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ABSTRACT 

 

The problem of global stabilization for a class of nonlinear system is considered in this paper.The sufficient 

condition of the global stabilization of this class of system is obtained by deducing thestabilization of itself 

from the stabilization of its subsystems. This paper will come up with a designmethod of state feedback 

control law to make this class of nonlinear system stable, and indicate the efficiency of the conclusion of 

this paper via a series of examples and simulations at the end. Theresults presented in this paper improve 

and generalize the corresponding results of recent works. 
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1. Introduction 
 

Stabilization is a seriously important topic in control system designing [1]-[13]. In recent years 

the stabilization of nonlinear systems has won extensive attention from researchers, and some 

achievements has been made. The problem is simplified into the question of stabilization of low 

order systems, the sufficient condition of the system is gained, and that the state feedback control 

law is designed by combining centre manifold theory with part feedback linearization (e.g., [14]). 

 

The design method to construct global stabilization feedback control law is founded and several 

sufficient condition of global stabilization for the system is gained by applying linearization 

method to a class of nonlinear systems (e.g., [15, 16]). The sufficient condition of local 

stabilization and global stabilization for the system is gained by researching the stabilization 

question of minimum phase nonlinear system (e.g., [16]). A new method to design control laws is 

given, and it has been proved that the corresponding close-loop system can be globally stable 

under appropriate condition by researching the stabilization question of a class of affine nonlinear 
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system with standard form (e.g., [17]). The sufficient condition for the global stabilization of 

several smooth feedback is given by researching the global stabilization of cascade systems 

constructed with linear systems which can be made stable and asymptotically stable nonlinear 

systems (e.g., [18]). The stabilizationquestion of a class of triangle system is researched with 

smooth output feedback (e.g., [19]). The global stabilization question of cascade system made up 

of two nonlinear systems is researched via constructing Lyapunov function (e.g., [20]). The 

sufficient condition for the system to be stable is gained, and a state feedback control law is 

designed out, through researching the stabilization question of a class of non-minimum phase-

nonlinear system with its reduced-order control system(e.g., [21]). The sufficient condition for the 

system to be stable is gained, and that a state feedback control law is designed out through 

through researching the stabilization question of a class of non-minimum phase-nonlinear system 

based on drive control (e.g., [22]). 

 

This paper will research the global stabilization question of a class of nonlinear system on the 

base of analysis, (e.g. See Ref. [8]-[12]), and deduce the stabilization of the original system from 

the stabilization of its subsystem-reduced-order control system. According to the features of this 

class of nonlinear system, this paper will come up with a design method for the corresponding 

state feedback control law, and will prove that close-loop system is globally asymptotically stable 

under appropriate condition with Lyapunov second method. This paper will indicate the 

efficiency of the conclusion of this paper via a series of examples and simulations at the end. In 

this paper, if not specially illustrated, k ·  k refers to Euclid norm, k ·  kF refers to Frobenius norm, 

| ·  | refers to scalar function or absolute value of function. 

 

2. System analysis 
 

Consider the following nonlinear system 

 

        (1) 

 

where x ∈ Rm and y ∈ Rn−m are state vectors, u ∈ Rn−m is a input vector. f(x) is a vector 

 

function of x, h(x, y) is a vector function of (x, y), g(x, y) is a scalar function of (x, y), and f(x), 

g(x, y) and h(x, y) are at least C1 functions about x or (x, y), respectively. 

 

Assumption 1. The subsystem of system (1) 

 

         (2) 

is globally stable. 

 

Remark 1. This paper uses the static stability of system (1) to discuss its dynamic stability. The 

purpose of Assumption 1 is to ensure the static stability of system (1). 

 

In order to obtain main result of this paper, we should do further supposition. 

 

Assumption 2. The subsystem (2) of system (1) is globally stable and there is a Lyapunov 
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function v(x) which satisfies 

 

 
 

where M is a positive constant. 

 

Before proving main theorems, present the following analysis and Lemma 1 at first. 

Consider the following nonlinear system 

 

        (3) 

 

where x ∈ Rm and y ∈ Rn−m are state vectors, f(x, y) and g(x, y) are vector function of (x, y), 

and f(x, y) and g(x, y) are at least C1 functions about(x, y). 

 

Lemma 1. (e.g. see Ref. [23]) If the subsystem of system (3) 

 

         (4) 

 

is globally stable, and there is a continuous differentiable scalar functions v(x) such that 

limkxk→0 v(x) =+∞, and the derivative of along the trajectory of system (4) at k x k> 0 such that 

v(x) ≤ 0, then system (3) is globally stable. 

 

Remark 2. Lemma 1 obtained is rather significant for the proving of the main theorems in this 

paper, the main idea of which is that the stabilization of the original system can be proved when 

reduced-order subsystem such that static stabilization and some essential assumed conditions. 

Before the theorem of this paper given, we must give the following Lemma 2 at first, which is is 

easy to understand. 

 

Lemma 2. (e.g. see Ref. [26], [27]) Assume that subsystem (2) of nonlinear system (1) is globally 

asymptotically stable, then from Converse-Lyapunov theorem, we know that there must be a 

positive function v(x) which satisfies 

 

 (5) 
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Without loss of generality. We can suppose 

 

 
 

where " is a very small positive. 

 

3. Main results 

 
In the process of researching nonlinear systems, it’s always desired that the states of the system 

can reach stable values, so that as many interferences as possible could be avoided. Therefore, 

making systems stable has a strong practical applicability. Because of that this question has a 

certain actual application background, the research in this paper has some practical meaning. 

 

3.1 Reduced-order state feedback controller design 

 
Theorem 1. Assume that subsystem (2) of nonlinear system (1) satisfies Assumption 2 and there 

is a scalar function K(x, y) for system (1) which satisfies: 

 

    (6) 

 

Then there is a state feedback control low 

 

    (7) 

 

such that the system (1) globally asymptotically stable, where the elements of K(x, y) are at least 

C1 functions about (x, y). 
 

Proof. After substitution the state feedback control low (7) into system (1) we see that 

 

       (8) 

 

According to Lemma 2, we can construct a Lyapunov function 
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then its derivative along the trajectory of system (1) is 

 

 
 

Combined with condition (6) we easy to know 

 

 
 

Then we can conclude from Lemma 1 and analysis, e.g. see Ref. 8-12, that system (1) is globally 

asymptotically stable. 

 

3.2 Further result in mathematics 

 
The condition of subsystem (2) respect to system (1) is weakens and the further investigation is 

given. 

 

Theorem 2. Assume that subsystem (2) of nonlinear system (1) is satisfies Assumption 1. Then 

there must be a positive M, when K(x, y) + g(x, y) < −M, there is a state feedback control low 

 

       (9) 

 

such that the system (1) globally asymptotically stable, where the elements of K(x, y) are at least 

C1 functions about (x, y). 
 

Proof. After substitution the state feedback control low (9) into system (1) we see that 

 

       (10) 
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According to Lemma 2, we can construct a Lyapunov function 

 

 
then its derivative along the trajectory of system (1) is 

 

 
 

Combined with condition K(x, y) + g(x, y) < −M we easy to know that so long as 

 

 
there must be 

 

 
 

Then we can conclude from Lemma 1 and analysis, e.g. see Ref. 8-12, that system (1) is globally 

asymptotically stable. 

 

4. System simulations 

 
In this section, in order to show that the approach of this paper to this sore of control system is 

effective and convenient, we give some illustrative examples and simulation results. 

 

Example 1. Consider the following second-order nonlinear system 

 

        (11) 
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Solution. Base on the theorem above, for the subsystem of system (11), we can construct a 

Lyapunov function which is given by 

 

 
 

It is easy to know that the subsystem of system (11) 

 
is globally asymptotically stable. 

 

Base on the condition (6) of Theorem 1, let 

 

 
Then, there is a state feedback control law 

 

       (12) 

 

such that the system (11) is globally asymptotically stabilization. 

Simulation. Without loss of generality. Let the initial values of simulation 

 

 
 

and the input control signal 

 

 
 

The sample time is 0.1s, and the simulation time are 50s seconds. 

The dynamic response of the system (11) with the state feedback control law (12) is show in 

Figure 1. 
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From the Figure 1, we can know that the controlled closed-loop system of the system (11) is 

asymptotically stable. 

 

 
Figure 1. Dynamic response of the system (11) with the state feedback control law 

(12). 

 
Figure 2. Dynamic response of the system (13) with the state feedback control law 

(14). 

 

Example 2. Consider the following third-order nonlinear system 

 

     (13) 
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Solution: Base on the theorem above, for the subsystem of system (13), we can construct a 

Lyapunov function which is given by 

 

 
 

It is easy to know that the subsystem of system (13) 

 

 
is globally asymptotically stable. 

 

Base on the condition (6) of Theorem 1, let 

 

 
 

Then, there is a state feedback control law 

 

   (14) 

 

such that the system (13) is globally asymptotically stabilization. 

 

Simulation. Without loss of generality. Let the initial values of simulation 

 

 
and the input control signal 

 

 
 

The sample time is 0.1s, and the simulation time are 10s seconds. 

The dynamic response of the system (13) with the state feedback control law (14) is show in 

Figure 2. 

 

From the Figure 2, we can know that the controlled closed-loop system of the system (13) is 

asymptotically stable [28]. 
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5. Conclusion 

 
Based on some work of pioneers, the global stabilization problem for a class of nonlinear system 

is investigated in this paper, and that the stabilization of the original system is obtioned from the 

stabilization of its reduced-order subsystem. A design method for the corresponding state 

feedback control law is given according to the features of this class of nonlinear system, and that 

the closeloop system is globally asymptotically stable under appropriate condition is proved with 

Lyapunov second method. This paper has indicated the efficiency of the conclusion of this paper 

via a series of examples and simulations at the end. 
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