to depict the effectiveness of 

the proposed adaptive control and synchronization schemes. 
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