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ABSTRACT

This paper investigates the Hoo state estimation problem for gene regulatory networks (GRNs) with time-
varying delays and Markovian jumping parameters. The system output, which is used by the estimator, is
assumed to be sampled and held during a sampling period. To deal with the time-varying delays, each
delay function is limited to certain lower and upper bounds. By using Lyapunov-Krasovskii functionals,
sufficient conditions for the stochastic stability of augmented GRN/Estimator networks are derived. Then,
the estimator gains are synthesized from the derived stability conditions. Furthermore, we investigate how
to design the estimator in presence of disturbance. All stability conditions are formulated in the form of
linear matrix inequalities which can be easily solved by numerical methods. The obtained conditions are
dependent on both the lower and upper bounds of delays. At the end, some simulation results are presented
to demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

Gene regulatory networks (GRNs) are biochemically dynamical systems describing the regulatory
interactions between DNA, RNA and proteins. GRNs play an important role in cells’ response to
environmental stimuli and performing their complicated biological functions.

In recent years, the modelling and stability problem of gene networks has attracted many
researchers in diverse disciplines (see for example [1-5]). To describe the mechanism of gene
regulations, different classes of mathematical models have been proposed. These models can be
divided into three main categories, i.e., the Boolean models, the differential equation models and
hybrid models. In Boolean models, each gene is considered to be in one of two logical states, ON
or OFF. The logical state of each gene is determined as a function of relevant gene states ([6,
7]).In the differential equation models, the variables describe the concentration of mRNAs and
proteins as continuous values ([2], [8]).In addition to Boolean and differential equation models,
there are hybrid models which combine the properties of two previous models [9].

The existence of switching mechanisms in gene networks is a well-known fact [10], [11].By
taking into account the stochastic behaviour of gene networks, authors in [12], [13] and [14] have
modelled the switching mechanisms in GRNs by means of finite state Markov chains. In order to
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increase the accuracy, [15] and [16] have proposed Markovian jump GRNs with emphasis on
quantitatively describing of gene regulation.

Several recent studies such as [17], [18] and [19] have shown that the time taken for gene
expression to be completed is not negligible in the dynamics of GRNs. The synthesis of proteins
by the ribosome is also time-consuming. As stated in [20-23], these delays are assumed to be
time-varying functions in GRN dynamics. In [24, 25], the conditions for stochastic stability of
GRNs with time-varying delays have been established using free weighting matrix technique.
Authors in [26] have applied integral inequality approach to reduce the conservatism of linear
matrix inequalities. Recently, the stochastic stability of GRNs random delays are investigated in
[27, 28]. The obtained linear matrix inequalities are dependent on delay probability distributions.
From the viewpoint of biology, obtaining the gene network state components including the
concentration of mRNA and protein is of a high importance. In [29], the problem of filtering has
been investigated for nonlinear gene regulatory networks where time delays are supposed to be
deterministic and constant. The stochastic switching mechanisms in GRN parameters, however,
have not been considered in the model. Authors in [23] have proposed a robust estimator for
uncertain Markovian jump gene regulatory networks with time-varying delays.

In general problems of filtering, state estimation and control, the necessary outputs of the system
usually are available in sampled form. It mainly rises from the discrete nature of measurement
techniques as well as digital processing via computer systems. There are many works associated
with the sampled data systems in the literature such as [30, 31] and references therein. [32]
studies the problem of Hoo filtering for GRNs with sampled output based on input delay
approach. Although there are no delays and Markovian switching considered in GRN dynamic.
To the best knowledge of authors, the problem of state estimation and filtering of Markovian
jump GRNs when output are sampled and held in a sampling period and the expression and
translation delays are considered is not fully investigated.

In this paper, we aim to design a state estimator considering the sampled nature of the
measurements. We also solve the problem of estimator design with respect to the presence of
external disturbances. The delays are considered to be time-varying and limited by upper and
lower bounds. The final stability conditions are also dependent on the bounds of delays and the
upper amount of sampling interval time. Appropriate Lyapunov-Krasovskii functionals are used
to find a sufficient condition in terms of linear matrix inequalities assuring the stochastic stability
and the disturbance attenuation of the mixed GRN/estimator dynamics. By employing some free-
weighting matrices and using some LMI techniques, we obtain less conservative delay dependent
stability criteria. The estimator gains are then synthesized from the stability conditions which are
all expressed in the terms of linear matrix inequalities. Finally, simulation examples are provided
to show the effectiveness of our approach.

This paper is organized as follows: Section II describes the model of Markovian jump Gene
regulatory networks and the estimator structure and gives some preliminaries; Section III presents
the main results on stability and the estimator design, section IV gives some simulation examples
and finally Section V concludes the paper.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

Gene regulatory networks are modeled by differential equations as follows [2]:
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m(t)=Am(t)+Bf (p(t))+1
p(t)=Cp(1)+Dm(r)
in which

(D

m(t) =[my (t),my(1),....m, (O, p(t)=[p,©), p,(@)s..0. p, O],
A=diag(-a,,~a,,...,—a,),C =diag(—c,,—c,,....,—c,), D=diag(d,.d,,....d,), l=[ll,lz,...,ln]T

and  f@O)=Lf,t), fr()sers £, O]

where i=1,2,...,n. m(t), p.(t)e R are the concentrations of mRNA and protein of ith node. a,
(x/B)"

————is a

1+(x/ﬂ)

monotonically increasing function, and B=(B,.j)e R" is the coupling matrix of the gene

and ¢ are degradation rates of mRNA and protein,d, is constant, f (x)=

network ([2,3,8]). [, is defined as a basal rate and is defined as:/, = " @, , in which V., is the

set of repressors of gene i. Vectors m", p" are said to be the equilibrium point of system (1) if

they satisfy Am +Bf(p')+1=0 and Cp +Dm =0. For convenience, we always shift an

intended equilibrium point ( p*,m*) to origin by letting x(z) =m(1) -m, y(1)=p(t)- p.

Additively, in this paper like many others in the literature of dynamic GRNs, we consider external
fluctuation as additive disturbances. In gene networks, there are also time delays in transcription,
translation and translocation processes. Moreover, Markovian jumping parameters are common in
modelling of GRNs. So we consider shifted-to-origin Gene regulation network with time delay,
Markovian jumping parameters and disturbances of the following form:

(1) = A(r(0)x(1) + B(r () g (y(r=7(1)))+ R (r(1)) o)
3(6)=C(r(1) y(6)+D(r(1)) (1= (1)) + £ (r(1)) (1)

()= {zxt} { (r(f))x(f)]
=0 ()0

where F, F, are input matrices and @(r)is the input disturbance which belongs to L, [0,0) . The

(@3]

nonlinear function g() is defined as g(y(t))Zf(y(t)+p*)—f(p*). Moreover, since f is a

monotonically increasing function with saturation, for all a,be€ Rwith a # b, it satisfies:

f(atzil{(b) <k (3)

When f is differentiable, the above inequality is equivalent to 0<df (a)/da<k . From the
relationship of f(.) and g(.) , we know that g(.)satisfies the sector condition
0<g(a)/a<k or equivalently:
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g(a)(g(a)—ka)SO 4)

g (.)is a vector function of g, (.)’s in the following form:
T
g()=[a() - ()] 5)
where g, (.)’s satisfy (4) for k=k,,...,k, . Also define matrix K as:

K =diag(k,.,...,k,) (6)

The output Z(t ) is the concentration of intended genes or proteins; r(¢),>0is a right-continuous
Markov chain on the probability space taking values in a finite state space S ={1, 2,..., }(} with

generator [1= (ﬂ'., )NxN given by:

Pl iy = f]- 7h+o(h) i#j
LA 1+7[”h+0(h) otherwi.

)
O(h)zo , .20 .x =—ZM7Z'

0 p ij ii ij*

For simplicity, we refer to r(t) with index i. T(t) and O'(t) are time-varying delays satisfying

following constraints:

o<o(t)<o, o(1)<a,, t<1(1)<7, ©(tf)<e, ®)

o

As previously said, the problem of GRNSs state estimation for the case of time-varying delays and
sampled output data has not been fully investigated. Here, we assume that the sampled signal is
generated by a zero-order hold function with a sequence of hold times 0, t1,...,tk,.... So the actual
measurements of mRNA/Protein concentrations used by the state estimator are:

2(t)=z() t, St<t,, 9)

In which 7, denotes the sampling point. Let the sampling interval to be bounded for all k, or

t,, —t <d for some d . Define a function
d(t)=t-1, L St<tiy (10)

It can be realized that 0<d (1)< d . Then, the structure of the considered estimator could be

written as follows:

3(t)=A(1) + B3 (1=7(0))+ Ky (Hyx(1=d(0) - H,,3(1)) an
3(1)=C3(1)+ D (=0 (1))+ Ky (Hye(t =d(0) = Hy (1))
Defining X(¢)=x(¢)—%(¢)and §(¢)=y(¢)-$(¢), from (2) and (11) , the estimation error

dynamic becomes:
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X(r)=(A Kltle)Sc(t)-’—KliHli(x() x(r- d(l))) ( (t T(t))_y(t_f(t)))
+B.g(y(r—7(r))) + Foo(t) (12)
)Lz(z)z(Ci—Kzl.Hzl.)S:(z)+K2iH2i(y(t)—y(z—d(z)))+D1.5c(t—0'(z))+Fz,.w(t)

By defining )_c(t):[xr () x (t)]T and y(:):[yf (r) ¥ (t)T and some simple calculations,

the following augmented closed loop system can be obtained:

x(1)=AX(t)+Ax(t—d(®)+B,y (- (t))+§2,.g(Uy(t—r(t)))+F1,.a)(t)

. _ _ _ (13)
¥(1)=Cy(t)+C,y(t—d(®)+Dx(t—0(t))+ Fy(t)

- A 0 - 0 0) - 0 0)- B,)- (D 0
4= Ay = B = By = D, =
K,H,; A-K,H, —KH, 0 -B B B, 0 D,

~ q 0 —~ 0 0 - El - 21
C= Gy = = B = U= [1 0]
K2iH2i Cl _K2iH2i _K2iH2i 0 Fu F2,

The stochastic stability and the ydisturbance attenuation for GRNs system are defined in two
following definitions:

Definitionl: System (13) without disturbances is stochastically stable if for any initial state in a
neighborhood of origin, there exists finite positive constantT()_cO,io,rU)such that the following

holds for any initial condition:
EU:("f(t)"z +||§(t)||2)dt | zo,yo,ro)s (% Yo.15) (14)

) 2)=Oand limE("i(t)Hz)zo

1—300

Also the mean square stability can be concluded from lim £ ("}(t

Definition2: The estimator (11) is said to be an error stabilizer estimator with the ”disturbance
attenuation if the error dynamics is stochastically stable with definition 1 and there exists a

constant M (Eoio,ro) , such that:

(I +1517 )= [, (= +37 (7 (0)at1 (5. 50.1) < 7 el (5. s
The following lemma is used in the proof of theorems in this paper:

Lemmal[31]: Let Y be a symmetric matrix and H, E be given matrices with appropriate
dimensions and F satisfying F' F<I, Then we have:

Y+HFE+E'F'H" <0
holds if and only if there exists a scalar € > Osuch that the following holds:
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Y+eHHT +e'ETE<0

3. MAIN RESULTS

In this section, the main results ensuring the stochastic stability of stochastic GRNs and the
estimator system with Markovian jumping parameters and time-varying delays are derived and
then an approach for the synthesis of the estimator gains from LMIs is introduced. First, we
consider the stochastic stability problem in the following theorem.

Theorem 1: The Markovian jump GRN/Estimator System (13) with zero external disturbances
is  stochastically  stable if there exist symmetric and  positive  definite

matrices P,,R,, S, ,Z,,0,, A, =diag (4,,...4,), and matrices X, (k=12, [=1..4,

ni

j=1..17, ie §) satisfying the following LMIs:

J O 0 O O 0 Tﬂ, Ywh YWZ:
* O 0 0 0 0 0 0 0
* % —Z -Z 0 0 0 0 0
* % % _Z 0 0 0 0 0
d=|l* * x * _z _z 0 0 0 |+N +N' <0,
4 4 ! ! (16)
% % * % * -7 0 0 0
x % * * * * DA, 7ZTW1 0
E Y * * * * * -W 0
in which
J, 0 0 BB, RA, 0
* 1, BD 0 0 RC,
J _ * * _(1 - ao‘ ) Rl O O 0
% % % _(1 -a ) R, 0 0
* % * * 0 0
% % * * * 0

®©, =diag(-Z,,~Z,,R —0Q,,R, - 0,,-0,,—0,,—S,,=S,), J , EA+7‘+Q+Z””

2

J,=PC +C'P +Q+ZM =0’S,+d’Z,+(6-0) Z,

yi

W/zi ZZ“SZ +67_Z4 +(f_2) Zz‘

and
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r}%:[(aﬁ.)T 0 0 (U'AK) 0 o]r,rwuz[(ﬁfw,,)r o0 (Bw,) o o]r,

(Bw,) 0 0 o]

And Xj;’s are introduced at the top of the next page.

-X, 00 X, 0--0 X, 0--0

Ji

j=111L15

B 18n 61 61
L N 2 ,_M}

18n 6n 4n
—— —— ——

-X, 00X, 0---0 X, 0~--0} j=2,12,16
B 6n 6n 14n
0, 0, —X, 0--0 =X, 0--0 X, 00| j=37

[ 6n 6n 6n 12n
0---0-X, 0-0-X,0-0 X, 00 j=43

i M 8 14n 6n
0--0-X, 0-0 X, 0--0 X, 0, | j=51317
: 10n 14n 6n

00 =X, 00 X, 0---0 x} j=6,14,18

-Proof: Consider the following Lyapunov—Krasovskii functional:

V()50 0) = 2 (505010

where

V,()=x"OBx®)+y (B,()

V0= ¥ @gxada+| " ¥ @R¥@da+| @0 5ada

+[ 7 @RS@xas [ 3 @oaxar || @05 axa

(17)

18)
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vin=af j ¥ (@S ¥(@dadf+(5-0) | I ")z dadp
+£LL ﬁ? (@)S,y(@)dad B+ (T - J'_;Lﬁi (@)Z,y(@)dad

— 0 pr . . —r0 pr . .
+dj_5 L wa (@) Zx(@)dad B+ dj_i L +ﬁyT (@)Z,y(@)dad B

Define a new Markov process {xp(:),g (t),r(t),t>0} with XP(I)ZX(I+,0) and
Vs (t)=§(t+5) ,0<0<-7 ,0< p<—0 , the weak infinitesimal operator of the stochastic

process {(f(t),i(t),l;)} is given by:

AV(E(0).5(1).r) =tim [ E{V (%(+h). 3 (14 )., )I%(2). 7 (0). 7}

h—0 h (19)
~V((),5(1).7)]
Based on (13) , we have:
AV, () =2x" ()P x(1)+2y" (OB, Y () +x" <z><2 SBOE0+Y <r><2 BV
=2x" (VR,[AX(1) + A (1—d(0) + B,y (1 - (1)) + Byg (Uy (1 - r(t)))]
;—cT(t)(Zz,.jPlj)?c(t)Jr2§T(z)Pz,[cy() +C,y(t—d(®)+Dx(t—0o(1))]
J
+¥ (OO 7 B,)3 ()
j (20)

AV, (1) =% QX1 —(1-6(1))x" (t—o(t)Rx(t -0 (t)+X (t—0)(R - Q) %(t - 0)
+3 0,y - (1-%(2))y ¢ —z(t DRIt —7(t)+ 3 t—2)(R, - Q,) Y(t - 7)
+x (N0X() X" (t-d)Qx(t-d)+ ¥ )0, Y1)~y (t—d)Q,y(t—d)

AV, (1) <% (0)SX(N) +(6-0)’ X (OZx0)+ 12V (1), 510 +(T—7)’ ¥ (1)Z,5()

_ (_TJ.:_ x;T (a)Sjc(a)da— ((_7 — Q-) LT?ET (@)Z lj(a)da_i_ sz;T (1)23)_.6(1‘)

¥ : oz : - . 22
- ZL_T Y (), y(da—(T-1) L_; Y (@Z,y(@da+d*y (1)Z,Y(t) 22)
—-d J‘:_J ¥ () Zx(@da—d J-:_J Y (@)Z,y(a)do

According to o(t)<a, 7(t) <7, we have from Jensen’s inequality [23] :
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1~

_Q‘[i ¥ (@S x(a@)da—(5-0) J. i (@)Z X(a)da<

-G

[ Faays(| Faam~(| " Faxayz (| Faua.

[ ¥ @s 3@ua-(7-1)[ ¥ @2 Faxas

-z

] Staday s, Sedw (] Sanay 2| s@ua)
-d[ ¥ (@ziada-d| 3 @z5@das

[ anay 2 @da)-(| Saraz( era=
_(I:m)_.‘(“)d“)r Z, (J:m;(“)da)—(j;m?(a)da)r z, (J:im)_.c(a)da)

t—d (1)

| stexar 2| Saner-(| @y 2 s@da

~d
1=d(1)

2 i@day z (| it 2| Siaxia

-d

According to (4), it can be resulted that:

2D A8 USO8 U5 @) ~kU5 (1) 20

or equivalently:

2¢" @y (1) N g@y(t —(2))+2¢" @y —7(t)) KA —7(1)) 20

For any A, =diag(4,,...,4)>0.Now from (8) and ((20)-(25)) we can deduce that:

(23)

(24)

(25)
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AV, sﬂm{m +A'R+0,+0, +Z%—Pl,}x(t)
J

+yT<r>{Pz,-q +C/ P, +Q2+Q1+Zfrl,-%_,}y(t)
J

—(1-a,)x" (t-o(t))Rx(t—0(1)) - (1-a,) 3" (t—7(1)) R,y (r -7 (1))

+3' (1-0)(R-Q)X(t-0)+¥" (1-7)(R,~Q,) ¥(t - 1)

~X'(t=d)Qx(t—d) =Y (t—d)Q,y(1—d) (26)
—2g" (Uy(t-2(r))) Mg (UF (1= 2(r)))+ 25" (1= 2(1))U" A K g (UF (1 (1))

+2x" (1) BB,y (t - (1)) + 2% (1) BByyg (U (1—7(1))) + 2" (1) B,D (1 -0 (1))

+2x" (1) B,Ax(t—d(®)+2" (t) P,C,;y (t—d (D))

(], Faxay's [ i@da~([ " Saxa)z( " H@da

~([' Staxa) s Sa@da-(" S@aa 2, Saxa)

_ (j:: 0 x(@da)' Z, (.[Z: ;0) X(a)da) - (j.;d(t) X(a)de) Z, (Lid(r) x(axda)
- stexa) 2, S@da -] iana) 2] | Faxia)
- (f__; "Sanay z, (f__; “Sada) - (f_d(’) Y(ayda) z4(.[’_d(’) F(@da)

+x" (t)[ngl +d*Z,+(6-0) Zl]fc(t)+§T (t)[zzs2 +d*z,+(7-1)’ ZJi(t)
Define the vector &(t) to be:

Zo=

[x’ O, YO Fe—olt). Y1), Ta—d). ¥ e—d) E)xf (e J:)’&T(a)doc LxT (e [ (arda

=d(1

-0, -0, Yo -0, [ Yo [ o [ o [T ¢ o))

27)
According to Newton-Leibniz formula we have:
|7 Faa=xt-g)-3a-o(1). [ Sada=5(-2-50-7(0),
[ #@da=30-70-0). [ F@da=50-50-0),
o z (27)

t=d(t) . _ _ — t=d(t) . _ _ —
[, Hada=xt-do)-xa-d). | = Vada=ya-dw)-yi-d).

[ Fada=30-%a-do), [ @da=50-5-do).
t—d(t) t—d(t)
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In addition, there always exists the matrix N, with appropriate dimensions given in (17) so that in
association with (27) we have: N,&(t)=0,,,.,, -Therefore, the complete derivative would be

rewritten as:
AV,()=AV,()+E" 0)(N;+ N/ ) &)

On the other hand, we have:

_;\iT_ _;\,T T _OZn_ _02;1 T
04n 04n ClT C',T
- - EY; EY; - - l_)T DT
WO =¢" 0] 1 W) S0, Y owyo=Eo 1w, g
Ay Ay 0, 0,, (28)
02611 02611 C;; C;;
L BZT; i L BZT; _025n 025n

Now, by using Schur’s complement it can be concluded that AV, (X(t),¥(t)) <& (1)@ &(1). If

®, < Othere will be some scalars § >0 such that:
AV,(X(1).5(1)) SE ()@E(1)<-6 & (1E(r). Vies 29)

A choice for & could be 6, =4 (—(I)) . So, taking expectation from (29)we have:

‘min

2),VieS
(30)

B(AV,(%(),5())) < ~A,, (<0 E(& (1) £(1)) <A, (<@ )E([5 ()] +[5 (1)

The rest of the proof is straightforward using Dynkin’s formula and the Lyapunov stochastic
stability theory. (See [31]).

For the disturbance attenuation purpose, the function J, is defined as follows:
T
5 =E( [} (7 03(0)+ 5" (0)50) - 7 (Do)t | G31)

and so the disturbance attenuation condition in definition2 is expressed as J_, <V()_CO,§0,FO) . The

term J, can be rewritten in the following form:
J - E( [[(# (0)()+5" ()5()- 7l ()olr) + AV i -E[ jOTAthj (32)
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and by using Dynkin’s formula:

J, = E(J'OT()ET (1) %(1)+ 3 (1) 3(t) -7l (r) (t)+AV )dt) -

—E(V(Z(7).5(7).i))+V(%,.5,.1,)

Now that the conditions for stochastic stability of the mixed GRN-estimator system are obtained,
we are in a position to give the main result on the design of the state estimator for the GRN
system in (2). The following theorem gives the results on stochastic stability and ydisturbance

attenuation of GRN/Estimator system.

Theorem 2: System (11) is a state estimator with the disturbance attenuation level of yfor
Markovian GRN system (2) if there exist symmetric and positive definite
matrices P, P, ,P,.,P,,R.R,Z ,Z,,0,.,0,,S,.S,,A, =diag(ﬂ s A ), matrices M, , M

12 713 2 7210 > 7230 ° ni

X,(j=1..,10),scalars & >0 (k=1,...4)and g, u, (ie S ) satisfying the following LMIs:

2i

o o o o o Y PE T, T,]
® 0 0 0 0 0 PE 0 0
* % —Z -Z 0 0 0 0 0 0
* 0k ok 7z 0 0 0 0 0 0
¥ - * ok k% 7oz 0 0 0 0 YR+ <0, (34)
* ok ok ox x oz 0 0 0 0
* ok ok xx ok A0 00
* % * * * * * _},2 1 727 P 0
% * * * * * * = 0
% k % k % * * * * A’
in which

®- zdiag(_zl,_ZZ,Rl _Q]’Rz _Qm_Qp_Qw_Sl’_S:)’

R.A 0 P,C 0
T = VT, =
! 0 PA-MH | * 0 P,C-M,H,

l’h i 23i i

J =T +T +Q1+Zzp +[o 1[0 1], J,=T,+T/ +Q2+thP +[o 1[0 1],

[/ V] 2

=gS +d’ 3+(5'—g)ZZI, W, =78, +d°Z,+(7-1) Z,,
m (2R +u W), A=, (2P + W),

J, 0 0 P.B, PA, 0

* P.D 0 0 PC,
j_|* r —(-e)R 0 0 0
I * -(1-a)R, © 0
* * * * * 0

And )
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T

— \T T < B r '
r%z[(giBZi) 0 0 (U'AK) © 0} ,T%=[Tl,- 00 (BiR) o0 0}’

N, oj (35)

- o, -
rwz,:[o T, (D'R,) 00 o} ’N':(o .

The estimator gains then are obtained from:
-1 -1
Ky, =HMy;, Ky, = FM,,. (36)

Proof: 1t is easy to show by direct calculation that

)"c’(t)fc(t)+y’(t)&(t)—;faf(t)w(t)+AVS}’(t)B ﬂx(t)@f(z)[g ﬂi(t)
v d (1) at) + &Y O L) +2X" P.F,aXt) +2y" P, F,at) +Gi(t) W, i(t)+ T 3(t) W, 3(0) Gn

where ©, is obtained with eliminating the last 4n rows and columns of &, . Defining

n(t)= [;’T ) o (t)JT and following the same steps as we did in proof of theorem1, we have:

F(0)x(e)+5" (1) 3(2) - Vo' (t)w(r)+AV <" (1), 7(¢) (38)
where
(o o o o o Y PE Y, T, |
® 0 0 0 0 0 PE 0 0
A 0 0 0 0 0 0
% % % -Z, 0 0 0 0 0 0
L O R R (9)
® ® * * * * —2A 0 0 0
* * % * * * * _721 EZ’ 0
% % % * * * * * - 1’] 0
% % * % * * * * * _WZ”1
and
T, =[4 00 B 0 0].T,=[0C b oo o], (40)

Define T, and T, by:
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T.:P-Zl-: Plli 0 A’ 0 = PlliAi 0
1i li 0 P{Si 0 A,-_KliHli 0 E3i‘Ai_MliH1i )

(41)
= (P 0 )G 0 e 0
T, =hC = =
0 Py \O0 C-KyH, 0 PyiCi =My Hy,

Where

M, = R3K,; . M,; = P3,K,, 42)
Now, pre and post multiply (39) by

V; =diag Ly Dypon s Ia» Biis Poi)
Finally, according to the inequalities

_PITWu_lI:L S (2B + W) = ByWy, Py Sy, (2P + i, W, ) (43)

which are true for some constant values of x;,and u,  we can get (34). Also it requires

that ‘i—’li <0. Then, by (38) we get:

Jr <V(% 3015 (44)

So theorem 2 guarantees the y disturbance attenuation for the state estimator.

4. SIMULATION RESULTS

In this section, we examine our results to show the effectiveness of our method. As the first
example, consider a Markovian jump GRN system like (2) with two operating modes and the
following parameters:

_—20C_—2oB_1—z D_1o
A‘_0—2’1_0—2"_0.8 o "o 1/
A_—30C_—2OB_—10 D_—10
2700 32 o =271 o2 TP lo o
And

H,=[06 09]. H,=[0.1 04], H, =[I 02]. H,=[04 12]
04 02 03 02
Fi=loal fe=loal ™% 0sl ™02
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2

The regulation function is assumed to be g(x)= It can be easily understood that

S -

I+x
thatk =33 / 8 .The transition probability rates are:

-3 3
H =
A
Also we take the delay derivatives equal to &, =04, & =0.5. For a given y=0.3, by using
MATLARB to solve the inequality (34) , the estimator gains for c=7=0.1,6 =7 =0.8 and the

upper limit of sample time d =0.5 will be as follows:

o _[oesm] o [01482] o 04144] 02639 45
TT03132] " | —0.1522 2 1025252 | 0.1865 | (45)

The system mode variation and the trajectories of x (¢),y,(¢).% (), (¢), (i=1,2) are shown in

Figures 1, 2. It is clear that the estimated values by the proposed state estimator effectively
converge to the the real values of mRNA/protein in an acceptable time. The disturbance input is

taken to be @(7) =0.3+0.3sin(z). It can be noticed that with the pass of time, the error tends to
zero. Therefore, the GRN-estimator system is stochastically stable in presence of disturbances. By
LMIs, the minimum disturbance attenuation ratio is obtained to be 0.3. The disturbance
attenuation ratio which is defined as:

(46)

is shown in Figure 3. It is obvious from Figure 3 that the disturbance attenuation ratio is always
under 0.3 and the effectiveness of theorem 3 is proved.

25¢

0.5F

. . . . . . . . .
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t(sec)

Figure 1: The variation of system mode
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X(1)

mRNA Concentraion Estimation
mRNA Concentration
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Figure 2: The real and estimated values of mRNA and Protein

0.2 T
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Figure 3: The disturbance attenuation ratio
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State estimation with disturbance attenuation for Markovian jump gene regulatory networks
including sampled outputs was considered. The sampled-data GRN system is transformed to an
augmented GRN/estimator system with time-varying delays. The LMI conditions for both
stochastic stability and disturbance attenuation on a certain level were developed using
Lyapunov-Krasovskii functionals. Synthesizing appropriate state estimator gains via some
effective LMI derivation results in the desired tracking of protein and mRNA concentrations. The
simulations show that it is useful to estimate the states of these types of GRNs in presence of
disturbances and parameter uncertainties which are common in cell’s environment.
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