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ABSTRACT 

Classifier ensembles have been used successfully to improve accuracy rates of the underlying 

classification mechanisms.  Through the use of aggregated classifications, it becomes possible to achieve 

lower error rates in classification than by using a single classifier instance.  Ensembles are most often 

used with collections of decision trees or neural networks owing to their higher rates of error when used 

individually.  In this paper, we will consider a unique implementation of a classifier ensemble which 

utilizes kNN classifiers.  Each classifier is tailored to detecting membership in a specific class using a 

best subset selection process for variables.  This provides the diversity needed to successfully implement 

an ensemble.  An aggregating mechanism for determining the final classification from the ensemble is 

presented and tested against several well known datasets. 
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1. INTRODUCTION 

1.1. k-Nearest Neighbor Algorithm  

The k-Nearest Neighbors, or kNN algorithm is well known to the data mining community, and 

is one of the top algorithms in the field [1].  The algorithm achieves classification between m 

different classes.  Each instance to be classified is an item that contains a collection of r 

different attributes in set A={a1, a2, ..., ar} where aj corresponds to the j
th
 attribute.  Therefore, an 

instance is a vector p = <p1, p2, …, pr> of attribute values.  For some predetermined value of k, 

the nearest k neighbors are determined through the use of a distance metric which is calculated 

using the difference in distances between each of the attributes of the instance in question and 

its neighbors.  Euclidean distance is by far the most popular metric for calculating proximity.  

An instance’s membership within a given class can be computed either as a probability or by 

simple majority of the class with the most representation in the closest k neighbors.  At the 

simplest level, this is a problem of binary classification, where data is classified as being in a 

certain class or not.   

Due to different units of measurement, there is also a need for normalization across attribute 

variables in order to prevent one variable from dominating the classification mechanism [2].  

One of the problems with kNN is that without some sort of weighting scheme for variables, 

each of the variables is treated as being equally important toward determining similarity  
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between instances.  Combining different scales of measurement across attributes when 

computing the distance metric between instances can cause severe distortions in the calculations 

for determining nearest neighbors.  Several different variable weighting schemes and selection 

methods to overcome this are discussed by Wettschereck, Aha, Mohri  [3].  Given the means by 

which neighbors in kNN are calculated, irrelevant variables can have a large effect on final 

classification.  This becomes especially problematic in cases where a large number of predictor 

variables are present [4].  Closely related to this problem is the curse of dimensionality whereby 

the average distance between points becomes larger as the number of predictor variables 

increases.  One of the benefits of proper variable selection is that it has the potential to help 

mitigate the curse of dimensionality.   

It is generally held that kNN implementations are sensitive to the selection of variables, so 

choice of the appropriate subset of variables for use in classification plays a critical role [5].   

One of the methods is through the use of forward subset selection (FSS) with the kNN 

algorithm [6].  FSS begins by identifying the variable which leads to the highest amount of 

accuracy with regards to classifying an instance.  That attribute is then selected for inclusion in 

the subset of best variables.  The remaining variables are then paired up with the set, and the 

next variable for inclusion is again calculated by determining which one leads to the greatest 

increase in classifier accuracy.  This process of variable inclusion continues until no further 

gains can be made in accuracy.  Clearly, this is a greedy method of determining attributes for 

inclusion since the variable selected at each step is the one providing the biggest gains in 

accuracy.  Therefore, the subset selected at the conclusion of the algorithm will not necessarily 

be the most optimal since not all potential combinations of variables were considered.  

Additionally, this algorithm is quite processor intensive.   

Backward subset selection (BSS) operates in a similar manner, except that all variables are 

initially included and then a variable is discarded during each pass through the attributes until 

no further improvements in accuracy are achieved.  Work by Aha and Bankert [6] found that 

FSS of variables led to higher classification rates than BSS.  They also conjectured that BSS 

does not perform as well with large numbers of variables. 

kNN relies on forming a classification based on clusters of data points.  There are a variety of 

ways to consider kNN clusters for final classification.  Simple majority rule is the most 

common, but there are other ways of weighting the data [1].   Wettshereck, Aha, and Mohri [5] 

provide a comprehensive overview of various selection and weighting schemes used in lazy 

learning algorithms, such as kNN, where computation is postponed until classification.  These 

modifications to the weighting calculations of the algorithm include not only global settings, but 

local adjustments to the weights of individual variables.  The weights are adjustable depending 

on the composition of the underlying data.  This allows for greater accuracy and adaptability in 

certain portions of the data without imposing global variable weightings. 

1.2. Classifier Ensembles 

Classifier ensembles render classifications using the collective output of several different 

machine learning algorithms instead of only one.  Much of the initial development of ensemble 

methods came through the use of trees and neural nets to perform classification tasks.  It was 

recognized that the use of aggregated output from multiple trees or neural nets could achieve 

lower error rates than the classification from a single instance of a classifier.  The majority of 

the research in the area of ensembles uses either decision tree or neural net classifiers.  Work 

regarding ensemble selection from a collection of various classifiers of different types has been 

successful in generating ensembles with higher rates of classification [7].   

There are a number of methods for generating classifiers in the ensemble.  In order to be 

effective, there must be diversity between each of the classifiers.  This is usually achieved 

through the utilization of an element of randomness when constructing the various classifiers.  

According to the distinctions made by Brown, et al. [8] diversity can be either explicit through  



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.2, April 2011 

3 

 

the use of deterministic selection of the variables with individual classifiers, or it can be implicit 

since diversity is randomly generated.   For example, implicit methods achieve diversity through 

the initialization of the weights of a neural net at random or using a randomized subset of 

features when node splitting in trees.   

The development of individual classifiers for use by decision tree or neural net ensembles is 

usually performed with a random subset of predictor variables.  This is to provide diversity and 

ensure that errors are more likely to occur in different areas of the data.  This process is repeated 

numerous times so that a wide variety of classifiers is produced, and the necessary diversity 

amongst individual classifiers is established.  Recent research compares how the various means 

of generating classifiers compares with the output of their respective ensembles [9].  Techniques 

such as bagging and boosting are used to generate different classifiers that make independent 

classifications of instances.  Bagging is a technique where the underlying dataset is repeatedly 

sampled during the training phase, whereas boosting changes the distribution of the training 

data by focusing on those items which present difficulties in classification [10].  

Researchers examined the use of kNN classifiers as members of an ensemble [11].  

Madabhushi, et al. found that using kNN ensembles on Prostate Cancer datasets resulted in 

higher accuracy rates than other methods which required extensive training [12].  Work by Bay 

considered an ensemble of kNN classifiers which were developed from random subsets of 

variables [13].  This method resulted in increased classification accuracy.  The objective of 

developing these different classifiers is to ensure that their respective errors in classification 

occur in different clusters of data.  Domeniconi and Yan [14] proposed a method whereby 

different subsets of variables were randomly generated and used to construct members of kNN 

ensembles. Their approach continued by adding only those classifiers to the ensemble which 

improved ensemble classification performance.   

Use of the classifier ensemble is straightforward.  Consider an ensemble C
* 
= {c1, c2, …, cm} of 

m individual classifiers, with each as a binary classifier.  The instance to be classified is passed 

through the group of classifiers C* and their corresponding individual classifications are then 

aggregated as discussed above in order to determine what the final classification should be. 

The final step in developing an ensemble classifier is to determine how each of the votes from 

the individual classifiers in the ensemble will be transformed into a final classification.  The 

most common method is to use a simple majority rule, but it is not difficult to see how various 

weighting schemes could be implemented in this process.  Perhaps the occurrence of the 

classification as membership of a particular class is enough to override all other votes.  The 

underlying data and application are the primary decision criteria regarding how votes should be 

tallied. 

1.3. Related and Recent Work 

The fundamental strategy of ensemble network classification is to generally isolate errors within 

different segments of a population.  Oliveira et al, [15], used genetic algorithms to generate 

ensembles for classification models of handwriting recognition. Their methodology uses genetic 

programming to continually create new networks, search for the best features, and keep the set 

of networks that are both accurate but disagree with each other as much as possible.  Error rates 

in final classification will be less when ensembles use only a subset of the best features for 

classification.  A supervised and an unsupervised approach were used to extract the best features 

relevant for subset selection and ensemble creation. They found that both techniques were 

successful and also concluded there are still many open problems with regard to optimal feature 

extraction.   

K means clustering is a popular classification clustering algorithm by where each observation is 

a member of the cluster with the nearest mean.  K medoids is a similar approach which uses 

actual data points for cluster centers. [2]  K means does not work well with data clusters which  
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are non spherical and of different sizes.  There are many techniques in literature to improve the 

k means algorithm. For example, fuzzy k means clustering often improves results by 

incorporating a probabilistic component into membership classification.  Weng et al [16] 

effectively used ensembles of k means clustering to improve the classification rate of intrusion 

detection for computer network security. Their approach successfully improves classification 

with clusters of “anomalistic shapes.”  Work by Bharti et al [17] used a decision tree algorithm, 

known as J48, built with fuzzy K-means clustering to very accurately map clusters of data to 

classification for intrusion detection.   

Awad et al [18] recently applied six different machine learning algorithms to spam 

classification: Naïve Bayes, Support Vector Machines (SVM), Neural Networks, k-Nearest 

Neighbor, Rough Sets, and the Artificial Immune System.  While performing well in the 

categories of spam recall and overall accuracy, kNN showed a marked decrease in precision (the 

ability to correctly filter out noise) compared to the other algorithms. Used here, the kNN 

routine produced too many false positives. Perhaps using an ensemble of kNN classifiers would 

have significantly improved results.  

 

It is recognized that kNN is very sensitive to outliers and noise within observations.  Jiang and 

Zhou, [19] built four kNN classification techniques involving editing and ensemble creation.  In 

order to manage the error induced by outliers, they developed differing editing routines that 

effectively removed the most problematic training data and therefore increased the accuracy of 

classification.  They also created a fourth neural network ensemble mechanism using the 

Bagging technique, which generally performed better than the editing routines.  An approach 

used by Subbulakshmi et al [20] also used several different classifier types (neural nets and 

SVMs) to enhance overall classification.  Each of the individual classifiers of the ensemble 

possessed different threshold values for activation based on the ensemble member’s accuracy.  

They found that the ensemble approach had higher classification rates than any of the individual 

underlying classifiers.  

2. OUR APPROACH 

Our approach begins with the production of an ensemble of kNN classifiers.  We chose to use 

kNN classifiers because of their ability to adapt to highly nonlinear data, they are a fairly mature 

technique, and there are a number of methods available for optimizing instances of kNN 

classifiers. 

Each instance or object to be classified p is a vector of values for r different attributes so 

� � ���, ��, … , �	
.  We follow the one-per-class method of decomposing classification 

amongst m different classes into a set of binary classification problems [21].  These classifiers 

determine class membership using a set �� � ���, ��, … , ���, where classifier �� �  ��  

determines if a given instance is member of the i
th
 class.  Each classifier takes a vector of 

attributes for an item to be classified and performs the following function: 

 

����� �  �1 �� � �� �� ������  !� ����� �          
0 �� � �� #$% �� ������  !� ����� �& 

 

This method works best for algorithms such as kNN that produces activation as an output to 

determine class membership [22].  Essentially each binary kNN classifier is the analogue of a 

classification “stump”, which is a decision tree that makes a single classification of whether or 

not a given instance is a member of a specific class.  Classifiers which discriminate between all 

classes, such as a single model to determine membership, have an error rate determined by the 

number of misclassifications from the entire dataset.  This is because the classifier is tailored for 

and optimized over the collection of m different classes.  As a result, the parameters are adjusted  
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so that the error rate across all classifications is as low as possible without deference to any 

particular class.   

The subset of variables which leads to the lowest error rates when determining membership in a 

specific class are likely to be entirely different from the subset of variables which are most 

effective in determining membership in another class.  The use of the FSS algorithm allows 

each individual binary classifier to tailor itself around the variables it deems most important for 

determining membership of an instance.  As a result, diversity amongst the kNN classifiers is 

achieved deterministically.  The necessary diversity is achieved by each individual classifier 

selecting the set of variables which are deemed most important for identifying specific class 

membership.  This is slightly different from the traditional definition of diversity which stresses 

errors being made on different instances of data.   

Since we use an ensemble of individual kNN classifiers which are responsible for determining 

membership in a specific class, each individual classifier can have the parameters for variable 

weights adjusted to achieve the highest classification rate for the specific class being analyzed.  

When using a single classifier to differentiate between multiple classes, the differences in which 

variables are most important to clustering for identification of various classes becomes 

overshadowed.   

Our approach also differs from previous approaches in that we use the specialized kNN 

technique of FSS for each of the binary classifiers in the ensemble.  We elected to use FSS since 

the final collection of predictor variables selected for classification is usually smaller [6].  This 

is especially noticeable in datasets with a large number of variables for subset selection.  We 

also chose FSS as opposed to BSS since it requires significantly less processor time, especially 

given the large amount of processing time which must be devoted if there are many variables.  

Furthermore, the models are often substantially simpler.  As discussed previously, a successful 

ensemble implementation requires diversity between the individual classifiers being used.  The 

diversity here is achieved through the inclusion of different variables which are selected by the 

FSS-kNN algorithm as being the most important towards determining membership in an 

instance of a particular class.       

By building different classifiers for determining membership in each class, we are choosing the 

subset of variables that work best with the kNN algorithm to classify members of the specific 

class.  This provides the algorithm with greater accuracy than a single implementation of the 

kNN algorithm differentiating amongst all classes.  Through an individual classifier tailored to 

determine membership for a particular class, we allow the isolation of those variables that 

contribute the most toward the clustering of the class members.  Clearly, the subsets of variables 

selected between different binary classifiers will be different.  Furthermore, by using a kNN 

variant collection which has been optimized, the ensemble itself should have a higher resultant 

classification rate.  There are many other implementations of the kNN process that we could 

have relied on.  We believe that the use of any of these others would lead to similar results. 

One of the benefits of this method is that it overcomes the curse of dimensionality.  For a given 

class, there might only be a handful of variables which are critical to classification and could be 

completely different from other classes.  A classifier differentiating between all m classes would 

have to potentially consider all attributes.  However, our approach relies on the fact that the 

classifier of the i
th
 class needs only to determine membership through the use of variables that 

are most important to determining distance to its nearest neighbors.  

In order to combine the respective votes of each member within the ensemble, we have three 

cases: one of the individual classifiers identifies membership within the group, no membership 

is selected, or there is a conflict regarding classification with two or more classifiers presenting 

conflicting classifications.  Where classification is straightforward with one classification 

emerging from the ensemble, we use that classification.  In the latter two cases discussed above, 

there must be some way of achieving an output.  There are two possible approaches.  The first is 

to rely on a single overall kNN classifier which determines identification in the event of  
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conflict.  Therefore, if the ensemble is unsuccessful, the classification scheme reverts back to a 

single instance (master) classifier.  The second approach is to use the classifier with the highest 

accuracy which selected the instance for membership.  Figure 1 presents an overview of this 

process. 

A master classifier uses the same methodology but provides for classification between all 

possible classes in the dataset as opposed to simply determining membership in a single class.  

This master classifier is used to assign classification in the event that none of the members of 

the ensemble identifies an item for class membership. 

 

Ensemble of classifiers to 

determine membership in 

each of the classes

No class 

selected for 

membership

One class 

selected for 

membership

More than one 

class selected 

for membership

Three possible outcomes 

from ensemble output

Instance to 

be classified

Revert to 

master 

classifier 

Use class 

selected

Use classifier 

with highest 

accuracy rate

 

Figure 1. Determining class membership of an instance 

3. EXPERIMENTAL RESULTS 

3.1. Datasets 

The datasets which we utilized were from the UCI Machine Learning Repository with the 

exception of the IRIS dataset which is available in the R software package [23, 24, 25].  The 

statistics regarding each data set are presented in Table 1.  We began with the IRIS data since it 

is one of the most used datasets in classification problems.  Furthermore, it is a straightforward 

dataset with four predictors and provided a good benchmark for initial results.  We also selected 

the Low Resolution Spectrometer (LRS) data since it contained a large number of variables and 

the data required no scaling prior to using the algorithm.  The dataset itself consists of header 

information for each entry, followed by intensity measurements at various spectral lengths.  

Finally, the ARRYTHMIA dataset was selected due to the large number of predictor variables 

which it offered.  We were curious to see how well the FSS-kNN algorithm performed at 

reducing the number of variables needed to determine class membership.  There were several 

instances in the ARRYTHMIA data set where missing data was problematic.  These attributes 

were removed from the dataset so that classification could continue. 

Table 1. Dataset Statistics 

Dataset: Iris LRS Arrythmia

Number of classes: 3 10 16

Number of variables: 4 93 263

Number of data points: 150 532 442  
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3.2. Model Generation 

Our methodology follows the pseudocode in Figure 2.  We began by building the best 

classification model for each class in the dataset.  The individual models were constructed using 

FSS-kNN to determine the best subset of variables to use for determining membership in each 

class.  Every subset of variables was then tested using n-fold cross validation, where each 

element was predicted using the remaining � ' 1 elements in the kNN model over various k-

values to determine the most accurate models for each class.  This required a modest amount of 

processor time, but enabled us to use all of the available data for both training and testing which 

is one of the benefits of n-fold cross validation.  Following the generation of the individual 

classifiers, we built the master classifier.  

After building our classifiers, we processed the data with the ensemble.  The majority of 

instances were selected for membership by one of the classifiers.  In the event that more than 

one classifier categorized the instance as being a member of the class that it represented, we 

reverted to the model accuracies of the individual classifiers, and assigned the item to the most 

accurate classifier which identified the item for class membership. Instances which were not 

selected for membership in a class by any of the individual classifiers were processed by the 

master classifier.   

We conducted n-fold cross-validation testing to determine the overall accuracy of the ensemble.  

The k-value and subset of variables selected for an individual kNN classification model were the 

only factors remaining the same between the classifications of instances.  

 

Figure 2. Pseudocode for classifier construction and usage 

4. DISCUSSION OF RESULTS 

The statistics regarding the accuracy rates and numbers of predictor variables used by the 

individual classifiers are presented in Table 2.  By using individual classifiers to determine set 

inclusion, we were able to achieve high rates of classification.  Only predictor variables useful 

in the classification of instances of a given class with the kNN algorithm were used in the 

models.  In the LRS and ARRYTHMIA datasets, the largest model for membership 

classification in the ensemble uses only about 5% of the available predictor variables. The 

average number of predictor variables used for classification is significantly less than that.  In 

each of the datasets, there were classification models that needed only one variable with which 

to determine membership in a particular class.  We believe that the high rates of classification  

CONSTRUCTION PHASE: 

for each class in the data set 

    build classifier ci which determines membership in class i using the Forward Subset Selection 

Algorithm 

    compute the accuracy of this classifier 

next class 

 

build a master classifier which considers membership amongst all classes 

 

CLASSIFICATION PHASE: 

for each item to be classified 

    the item is evaluated by each classifier so seek membership in respective classes 

    if only one classifier identified the item for membership 

      then assign the item to that class 

   if more than one classifier identified the item for membership 

      then assign class membership to the most accurate classifier 

   if no classifiers identified the item for membership 

      then use the master classifier to assign a classification 

next item 
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for the individual classifiers are closely related to the reduction in the number of dimensions 

being used for model construction, thereby overcoming the curse of dimensionality.  This has 

some rather interesting implications.  The first is that this process can be used as a discovery 

mechanism for determining the most important variables for use in determining membership in 

a specific class.  It also implies that accurate models can be constructed using small subsets of 

available predictor variables, thereby greatly reducing the number of dimensions in which 

classifications are performed. 

The results of building the master models that incorporate all of the classes are depicted in Table 

2.  These represent use of a single model constructed using the FSS-kNN algorithm to 

determine classifications of data.  Note that the classification accuracy rates of the models that 

determine classification between all classes are at or below the minimum accuracy rates of the 

individual classifiers that determine membership in a specific class.  This is not surprising given 

that the master classifier is now attempting to discriminate between all of the various classes.  

Note also that the numbers of variables selected by the master models are significantly higher 

than the mean number of variables selected in the individual classifiers.  These represent the 

best accuracy rates available if only one classifier was being constructed using the FSS-kNN 

model.  

Table 2. FSS-kNN Statistics for Classifiers of the Ensemble 

Dataset:  Iris LRS Arrythmia

Max Accuracy Achieved:  1.000 0.998 1.000

Mean Accuracy of Classifiers in Ensemble:  0.979 0.985 0.977

Standard Deviation of Classifiers in Ensemble:  0.018 0.015 0.043

Minimum Accuracy of Classifiers in Ensemble:  0.973 0.957 0.827

Maximum Variables Selected by a Classifier:  2 5 13

Mean Number of Variables Selected 

by Classifiers in Ensemble:  1.667 2.900 2.750

Standard Deviation of 

Number of Variables Selected:  0.577 1.524 3.066

Minimum Variables Selected by a Classifier 1 1 1

Accuracy Rate of the Master Model: 0.973 0.891 0.732

Number of Variables Utilized in Master Model: 2 6 6  

When classifying instances, there were three distinct cases that could occur.  An instance could 

be selected for membership by none, one, or more than one of the ensemble classifiers.  Table 3 

presents the statistics for various parts of our method.   

 

The accuracy of the master classifier used in cases where no ensemble classifier identified 

membership demonstrated a significant degradation in classification accuracy.  This probably 

represents classification of difficult cases which were largely responsible for the errors in the 

master classification.  Instances which are not selected for classification by any of the individual 

ensemble members are passed to the master classifier.  This classifier is hindered by the same 

difficulties that individual classifiers face when determining membership of an object in a 

specific class.  Here though, we are forcing a classification to take place. 
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Table 3. Ensemble Statistics and Accuracy Rates 

Dataset:  Iris LRS Arrythmia

Instances Classified by 0 Members

 of the Ensemble:  0 (0%) 34 (6.4%) 56 (12.42%)

Accuracy of Master Model in 

Determining Class Membership:       N/A 0.4705882 0.4464286

Instances Classified by 1 Member 

of Ensemble:  145 (96.66%) 483 (90.96%) 375 (83.15%)

Accuracy:  0.9862068 0.9689441 0.8773333

Instances Classified by 2 Members 

of the Ensemble:  5 (3.33%) 14 (2.63%) 20 (4.43%)

Accuracy:  0.8 0.7142857 0.8

Instances Classified by 3 Members 

of the Ensemble:  0 0 0

Overall Accuracy of Method:  0.98 0.930255 0.820399  

Instances classified by only one of the ensemble members comprised the majority of cases in 

classification and were characterized by their large degree of accuracy.  Instances selected for 

membership in a class by two or more of the ensemble members comprised a small minority of 

classification cases.  By reverting to classifier accuracy to determine the final classification, we 

were able to achieve fairly high classification rates, given that blind chance would have resulted 

in a 50% accuracy rate.  There were no cases in any of our data sets where more than two 

classifiers competed for a given instance. 

The overall accuracy obtained by the ensemble method presented in this paper is greater than 

the single classifier attempting to classify amongst all classes.  Consequently, using ensembles 

increases accuracy when compared to the case of using a single classifier. 

5. CONCLUSIONS AND FUTURE WORK 

Our approach has demonstrated that an ensemble of classifiers trained to detect membership in a 

given class can achieve high rates of classification.  We have shown that we can achieve greater 

classification rates by combining a series of classifiers optimized to detect class membership, 

than by using single instances of classifiers.  Our model is best adapted towards classification 

problems involving three or more classes since a two class model can be readily handled by a 

single classifier instance.   

We have not adjusted the importance of individual variables during the process of constructing 

individual classifiers for the ensemble.  We have simply included or excluded variables as being 

equally weighted without scaling. While variable selection is helpful in addressing some of the 

problems outlined, additional improvements can be made to the kNN algorithm by weighting 

the variables which have been selected for inclusion into the model to account for differences in 

variable importance.  Another weakness which needs to be addressed is the consideration of 

incomplete datasets. 

Future work will focus on developing additional classifiers to distinguish between instances that 

are selected for class membership by more than one classifier within the ensemble rather than 

reverting to the highest accuracy rate.  An element of conditional probability might be of  
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considerable importance in biomedical classifications.  In larger datasets, there could be a 

number of cases where discerning membership amongst instances becomes difficult.  Often the 

determination occurs between two classes which are very similar.  In such cases where FSS-

KNN results in classifiers with relatively low rates of classification, it might be necessary to 

examine the data to determine whether the class in question is really composed of several 

subclasses which would benefit from their own respective binary classifiers within the 

ensemble.  Finally, there remains the possibility that we can use the predictor variables selected 

as most important for clustering by FSS to improve classification rates of other methods such as 

neural nets and decision trees. 
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