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ABSTRACT 

 
In the era of telemedicine a large amount of medical information is exchanged via electronic media mostly 

in the form of medical images, to improve the accuracy and speed of diagnosis process. Medical Image 

denoising has the basic importance in image analysis as these algorithm and procedures affects the efficacy 

of medical diagnostic. In this paper focus is on Multi wavelets based Image denoising techniques, because 

they provide the possibility of designing wavelets systems which are orthogonal, symmetric and compactly 

supported, simultaneously. Performance of Discrete Multi Wavelet Transform and Discrete Wavelet 

Transform based denoising methods are compared on the basis of PSNR. 
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1. INTRODUCTION 

 
Recently, a lot of interest and research work is appearing in the development of denoising 

algorithms for medical images in wavelet domain .Multi wavelets are the new paradigm added in 

this domain. Multi wavelets present the advantages of simultaneous orthogonality, symmetry and 

short support but at the cost of pre filtering and post filtering.  Pre filtering is the process of 

vectorizing the input before application of multi wavelets. Several methods are there to tackle this 

problem [2, 3, 4, 5, 10]. The postfilter, on the other hand, maps the data from multiple channels 

to one channel again. 

 

 In Multi wavelets  case, more than one scaling and wavelet functions are used to represent a 

signal. Multi wavelet decomposition can be implemented with filter banks as the case with scalar 

wavelets but filter coefficients in this case are matrices instead of scalar values.  

 

Instead of thresholding individual multi wavelet coefficients similar with scalar wavelets, 

coefficient vectors are considered and thresholding operation is applied to the whole vector. 

In this paper the multi wavelets based denoising technique is discussed and its performance is  

compared on the basis of Peak Signal to Noise Ratio (PSNR)  and Mean Square Error (MSE) with 

scalar wavelet based denoising technique. 

 

Section II gives mathematical preliminaries and notations associated with multi wavelet bases. 

Discussion on chosen multi wavelets GHM and CL is also given in section II. 
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Section III comprises of pre filtering and post filtering techniques for implementation of 

multiwavelet transform. Section IV characterizes the Multi wavelet Filter Banks. With the help of 

filter banks discussed in section IV, in section V, denoising schemes with multi wavelets are 

discussed and comparison of this scheme is done with other scalar wavelet techniques. 

 

2. MATHEMATICAL PRELIMINARIES 

 
Important mathematical concepts related with multi wavelets are discussed here.  

 

2.1. Multiwavelets  

 
Characterization of multi wavelets are done with multiple scaling functions and multiple wavelet 

functions[1,2].  

 

Denoting the scaling functions in the vector form as    
T

r tttt )](.........),(),([)( 110 −= φφφφ , )(tφ  is 

multiscaling function and T is transpose . )(tiφ is ith scaling function. Similarly denoting the 

wavelet functions in the vector form as 
T

r tttt )](.........),(),([)( 21 ψψψψ = , )(tψ is multiwavelet 

function and T is transpose. )(tiψ  is ith wavelet  function. The scaling space  
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and the wavelet space 
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Dilation equation in traditional scalar wavelet is obtained from the nesting 

condition 1+⊂ jj VV .Same is true for multi wavelets .The matrix dilation or refinement equation 

for multi wavelets can be  represented as   

 

],2[2)( ktHt
k

k −= ∑ φφ                                                 (3) 

and the wavelet equation as 

 

],2[)( ktGt
k

k −=∑ ψψ                                                           (4) 

 

Here the pair of filters Hk and Gk are low pass multi wavelet filter banks and high pass multi 

wavelet filter banks respectively. These are rxr matrix filters instead of scalar filters in case of 

wavelets. In general r = 2 is considered but it could be  any value greater than 1. For r =2, these 

filters will be 2 X 2 matrix filters operating on two input data stream. Filter coefficients are 

matrices in the case of multi wavelets and provide more degree of freedom as compared to scalar 

wavelets. For arbitrary chosen value of r, multi wavelets are known as of multiplicity r.    
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2.2. GHM and CL Multiwavelets 

 
Alpert constructed the polynomial multi wavelets, and used them as basis for some operators. 

After that Geronimo, Hardin and Massopust had done the construction of multi scaling function 

for the first time with the help of fractal interpolation[2].  

 

For  multiplicity of 2 , eq (5) represents the relation of scaling functions φ1(t) and φ2(t) with low 

pass filter coefficients and similarly eq (6) represents the relation of wavelet functions ψ1(t) and 

ψ2(t) with high pass filter coefficients. 
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Low pass filter coefficients H k’s and high pass filter coefficients Gk ’s for GHM are listed below 

as eq (8) to eq (9) 
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GHM  multi wavelet possess wonderful properties like its scaling functions are symmetric with 

short support [0,1] and [0,2].  Scaling functions are orthogonal and multi wavelet functions are 

symmetric/anti symmetric pair. This multi wavelet provides second order approximation[6].  

 

Another interesting multi wavelet CL of multiplicity r posses [7] the low pass filter coefficients H 

k’s and high pass filter coefficients Gk ’s listed below as eq(9) to eq(10). 
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The CL multi wavelets also has some important properties like both of its scaling functions have 

short support of [0, 2]. Scaling functions and wavelet functions are symmetric and anti symmetric 

orthonormal pairs. 

 

Such important properties cannot be fulfilled simultaneously in case of scalar wavelets. Filter 

coefficients in multi wavelet cases are matrices and provide more degree of freedom in designing 

and applications so the better performance is expected than scalar wavelets [8].  

 

Graphical representation of scaling and wavelet functions for GHM is given in Figure 1. 

 

 

Figure. 1  Scaling functions φ1(t)  and φ2(t) and wavelet functions ψ1 (t) and ψ2 (t) for GHM Multi wavelet 

 

Graphical representation of scaling and wavelet functions for CL is given in Figure 2. 
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3. PREFILTERING AND POSTFILTERING  
 
Before applying multi wavelets, input data has to be pre processed or vectorized, which is known 

as pre filtering or initialization of multi wavelets in literature. With the help of pre filters multiple 

data streams are generated. Generally two types of pre filtering process are used, named as 

repeated row pre filtering and critically sampled scheme[10]. Repeated row pre filtering is not 

suited for data compression as it introduces redundancy. In critically sampled scheme, multiple 

rows of data are generated by sampling the input data and distributing them to different rows [9]. 

Post filtering operation is mapping again from multiple streams to a single data stream or 

reconstruction. Basically perfect reconstruction properties has to be satisfied by set of  

preprocessing and post processing filters. Performance and design of multi wavelets depends a lot 

on selection of these filters [12].  

 

 

Figure.2.Scaling functions φ1(t)and φ2(t),Wavelet functions      ψ1 (t) and ψ2 (t) for CL Multi 

wavelet 

 

4. MULTIWAVELET FILTER BANKS 
 
Multi wavelets of multiplicity ‘r’ require ‘r’ input streams to the multi wavelet filter banks. A 

multi wavelet filter banks has taps that are rxr matrices. Coefficients for the low pass filter bank 

Hk are given by four rxr matrices and the same is true for High pass filters Gk. Here coefficients 

of high pass filter Gk cannot be obtained by flipping low pass filter coefficients as in it is done in 

scalar wavelets [14]. It has to be designed separately. Finally r channel rxr matrix filter bank 

operates on r input data streams and generate 2 r output streams which are then down sampled by 

2. Every row of multifilters are a combination of r ordinary filters each operating on different data 

stream. Figure 3 represents a multi wavelet filter bank[10].     
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Similar to the scalar wavelet, the multi wavelet theory is also based on multi resolution analysis. 

If we decompose an image using a scalar wavelet to single level of decomposition, resultant data 

will correspond to four sub band of low pass /high pass filter in both the dimensions. Data in LH 

sub band  is output from high pass filtering of rows first and then low pass filtering of column. 

For multi wavelets with multiplicity r = 2 , will have two sets of scaling coefficients. In case of 

multi wavelets subscript 1 and 2 along with L and H corresponds to the channel 1 and 2 

respectively. For example L1H2 represent the data from the second channel high pass filter in the 

horizontal direction and first channel low pass filter in the vertical direction. Thus after first level 

of decomposition of an image with multi wavelets will correspond to 16 sub band shown in Fig 4 

and multi wavelet decomposition up to third level is shown in Figure 5. 

 

Figure 3. Multi wavelet filter bank 

 

 

Figure 4. First level of decomposition (a) using scalar wavelets (b) using multiwavelet 

 

 

 

Figure 5.Multiwavelet decomposition up to third level 

 

5. DENOISING  SCHEME 
 
Steps for de noising scheme for multi wavelets are first to use a pre filter to convert the original 

data in to multiple streams. Then take the multi wavelet transform of this multiple stream. Apply 

the thresholding scheme on coefficients and then perform inverse multi wavelet transform of the 

thresholded data .In the last apply a post filter to get the de noised data. 
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Signal denoising techniques are based on the idea of thresholding the wavelet coefficients. 

Wavelet coefficients having small absolute value are considered to have mostly noise and very 

fine details of the signal. In contrast, the important information is represented by the coefficients 

having large absolute value. Removing the small absolute value coefficients and then 

reconstructing the signal should produce signal with lesser amount of noise. In case of multi 

wavelets, thresholding whether hard or soft is applied on whole vector [11].  The thresholding of 

the subband coefficients 

 

are done by two ways(a) Hard theresholding function is defined as  

 

                                       )(.)( TxIxxF 〉=                                                             (11) 

 

And (b) Soft threshold shrinks coefficients above the threshold in absolute value. 

 

                                        )())(sgn()( TxItxxxF 〉−=                                     (12) 

 

The only difference between the hard and the soft thresholding procedure is in the choice of the 

nonlinear transform on the empirical wavelet coefficients [13]. Threshold T to be set to the 

known noise level. 

 

6. PARAMETERS FOR COMPARISON 
 

6.1 Mean Square Error (MSE) 

 
MSE, which for two m x n monochrome images x and y where one of the images is considered 

noisy approximation of the other and is defined as in equation (13)    
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6.2 Peak Signal to Noise Ratio (PSNR) 

 
PSNR is the peak signal to noise ratio in decibels(dB). The PSNR is only meaningful for data 

encoded in terms of bits per sample bits per pixel. For example an image with 8 bits per pixel 

contains integers from 0-255. PSNR is given by the equation (14) 

                                                1)/MSE - (2 log 20 PSNR B

10=                                  (14) 

Comparison is based on this parameter values for de noising schemes using different 

wavelet/multi wavelets. Here B = No. of bits 

 

7. EXPERIMENTAL RESULTS  
 
In experiment, test images used are de noised using GHM, CL and DB4. DB4 scalar wavelet is 

used to compare the results of denoising of medical images with multi wavelets like GHM and 

CL . Reason behind the selection of DB4 is its properties of orthogonality , 4 coefficients in the 

dilation equation with 2 vanishing moments which are very similar to GHM multiwavelet.  

Computatinal results are given in Table 1. 
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Table 1 : Computational Results 

 

Type of 

Wavelets/Multiwavelets 

Type of 

thresholding  

PSNR 

DB4 Soft 16.4571 

GHM Soft 19.9876 

CL Soft 17.5672 

DB4 Hard 13.4042 

GHM Hard 15.7634 

      CL Hard 14.4782 

.                  

 
Figure 6.Denoising of Images using different Multi wavelets Transform  

 

8. CONCLUSION  
 
Results shown there in Table 1. and Figure.6, give us a fair idea that multi wavelets like GHM 

and CL gives better results than scalar wavelets in application of denoising of medical images. It 

opens the door of lots of future work in area of medical image denoising with different 

thresholding techniques associated with these multiwavelets.  
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