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ABSTRACT 

Stock market price index prediction is a challenging task for investors and scholars. Artificial neural 

networks have been widely employed to predict financial stock market levels thanks to their ability to model 

nonlinear functions. The accuracy of backpropagation neural networks trained with different heuristic and 

numerical algorithms is measured for comparison purpose. It is found that numerical algorithm outperform 

heuristic techniques.   
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1. INTRODUCTION 

Forecasting the stock market price movements has been a major challenge for both investors and 
scholars. Indeed, financial time series are highly volatile across time, and many factors affect 
their dynamics; mainly investor’s expectations based on actual and future economic and political 
conditions. In the past, statistical methods such as the autoregressive integrated moving average 
(ARIMA) model [1] were widely employed to predict stock market time series. However, 
ARIMA processes are not adequate to predict such a noisy and nonlinear data. Therefore, soft 
computing techniques such as artificial neural networks (ANN) were largely adopted to predict 
the stock market movements [2]. The artificial neural networks are adaptive nonlinear systems 
capable to approximate any function. Theoretically, a neural network can approximate a 
continuous function to an arbitrary accuracy on any compact set [3]-[5]. The backpropagation 
(BP) algorithm that was introduced by Rumelhart [6] is the well-known method for training a 
multilayer feed-forward artificial neural networks. It adopts the gradient descent algorithm. In the 
basic BP algorithm the weights are adjusted in the steepest descent direction (negative of the 
gradient). However, the backpropagation neural network (BPNN) has a slow learning convergent 
velocity and may be trapped in local minima. In addition, the performance of the BPNN depends 
on the learning rate parameter and the complexity of the problem to be modelled. Indeed, the 
selection of the learning parameter affects the convergence of the BPNN and is usually 
determined by experience. Many faster algorithms were proposed to speed up the convergence of 
the BPNN. They fall into two main categories. The first category uses heuristic techniques 
developed from an analysis of the performance of the standard steepest descent algorithm. The 
second category uses standard numerical optimization techniques. The first category includes the 
gradient descent with adaptive learning rate, gradient descent with momentum, gradient descent 
with momentum and adaptive learning rate, and the resilient algorithm. In the standard steepest 
descent, the learning rate is fixed and its optimal value is always hard to find. The heuristic 
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techniques allow the optimal learning rate to adaptively change during the training process as the 
algorithm moves across the performance surface. Therefore, the performance could be improved. 
The second category includes conjugate gradient, quasi-Newton, and Levenberg-Marquardt (L-
M) algorithm. In the conjugate gradient algorithms, a search is performed along conjugate 
directions; therefore the convergence is faster than steepest descent directions. Quasi-Netwon 
method often converges faster than conjugate gradient methods since it does not require 
calculation of second derivatives. For instance, it updates an approximate Hessian matrix at each 
iteration. Finally, The L-M method combines the best features of the Gauss-Newton technique 
and the steepest-descent method. It also converges faster than conjugate gradient methods since 
the Hessian Matrix is not computed but only approximated. For instance, it uses the Jacobian that 
requires less computation than the Hessian matrix. 

In science and engineering problems, there are many papers in the literature that examined the 
effectiveness of each category of algorithms on the performance of the BPNN. For instance, 
authors in [7] compared the performance of Levenberg-Marquardt, BP with momentum and BP 
with momentum and adaptive learning rate to classify the transformer oil dielectric and cooling 
state. They found that the BP with momentum and adaptive learning rate improves the accuracy 
of the BP with momentum and also gives a fast convergence to the network. The authors in [8] 
compared Levenberg-Marquardt, conjugate gradient and resilient algorithm for stream-flow 
forecasting and determination of lateral stress in cohesionless soils. They found that Levenberg-
Marquardt algorithm was faster and achieved better performance than the other algorithms in 
training. The authors in [9] considered the problem of breast cancer diagnosis and compared the 
classification accuracy of the standard steepest descent against the classification accuracy of the 
gradient descent with momentum and adaptive learning, resilient BP, Quasi-Newton and 
Levenberg-Marquardt algorithm. The simulations show that the neural network using the 
Levenberg-Marquardt algorithm achieved the best classification performance. In their research, 
the authors in [10] employed three neural networks with different algorithms to the problem of 
intrusion detection in computer and network systems. The learning algorithms considered by the 
authors were the standard, the batch, and the resilient BP algorithm. They conclude that the 
resilient algorithm had a better performance to the application. Finally, authors in [11] compared 
the performance of the standard BP with and Levenberg-Marquardt algorithm to the prediction of 
a radio network planning tool. They found that the standard BP algorithm achieved the minimum 
error and then outperforms the Levenberg-Marquardt algorithm. 

In the context of stock market forecasting, the BP is; indeed; the most employed algorithm to 
train artificial neural networks [2][12][13]. However, the problem of comparison of the accuracy 
of BP training algorithms in financial prediction was not considered. Therefore, the purpose of 
this paper is to examine the accuracy of BPNN trained with different heuristic and numerical 
techniques.  

The rest of this paper is organized as follows. Section 2 presents basic concepts about BPNN and 
methodology. Experimental results are presented in Section 3. Finally, a conclusion is given in 
Section 4. 

2. BACKPROPAGATION AND ALGORITHMS 

The Multi-layer perceptron (MLP) networks trained using BP algorithm [6] are the most popular 
choice in neural network applications in finance [2]. The MLP consists of three types of layers. 
The first layer is the input layer and corresponds to the problem input variables with one node for 
each input variable. The second layer is the hidden layer used to capture non-linear relationships 
among variables. The third layer is the output layer used to provide predicted values. In this 
paper, the output layer has only one neuron corresponding to the prediction result. The 
relationship between the output yt and the input xt is given by:  
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where wi,j (i=0,1,2,…,p;j=1,2,…,q) and wj (j=0,1,2,…,q) are the connection weights, p is the 
number of input nodes, q is the number of hidden nodes, and ƒ is a nonlinear activation function 
that enables the system to learn nonlinear features. The most widely used activation function for 
the output layer are the sigmoid and hyperbolic functions. In this paper, the hyperbolic transfer 
function is employed and is given by: 
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The MLP is trained using the BP algorithm and the weights are optimized. The objective function 
to minimize is the sum of the squares of the difference between the desirable output (yt,p) and the 
predicted output (yt,d) given by: 
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The training of the network is performed by BP [6] algorithm trained with the steepest descent 
algorithm given as follows:  

kkk gw .α−=∆  

where, ∆wk is a vector of weights changes, gk is the current gradient, αk  is the learning rate that 
determines the length of the weight update. Thus, in the gradient descent learning rule, the update 
is done in the negative gradient direction. In order to avoid oscillations and to reduce the 
sensitivity of the network to fast changes of the error surface [14], the change in weight is made 
dependent of the past weight change by adding a momentum term: 

1.. −∆+−=∆ kkkk wpgw α  

where, p is the momentum parameter. Furthermore, the momentum allows escaping from small 
local minima on the error surface. Unfortunately, the gradient descent and gradient descent with 
momentum do not produce the fastest convergence, and even are often too slow to converge. 
Heuristic and numerical algorithms [15][16][17] are employed to train the standard BP with 
gradient descent and faster its convergence. Heuristic techniques employed in this study include 
the gradient descent with adaptive learning rate, gradient descent with momentum, gradient 
descent with momentum and adaptive learning rate, and the resilient algorithm. On the other 
hand, numerical techniques employed in this paper include quasi-Newton (Broyden-Fletcher-
Goldfarb-Shanno, BFGS), conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, 
Powell-Beale restart), and Levenberg-Marquardt algorithm. The description of all these 
techniques is given in Table 1, and the reader may consult [15][16][17] for details. Figure 1 
exhibits the prediction system. For instance, past index prices are fed to the BPNN to predict 
future price index. In other words, we make the hypothesis that lagged prices values of the stock 
market help forecasting its future level (price).  
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Table 1. List of algorithms  

Algorithms Adaptation Description 

Gradient descent (standard) 
kkk gw .α−=∆  The weights and biases are updated in the 

direction of the negative gradient of the 
performance function. 

Gradient descent with momentum 
1.. −∆+−=∆ kkkk wpgw α  Momentum is added by a fraction change of the 

new weight. 

Gradient descent with adaptive learning 
rate  
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The initial network output and error are 
calculated. Using the current learning rate, new 
weights and biases are calculated at each 
epoch. 

Gradient descent with momentum and 
adaptive learning rate  
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Adaptive learning rate and momentum training 
are combined.  

Resilient BP 
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Only the sign of the partial derivative is 
considered to determine the direction of the 
weight update multiplied by the step size.  

Fletcher-Reeves  

(conjugate) 

00 gp −=  

kkk pw α=∆  

1−+−= kkkk pgp β  
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Iteration starts by searching in the steepest 
descent direction. A search line method1 is 
employed to find the optimal current search 
direction α.  

Next (update) search direction β is found such 
that it is conjugate to previous search 
directions. 

Polak-Ribiere  

(conjugate) 

00 gp −=  

kkk pw α=∆  

1−+−= kkkk pgp β  
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Update is made by computing the product of 
the previous change in the gradient with the 
current gradient divided by the square of the 
previous gradient. 

Powell-Beale restarts  

(conjugate) 

2
1 2.0 kkk ggg ≥′ −  

Update of Search direction is reset to the 
negative of the gradient only when this 
condition is satisfied. 

BFGS quasi-Newton  
kkk gHw ′−=∆  H is the Hessian (second derivatives) matrix.  

Levenberg-Marquardt (LM) 

 

kkk gHw ′−=∆  

JJH ′=′  

eJg ′=  

J is the Jacobian matrix (first derivatives) and e 
is a vector of network errors. 

                                                
1 The search line method proposed in [20] is adopted in our study. 
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Figure 1. Prediction system 

The auto-correlation function is employed to find the appropriate lags to be fed to BPNN 
following the methodology in [18][19] for prediction task. Finally, the performance of the 
prediction system is evaluated using the following common statistics: root mean of squared errors 
(RMSE), mean absolute error (MAE), and mean absolute deviation (MAD). They are given as 
follows: 
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3. Experimental Results 

The data consists on the S&P500 daily prices from October 2003 to January 2008. All neural 
networks are trained with 80% of the entire sample and tested with the remaining 20%. Based on 
the methodology presented in [18][19], we found that the S&P500 daily prices are auto-
correlated up to two lags. For instance, actual price index P(t) is auto-correlated with P(t-1) and 
P(t-2). Therefore, the following model is approximated using BP neural networks: 

( ) ( ) ( )( )2,1 −−= tPtPftP  

where f(.) is a nonlinear function to be approximated with BPNN trained with heuristic and 
numerical techniques. Figure 2 shows the root mean of squared errors and the mean absolute error 
statistic; and Figure 3 (left) shows the mean absolute deviation statistic. The simulation results 
show strong evidence of the superiority of BFGS quasi-Newton and L-M algorithm according to 
RMSE and MAE statistics. On the other hand, gradient descent with adaptive learning rate 
(GDALR), gradient descent with momentum and adaptive learning rate (GDMALR), Fletcher-
Reeves, and Polak-Ribiére perform the worst. A surprising finding is that the standard gradient 
descent (GD) performs much better than all heuristic techniques used in the study and much 
better than Fletcher-Reeves, and Polak-Ribiére which are conjugate gradient approaches. 
According to the mean absolute deviation statistic, the L-M algorithm performs the best followed 
by the BFGS and resilient and gradient descent. In addition, Fletcher-Reeves, and Polak-Ribiére 
perform the worst. Finally, the Polak-Ribiére is the fastest algorithm followed by gradient descent 
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with adaptive learning rate (GDALR), gradient descent with momentum and adaptive learning 
rate (GDMALR), and gradient descent (Figure 3, left).  

Surprisingly, the resilient algorithm was the lowest to converge. In sum, the findings show that 
backpropagation neural networks (BPNN) trained with conjugate (BFGS) and the Levenberg-
Marquardt (LM) provide the best accuracy according to RMSE, MAE, and MAD. Therefore, 
numerical techniques are suitable to train BPNN than heuristic methods when the problem of 
S&P500 stock market forecasting is considered.  

 

  
Figure 2. RMSE and MAE statistics 

 

 
 

Figure 3. MAD statistic and elapsed time. 
 

3. CONCLUSIONS 

The problem of S&P500 price index prediction is considered. Backpropagation neural networks 
(BPNN) are trained with standard steepest descent, heuristic and numerical techniques; and 
accuracy measures are computed for comparison purpose. It is found that numerical techniques 
are suitable to train BPNN than heuristic methods when the problem of S&P500 stock market 
forecasting is considered. In particular, BFGS conjugate algorithm and Levenberg-Marquardt are 
the best in terms of accuracy. In addition, the standard steepest gradient descent was found to 
perform much better than some heuristic and numerical algorithms.  
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