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ABSTRACT 

 
Cancer is a major leading cause of death and responsible for around 13% of all deaths world-wide. Cancer 

incidence rate is growing at an alarming rate in the world. Despite the fact that cancer is preventable and 

curable in early stages, the vast majority of patients are diagnosed with cancer very late. Therefore, it is of 

paramount importance to prevent and detect cancer early. Nonetheless, conventional methods of detecting 

and diagnosing cancer rely solely on skilled physicians, with the help of medical imaging, to detect certain 

symptoms that usually appear in the late stages of cancer. The microarray gene expression technology is a 

promising technology that can detect cancerous cells in early stages of cancer by analyzing gene 

expression of tissue samples. The microarray technology allows researchers to examine the expression of 

thousands of genes simultaneously. This paper describes a state-of-the-art machine learning based 

approach called averaged one-dependence estimators with subsumption resolution to tackle the problem of 

recognizing cancer from DNA microarray gene expression data.  To lower the computational complexity 

and to increase the generalization capability of the system, we employ an entropy-based geneselection 

approach to select relevant gene that are directly responsible for cancer discrimination. This proposed 

system has achieved an average accuracy of 98.94% in recognizing and classifyingcancer over 11 

benchmark cancer datasets.  The experimental results demonstrate the efficacy of our framework. 
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1. INTRODUCTION 
 
According to the World Health Organization (WHO), cancer is a leading cause of death and 

responsible for around 13% of all deaths world-wide [1]. Cancer incidence rate is growing at an 

alarming rate. Despite the fact that cancer is preventable and curable at an early stage, the vast 

majority of patients are diagnosed with cancer very late. Therefore, preventing and detecting 

cancer early is very important. Nonetheless, conventional methods of detecting and diagnosing 

cancer rely solely on skilled physicians, with the help of medical imaging, to detect certain 

symptoms that usually appear in the late stages of cancer. Therefore, an early cancer detection 

system is required to prevent people from dying as a consequence of this unfortunate disease.  

 

Technically, cancer is a family of diseases that involve uncontrolled cell growth wherein cells 

divide and grow exponentially, generating malignant tumors and spreading to other parts of the 

body. The destructive power of the cancer is that it may not only spread to the neighboring 

tissues, but also to the whole body through the lymphatic system or bloodstream.  There are a few 

hundreds of known cancers found in humans[2]. Because there are an astronomical number of 
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causes of cancer, researchers are still trying to understand the basis of cancer which still remain 

only partially understood. However, one thing that is apparent is that in order for a healthy cell to 

transmute into a cancer cell, the genes which regulate cell growth and differentiation must be 

modified[3]. It is known that cancers are caused are a chain of mutations to the genetic sequence. 

Figure 1[4] depicts the development of a cancer cell caused by a series of mutations which makes 

the cell proliferate more than its immediate neighbors by a process which transforms a normal 

healthy cell into a micro-invasive cell at the genetic level.  

 

 

 
 

Figure 1. Formation of Cancer Cell[4]. 

 

The nucleus of a human cell contains 46 chromosomes, each of which comprises a single linear 

molecule of deoxyribonucleic acid (DNA), which is intimately complexed with proteins in the 

form of chromatin[5]. DNA is the building block of life, which contains encoded genetic 

instructions for living organisms. A DNA is transcribed to become a precursor mRNA, which is 

then spliced to become an mRNA, which is in turn translated to become a protein. Because all the 

cells (except some) in a human body contain an identical set of genes, the expression level of 

each gene must differ from cell to cell. If we can somehow measure the expression levels of 

individual genes in a cell, we can use machine learning techniques to predict whether a cell is 

cancerous and what type of cancer it is. Fortunately, the DNA microarray technology allows 

researchers to measure expression levels of genes in a cell. A DNA microarray, also known as 

DNA chip, gene chip, gene array or biochip, is a densely packed array of identified DNA 

sequences attached to a solid surface, such as glass, plastic or silicon chip[6]. On a microarray 

chip, DNA fragments are attached to a substrate and then probed with a known gene or fragment. 

DNA sequences representing tens of thousands of genes are spotted or in situ synthesized on a 

very small slide like the one in Figure 2 [6]. The microarray in Figure 2 [6] is comprised of more 

than 50,000 probe sets capable of evaluating expression level of over 40,000 transcripts, 

including 38,500 human genes [6].Microarray chips are scanned using an microarray scanner [7] 

and digitized on a computer. The scanner generates a 2D heat map, also known as, microarray 

image or microarray data. Therefore, DNA microarrays can be used to determine which genes are 

“turned on” (expressed) and which genes and “turn off” in a particular cell. They determine not 

only whether individual genes are expressed, but also the level at which these individual genes 

are expressed. 
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Figure2. DNA microarray chip[6]. 

 

In this paper, we tackle the problem of recognizing cancer from DNA microarray gene expression 

data. During the past few decades, applications of pattern recognition and machine learning 

techniques have emerged in many domains[8-17]. Pattern recognition and machine learning 

techniques have also recently become popular in the arena of microarray gene expression 

analysis.There have been some attempts to recognize and classify cancer using machine learning 

techniques. Zainuddin and Ong [18] proposed a novel approachto perform microarray gene 

expression data classification using wavelet neural networks (WNN). The types of activation 

functions used in the hidden layer of the WNN were varied. They also proposed an enhanced 

fuzzy c-means clustering algorithm—specifically, the modified point symmetry-based fuzzy c-

means (MSFCM) algorithm—to select the locations of the translation vectors of the WNN. 

Similarly, Chen [19] employed strict ordinal regressions, including cumulative logit model in 

traditional statistics with dimensionality reduction, and distribution-free approaches of large 

margin rank boundaries implemented by the support vector machine, as well as an ensemble 

ranking scheme, to classify cancer stagesfrom gene expression microarray data. Sharma and 

Paliwal[20] proposed Gradient LDA technique which avoided the singularity problem associated 

with the within-class scatter matrix and their experimental results showed the usefulness of their 

cancer classification system. Their technique was applied on three gene expression datasets; 

namely, acute leukemia, small round blue-cell tumor (SRBCT) and lung adenocarcinoma. They 

alleged that their system achieved lower misclassification error as compared to several other 

previous techniques. Chakraborty[21] came up with a hierarchical Bayesian probit model for two-

class cancer classification. Instead of assuming a linear structure for the function that relates the 

gene expressions with the cancer types, they assumed that the relationship was explained by an 

unknown function which belonged to an abstract functional space like the reproducing kernel 

Hilbert space. Their formulation automatically reduces the dimension of the problem from the 

large number of covariates or genes to a small sample size. Their model is highly flexible in terms 

of explaining the relationship between the cancer types and gene expression measurements and 

picking up the differentially expressed genes. Many other researchers [22-28] employ 

probabilistic approach to classify microarray gene expression data.This paper describes a state-of-

the-art machine learning based approach called averaged one-dependence estimators with 

subsumption resolution to tackle the problem of recognizing cancer without any prior knowledge. 
 

2. CANCER RECOGNITION FROM MICROARRAY GENE EXPRESSION DATA 

 

The goal of cancer recognition is to predict, given a set of gene expression data, whether or not 

the genetic sequence comes from a cancerous cell and what type of cancer. We proposed athree-

layered framework that consists of gene selection, numerosity reduction, and genetic data 

classification as shown in Figure 3. The complexity of any machine learning classifier depends 

upon the dimensionality of the input data [29]. There is also a phenomenon known as the ‘curse 
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of dimensionality’ that arises with high dimensional input data [30]. In the case of genetic data 

classification, not all the genes in a genetic sequence might be responsible for discriminating 

cancer types. Therefore, we propose to employ a gene selection process to select relevant genes in 

an unsupervised manner and a numerosity reduction process to discretize the gene expression 

levels. Section 2.1 describes the process of gene selection and Section 2.2 describes the process of 

numerosity reduction. After dimensionality reduction, we propose to perform cancer 

classification using the averaged one-dependence estimators with subsumption resolution 

(AODEsr).  Section 2.3 describes the process of classification 

Figure3. High-level flow diagram of cancer classification framework. 

 

2.1. Entropy-basedgene selection 

 
The complexity of any machine learning classifier depends upon the dimensionality of the input 

data [29]. Generally, the lower the complexity of a classifier, the more robust it is. Moreover, 

classifiers with low complexity have less variance, which means that they vary less depending on 

the particulars of a sample, including noise, outliers, etc[29]. In the case of gene expression data 

classification, not all the genes in a genetic sequence might be responsible for discriminating 

cancer. Therefore, we need to have a gene selection method that chooses a subset of relevant 

genes that can discriminate cancer, while pruning the rest of the genes in the input genetic 

sequence[31, 32].   

 

We are interested in finding the best subset of the set of genes that can sufficiently discriminate 

cancer. Ideally, we have to choose the best subset that contains the least number of genes that 

most contribute to the classification accuracy, while discarding the rest of the genes. There are 2
n
 

possible subsets that can arise from an n-gene long genetic sequence. In essence, we have to 

choose the best subset out of 2
n
 possible subsets. Because performing an exhaustive sequential 

search over all possible subsets is computationally expensive, we need to employ heuristics to 

find a reasonably good subset that can sufficiently discriminate cancer. There are generally two 

common techniques: forward selection and backward selection [29]. In forward selection, we start 

Entropy-based gene selection 

Numerosity reduction 

Output: [‘Non-cancerous’,‘Cancer type I’,‘Cancer type II’,‘Cancer type III’,…..] 

Microarray gene expression data 

WAODE cancer classification 
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with an empty subset and add a gene (that increases the classification accuracy the most) in each 

iteration until any further addition of a gene does not increase the classification accuracy. In 

backward selection, we start with the full set of genes and remove a gene (that increases the 

classification accuracy the most) in each iteration until any further removal of a gene does not 

increase the classification accuracy. There are also other types of heuristics such as scatter search 

[33] and variable neighborhood search [34].  However, search-based gene selection techniques do 

not necessarily produce the best subset of the genes. 

 

We employ a gene selection process based on an information-theoretic concept of entropy. Given 

a set of genes X and ����� which represents the probability of the ithgene, then the entropy of 

genes, which measures the amount of ‘uncertainty’, is defined by: 
 

 ���� = 	−	�������
�
� ��� ����� (1) 

 

Entropy is a non-negative number. ����is 0 when X is absolutely certain to be predicted. The 

conditional entropy of class label Y given the genes is defined by: 
 

 

 ���	|	�� = 		������, 	���	���
�
�

�
�
�

���������, 	��� (2) 

 

The information gain (IG) of the genes from the class label Y is defined to be: 
 

 

 ����	|	�� = ���� − 	���	|	�� (3) 
 

 

The gain ratio (GR) between the genes and the class label Y is defined to be: 
 

 

 ����	|	�� = ����	|	������  (4) 

 

The GR of a gene is a number between 0 and 1 which approximately represents the degree of 

‘significance’ of the gene in discriminating cancer. A GR of 0 roughly indicates that the 

corresponding individual gene has no significance in cancer recognition while a GR of 1 roughly 

indicates that the gene is totally significant in cancer recognition. During the training phase, the 

GR for each gene is calculated according to (4). All the genes are then sorted by their GRs. Genes 

whose GRs are higher than a certain threshold value are selected as discriminating genes while 

the rest are discarded. Training needs to be carried out only once. 

 

2.2. Numerosity reduction 

 
Microarray gene expression heat map is essentially a matrix of gene expression levels. Each gene 

expression level is a continuous number. It has been demonstrated in a number of studies that 

many classification algorithms seem to work more effectively on discrete data or even 

morestrictly, on binary data[35]. Therefore, discretization is a desired step. Discretization is a 

process in which continuous gene expression levels are transformed into discrete representation 

which is comparable to linguistic expressions such as ‘very low’, low’, ‘high’, and ‘very high’. 

There are numerous discretization techniques in the literature [36]. However, we have adopted 

EMD(Entropy Minimization Discretization)[37] because of its reputation in discretization of 
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high-dimensional data. The training instances are first sorted in an ascending order. The EMD 

algorithm thenevaluates the midpoint betweeneach successive pair of the sorted values of an 

attribute as a potential cut point [38]. While evaluating each candidate cut point, the data 

arediscretized into two intervals and the resulting class informationentropy is calculated. A binary 

discretizationis determined by selecting the cut point for which theentropy is minimal amongst all 

candidates[35]. The binarydiscretization is applied recursively, always selecting thebest cut point. 

A minimum description length criterion(MDL) is applied to decide when to stop 

discretization[37]. The results of the discretization process are carried forward to the 

classification stage. 

 

2.3. Classification 

 
Naive Bayes (NB), which is fundamentally built on the strong independence assumption, is a very 

popular classifier in machine learning due to its simplicity, efficiency and efficacy [39-42].  There 

have been numerous applications of NB and variants thereof. The conventional NB algorithm 

uses the following formula for classification [43]: 

 

 �� �� = argmax& �'��	|	��,⋯ , ���� (1) 

   

NB performs fairly accurate classification. The only limitation to its classification accuracy is the 

accuracy of the process of estimation of the base conditional probabilities. One clear drawback is 

its strong independence assumption which assumes that attributes are independent of each other 

in a dataset. In the field of genetic sequence classification, NB assumes that genes are 

independent of each other in a genetic sequence despite the fact that there are apparent 

dependencies among individual genes. Because of this fundamental limitation of NB, researchers 

have proposed various techniques such as one-dependence estimators (ODEs) [44] and super 

parent one-dependence estimators (SPODEs) [45] to ease the attribute independence assumption. 

In fact, these approaches alleviate the independence assumption at the expense of computational 

complexity and a new set of assumptions. Webb [39] proposed a semi-naive approach called 

averaged one-dependence estimators (AODEs) in order to weaken the attribute independence 

assumption by averaging all of a constrained class of classifiers without introduction of new 

assumptions. The AODE has been shown to outperform other Bayesian classifiers with 

substantially improved computational efficiency [39]. The AODE essentially achieves very high 

classification accuracy by averaging several semi-naive Bayes models that have slightly weaker 

independence assumptions than a pure NB. The AODE algorithm is effective, efficient and offers 

highly accurate classification. The AODE algorithm uses the following formula for classification 

[43]: 

 

 �� �� = argmax& ) � '��, ����∶	�+	�	+	�	 ⋀-�./�0	� 1'��� 	|	�, 	����
�
� 2 (2) 

 
Semi-naive Bayesian classifiers attempt to preserve the numerous strengths of NB while reducing 

error by relaxing the attribute independence assumption [43]. Backwards sequential elimination 

(BSE) is a wrapper technique for attribute elimination that has proved to be effective at this task. 

Zheng et al. [43] proposed a new approach called lazy estimation (LE), which eliminated highly 

related attribute values at classification time without the computational overheads that are 

intrinsic in classic wrapper techniques. Their experimental results show that LE significantly 

reduces bias and error without excessive computational overheads. In the context of the AODE 

algorithm, LE has a significant advantage over BSE in both computational efficiency and error. 

This novel derivative of the AODE is called the averaged one-dependence estimators with 
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subsumption resolution (AODEsr). In essence, the AODEsr enhances the AODE with a 

subsumption resolution by detecting specializations among attribute values at classification time 

and by eliminating the generalization attribute value [43]. Because the AODEsr has a very weak 

independence assumption, it is very suitable for classification of gene expression data. Therefore, 

we employ an AODEsr classifier to recognize cancer from gene expression data. 
 

3. EXPERIMENTS 
 
We tested our proposed system using 11cancer datasets as listed in Table 1extracted from the 

biological literature[46]. Each dataset contains more than 60 samples with more than 2000 genes. 

 
Table 1. 11 cancer datasets. 

 

Dataset #Genes #Samples 

Colon Tumor 2000 60 

Central Nervous System 7129 60 

ALL-AML 7129 72 

Breast Cancer 24481 97 

Lung Cancer 12533 181 

Ovarian Cancer 15154 253 

ALL-AML-3 7129 72 

ALL-AML-4 7129 72 

Lymphoma 4026 62 

MLL 12582 72 

SRBCT 2308 83 

 

We carried out leave-one-outcross-validations (LOOCV) where an N-sized dataset was 

partitioned into N equal-sized sub-datasets. Out of the N sub-datasets, a single sub-dataset was 

retained as the validation data for testing the model, and the remaining N- 1 sub-datasets were 

used as training data. The whole cross-validation process was then repeated N- 1 more times such 

that each of the N sub-datasets got used exactly once as the validation data. The results were then 

averaged over all the N trials. We used a critical value of 1, frequency limit of 250, an M-estimate 

weight value of 0.03 for the AODEsr model for all the trails.  

 

For each dataset, we performed one LOOCV experiment for varying number of selected genes 

ranging from 1 to 150. The genes for each trail were selected using the entropy-based technique 

outlined in Section 2.2. Figure 4 illustrates the results of our LOOCV experiments for each of the 

11 datasets. The vertical axis represents the accuracy of the classifier in percentage while the 

horizontal axis represents the number of selected genes. Table 2 lists the same set of results in a 

tabular format for a certain number of selected genes. The results show that accuracy does 

increase with the number of selected genes, albeit without perfect monotonicity. Results also 

show that at certain instances (bolded and italicized in Table 2) accuracy decreases with an 

increase in the number of genes. This may not be because of the classifier because AODEsr, like 

other Bayesian classifiers, is not sensitive to irrelevant features. Therefore, adding an extra gene 

should not theoretically downgrade accuracy. The disruptions in monotonicity might be because 

of the intrinsic imperfection in the gene selection procedure. Because our proposed system is able 

to classify cancer accurately even with a very few genes, the results reinforce the clinical belief 

that cancers are initiated by glitchin a few genes. The maximum LOOCV accuracy of our cancer 

classifier is 100% for 7 out of 11 datasets. The average maximum LOOCV accuracy of our cancer 

classifier across all the 11 datasets is 98.94%. It is worth iterating the fact that we used the 

AODEsr classifier with the same set of parameters (critical value of 1, frequency limit of 250, an 

M-estimate weight value of 0.03) throughout all the experiments in order to avoid bias. To the 

best of our knowledge, the accuracy rate of the proposed cancer recognition system using the 
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AODEsr classifier with the entropy-based selection process seems to be higher than those of other 

cancer classification systems in the literature.  

 

 
 

Figure 4. LOOCV accuracy (Y-axis) vs. number of genes (X-axis) [note: the plot maybe hard to read in 

monochrome print]. 

 
Table 2. LOOCV accuracy of the system on 11 datasets with varying number of selected genes. 

 

# of 

genes 
Breast CNS Colon Leuk. Leuk_3c Leuk_4c Lung Lymph MLL 

Ovari

an 

5 86.6 93.3 95.2 95.8 97.2 98.6 80.8 100 97.2 98.0 

10 92.8 96.7 95.2 100 97.2 97.2 80.8 100 98.6 97.6 

25 99.0 96.7 95.2 100 100 98.6 78.8 100 98.6 99.2 

50 99.0 96.7 95.2 100 98.6 98.6 97.0 100 98.6 100 

75 99.0 96.7 93.5 100 100 98.6 96.1 100 98.6 100 

110 100 96.7 95.2 100 100 100 96.6 100 100 100 

 
 

4. CONCLUSION 
 
Many people succumb to cancer every day. An early cancer detection and classification system is 

essential in order tosave countless lives.We have presented a machine learning based approach to 

recognize cancer from microarray gene expression data. We employ a state-of-the-art machine 

learning approach called the averaged-on dependence estimator with subsumption resolution 

(AODEsr) to tackle the problem of recognizing cancer. Given a set of gene expression data, the 

system predicts whether the gene expression data come from a cancerous cell or a non-cancerous 

cell. We have carried out experiments on 11 cancer datasets extracted from the biological 

literature. The proposed system has achieved an average maximum accuracy of 98.94%in 

recognizing cancer.  The accuracy of the proposed system was found to be higher than those of 

other cancer classifiers in the literature. The experimental results demonstrate the efficacy of our 

framework. As future work, we would like to extend this framework to other applications such as 

cancer recurrence prediction and survivability prediction. 
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