
International Journal on Cybernetics & Informatics (IJCI) Vol. 3, No. 2, April 2014 

 

DOI: 10.5121/ijci.2014.3203                                                                                                                          21 

 

GENERALIZED SYNCHRONIZATION OF NONLINEAR 

OSCILLATORS VIA OPCL COUPLING 

 

Amit Mondal
1
and Nurul Islam

2 

 

1
Department of Mathematics, Jafarpur Kashinath High School, 

P.O.- Champahati, P.S.- Sonarpur, Dist-24 Pgs(S), Pin - 743330 

West Bengal, India. 
2
Department of Mathematics, Ramakrishna Mission Residential 

College(Autonomous), 

Narendrapur, Kolkata- 700103,West Bengal, India. 

 

ABSTRACT 

 
In this communication, open-plus-closed-loop (OPCL) coupling method is applied to make generalized 

synchronization between two non-linear chaotic dynamical systems. For this reason, a transformation 

matrix is considered which can be chosen arbitrarily. We have used five different cases to establish our 

claim. Chaotic behaviours and the efficiency of the generalized synchronization using OPCL method are 

verified by numerical simulations. 
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1. INTRODUCTION 

 

Currently, there are many well-known control methods to stabilize non-linear chaotic dynamical 

systems. Out of all those control methods ([1]-[6],[9]), open-plus-closed-loop control method [11] 

is the most efficient method to make generalized synchronization (GS) for a coupled dynamical 

systems. This proposed method is insensitive with respect to system parameters which is one of 

the advantages of this method. This is a combination of open-loop system and closed-loop 

system. Open-loop means feed forward and closed-loop means feed backward. This combination 

gives us more flexibility to control and stabilize the dynamical systems. Using this method, the 

error term which is the difference between actual output and required output, reduces 

automatically by adjusting the system inputs. In this method, we are dealing with two systems 

known as master (drive) system and slave (response) system. Let 
nT

nxxxxx R∈),...,,,(= 321  

be the state variable of the master system and 
nT

nyyyyy R∈),...,,,(= 321  be the state variable 

of the slave system. There exists another state known as goal state. Our aim is to reduce the 

difference between the goal system and slave system. Goal system depends on the master system 

such that Kx=σ , where 
nT

n R∈),...,,,(= 321 σσσσσ , the state variable of the goal system 

and K is a transformation matrix of order n, chosen arbitrarily. Here, in this communication, we 

will choose five different forms of the matrix K. In section 3, we will study five different cases 

corresponding to different forms of the matrix K. In the first case, the elements of K are taken 

constants. In case-II, periodic functions are considered as the elements of K-matrix. The state 
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variables of the master system will be taken as the elements of K-matrix in case-III. For the next 

case, the elements of K-matrix are taken as the state variables of the other dynamical system. 

Finally, in case-V, discussion is made where one dynamical system drives another dynamical 

system which is totally different in nature with the former dynamical system along with the K-

matrix whose elements are the state variables of the other dynamical system. This last case is the 

most interesting part of this paper. Open-plus-closed-loop coupling method is very useful in 

engineering science, chemical reactions, quantum physics, lasers, electronic circuits, secure 

communication, microwave oscillators, electrical clothes drier etc. 

 

2.DESCRIPTION OF OPCL CONTROLLER FOR GS 

 
To describe this method, let us take a non-linear dynamical system as the master system given 

below:  

 )(= xx φ&
                                                                                    (1) 

  

where x )( n
R∈  is the state variable of the master system 

nn
RR →:& φ . 

 

Next, we consider the slave system given by the following dynamics  

 

 uyy +)(=ψ&
                                                                              (2) 

where y )( n
R∈  is the state variable of the slave system 

nn
RR →:& ψ  and u is the control 

input. 

 

Let the generalized synchronization error be defined as  

 

 
.=,=,

=

Kxwhereeyor

Kxye

σσ +

−

                                                 (3)

 

 

Now, using Taylor's expansion of a function, we have from equation (2) &  (3) 

  

 
,

)(
)(=

)(=

ue

uey

+
∂

∂
+

++

σ

σψ
σψ

σψ&

 
 

 neglecting second and higher orders of e to be very small. 

 

 ,)()(= ueJy ++∴ σσψ&
                                                            

(4) 

 

 where )(σJ  is the Jacobian of the flow )(σψ . 

 

Let us define ,  

 

 )(=,)(= σµµσψσ JVwhereeu −+−&
                                    (5) 

 

and V is a matrix of order n. 
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Using (4) and (5), one gets easily  

 

 Vee =&                                                                                       (6) 

 

which gives the error dynamics. 

 

Now, the error dynamics(6) is globally asymptotically stable if V-matrix is Hurwitz. Hence, we 

can conclude that generalized synchronization between the system (1) and (2) does not depend on 

K-matrix, it depends on the V-matrix. In this communication, we are choosing the elements of the 

V-matrix are similar to the elements of the Jacobian matrix of the slave system except all those 

elements which carry the state variables of the slave system. In this situation, we take constant 

value 1,2,3,...)=(iwi  instead of the state variable of the slave system for which V-matrix is 

Hurwitz, i.e., all the eigen values of V have negative real parts. Accordingly the error dynamics 

(6) is globally asymptotically stable. Finally, we claim that the generalized synchronization of the 

master-slave system is made successfully. 

 

3.EXAMPLES OF GS USING OPCL CONTROLLER 

 
Case-I : According to previous section, we first consider a non-linear chaotic Sprott system L [7] 

as the master system given by  

 

 
3),(= R∈xxx φ&
                                                                    

(7) 

 

where  

 .&,,=)( 111

11

2

2

11

312

parametersthearecba

xc

xxb

xax

x

















−

−

+

φ  

 

The slave system is taken as the mismatch Sprott system L  

 

 
3,)(= R∈+ yuyy ψ&
                                                               (8) 

 

where  

 

 parametersthearecba

yc

yyb

yay

y 222

12

2

2

12

322

&,,=)(
















−

−

+

ψ

 
 

and 
3

321 ),,(= R∈t
uuuu  is the controller. 

 

 

 

 

 

 

 

 



International Journal on Cybernetics & Informatics (IJCI) Vol. 3, No. 2, April 2014 

24 

Let  

 

















−

−−

0.700.5

2.30.50

2.70.81

=K

 
 

Using ,= Kxσ  we have the goal dynamics as  

 

 









+

−

−−

313

322

3211

0.70.5=

2.30.5=

2.70.8=

xx

xx

xxx

&&&

&&&

&&&&

σ

σ

σ

                                                    

(9) 

 

The Jacobian matrix of the slave system is given by  

 

 

















−

−

001

012

10

=)( 12

2

yb

a

yJ

 
 

Then, V can be taken as,  

 

 yarbitrarilchoseniswwherewb

a

V 112

2

,

001

012

10

=
















−

−

 
 

so that V is Hurwitz.  

 

Hence, from equation (6), the error dynamics becomes  

 

 









−

−

+

13

21122

3221

=

2=

=

ee

eewbe

eaee

&

&

&

                                                         

(10) 

 

Then, one can easily obtain,  

 

 yarbitrarilchoseniswwherewb 1112 ,

000

00)(2

000

=
















−σµ

 
 

so that V is Hurwitz.  
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Now, using (5), the control input is found as  

 









+−

−++−

+−

1233

11122

2

1222

32211

=

)(2=

=

σσ

σσσσ

σσσ

cu

ewbbu

au

&

&

&

                             (11) 

 

 
 

Figure  1: case-I: master system (x) &  slave system (y) with respect to time 

 
Figure  2:  case-I: (a) x vs y plot (b) σ  vs y plot 
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Case-II : Here, the master system and the slave system are taken to be same as the system (7) &  

(8) respectively. 

 

In this case, K is taken to be a 33×  matrix with periodic function as its elements given below : 

 

 

















−−

−

00.5)(0.1

011

3.5)(0.60.20

=

tsin

tcos

K

 
 

Thus, we have the goal dynamics as xKxK &&& +=σ  , which yields  

 

 









−−−

+

−−−

1213

212

2321

)(0.10.10.5)(0.1=

=

)(0.60.123.5)(0.60.2=

xtcosxxtsin

xx

xtsinxxtcos

&&&

&&&

&&&

σ

σ

σ

                          

(12) 

 

The error dynamics is same as the previous case, because the Jacobian matrix of the slave system 

remains the same. 

 

Hence, using(5), the control input u is given by  

 

 

 









+−

−++−

+−

1233

11122

2

1222

32211

=

)(2=

=

σσ

σσσσ

σσσ

cu

ewbbu

au

&

&

&

                                         (13) 

 
Figure  3: case-II: master system (x) &  slave system (y) with respect to time 
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Figure  4:  case-II: (a) x vs y plot (b) σ  vs y plot 

 

Case- III : Let K be a 33×  matrix containing the state variables of the master system (7) as its 

elements and the slave system remains unchanged, 

 

where  

 

 

















−−

00.010

00.10.02

00.031

=

2

31

1

x

xx

x

K  

 

Then, the system of goal dynamics is obtained as  

 

 









+−−

++

223

2323112

212111

0.02=

)0.1(0.04=

)0.03(=

xx
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σ

σ
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                                                   (14) 

 

Here, the error dynamics remains similar as the previous case and the controller u as follows :  

 

 





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+−

−++−
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                                                (15) 
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Figure  5: case-III: master system (x) &  slave system (y) with respect to time 

 
 

Figure  6:  case-III: (a) x vs y plot (b) σ  vs y plot 

 

Case- IV : In this case, the elements of K-matrix are chosen so that it contains the state variables 

of Shimizu-Morioka system whereas the master-slave system are taken to be the mismatched 

coupled Sprott system L given by the system (7) &  (8). 

 

The Shimizu-Morioka system [10] is given by  

 

 








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2
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&

&
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                                                                (16) 
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where ρλ &  are the positive parameters and 0.02=δ  for which the original system of 

equation is slightly being changed without loss of generality. 

 

Let  

 

















−

−

3

1

2
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=

z

z

z
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Then, the goal dynamics is found as  

 

 









++−
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+−
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333313
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                                                           (17) 

  

Using (17) and (5), we get the controller u as,  

 

 



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



+−

−++−
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=
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                                              (18) 

 

where 
3

321 ),,(= R∈t
eeee , the state variables of the error system (10). 

 
Figure  7: case-IV: master system (x) &  slave system (y) with respect to time 



International Journal on Cybernetics & Informatics (IJCI) Vol. 3, No. 2, April 2014 

30 

 
 

Figure  8:  case-IV: (a) x vs y plot (b) σ  vs y plot 

 

Case- V : Here, Rikitake system drives Sprott L system (8) with transformation matrix K 

consisting state variables of Rossler system. 

 

The non-linear Rikitake system [8] considered as the master system given by  

 

 .,,

1=

)(=

=

213

1322

3211

parametersthearewhere

rrr

rrrr

rrrr

βαβα

α









−

−+−

+

&

&

&

                (19) 

 

To construct the K-matrix, we consider the Rossler dynamical system [9] as  

 

 .,,,

)(=

=

=

133

212

321

parametersthearepmlwhere

pssms

lsss

sss








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+
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&
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               (20) 

                                                                     

Let us take,  
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In this case, the goal variable can be selected as 
3

321 ),,(=,= R∈t
rrrrKrσ , the state variable 

of the master system (19). 
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Then, the goal dynamics is given by  

 



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Hence, u, the control input of the slave system (Sprott L system) is calculated as  
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                                               (22) 

 

where 
3

321 ),,(= R∈t
eeee , the state variables of the error system which remains same with the 

previous four cases because V-matrix remains unchanged. 

 
Figure  9: case-V: master system (x) &  slave system (y) with respect to time 

 
Figure  10:  case-V: (a) x vs y plot (b) σ  vs y plot 
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4.NUMERICAL RESULTS & DISCUSSIONS 

 
Here, we will discuss the previous section numerically with the help of matlab software. 

 

Sprott found the chaotic nature for the master system (7) when 1=0.9,=3.9,= 111 cba . 

 

To make non-identical coupled Sprott L system for the slave system(8), we take 

1.7=1.6,=4.4,= 222 cba . 

 

V-matrix reduces to Hurwitz if we take 4.5=1 −w . 

 

In Shimizu-Morioka system(16), we consider 0.54=&0.799= ρλ  for showing its chaotic 

nature. 

 

In the non-linear Rikitake system(19), there exists two parameters βα & . Let 5=2,= βα . 

 

Finally, we choose 5.7=&0.2== pml  for the Rossler system given by equation(20). 

 

Figures fig.1, fig.3, fig.5, fig.7 and fig.9 represents the graph of the master and the slave system 

with respect to time respectively. 

 

In figures fig.2(a), fig.4(a), fig.6(a), fig.8(a) and fig.10(a), we have plotted 1,2,3=, iyvsx ii  

for all the cases I through V. 

 

From the relation (3), we can claim that the error term goes to zero after some finite time by 

reducing the difference between goal variables and slave variables. To establish our claim, we 

have drawn fig.2(b), fig.4(b), fig.6(b), fig.8(b) and fig.10(b). 

 

5.CONCLUSIONS 

 
In this paper, we have successfully established the generalized synchronization between the 

master (drive) system &  the slave (response) system via OPCL method. This method is mostly 

independent of the system parameters. This method has so many applications in practical life, for 

example, microwave oscillators, electrical cloths drier etc. In engineering sciences, it is also very 

useful. 
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