
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

DOI : 10.5121/ijcsea.2011.1501 1

MINIMIZING THE RISK OF ARCHITECTURAL DECAY

BY USING ARCHITECTURE-CENTRIC

 EVOLUTION PROCESS

Humaira Farid, Farooque Azam and *M. Aqeel Iqbal

Department of Computer Engineering

College of Electrical & Mechanical Engineering

National University of Sciences and Technology (NUST), Islamabad, Pakistan

*[Employed at Faculty of E & IT, FUIEMS, Rawalpindi, Pakistan]

humaira.farid@gmail.com, farooque.azam@gmail.com

maqeeliqbal@hotmail.com

ABSTRACT

Software systems endure many noteworthy changes throughout their life-cycle in order to follow the

evolution of the problem domains. Generally, the software system architecture cannot follow the rapid

evolution of a problem domain which results in the discrepancies between the implemented and designed

architecture. Software architecture illustrates a system’s structure and global properties and consequently

determines not only how the system should be constructed but also leads its evolution. Architecture plays

an important role to ensure that a system satisfies its business and mission goals during implementation

and evolution. However, the capabilities of the designed architecture may possibly be lost when the

implementation does not conform to the designed architecture. Such a loss of consistency causes the risk of

architectural decay. The architectural decay can be avoided if architectural changes are made as early as

possible. The paper presents the Process Model for Architecture-Centric Evolution which improves the

quality of software systems through maintaining consistency between designed architecture and

implementation. It also increases architecture awareness of developers which assists in minimizing the risk

of architectural decay. In the proposed approach consistency checks are performed before and after the

change implementation.

KEYWORDS

Software Architecture, Software Evolution, Architectural Decay, Architecture Versioning, Architecture

Assessment

1. INTRODUCTION

Software systems are usually designed to provide a solution to a particular problem domain and

for a particular business case. As the business world is frequently changing and the problem

domains evolve the software systems have to be constantly tailored to new business needs, i.e.

they need to evolve [1].

International Journal of Computer Science, Engineering and Applications (IJ

Software evolution activities can be

(corrective), to adapt it for a new platform

new functionality or other non-functional characteristics

Software architecture illustrates a system’s structure and global properties and consequently

determines not only how the system should be constructed but also leads its

stability is an important criterion for evaluating the architecture. The stability of the architecture

is a measure of how well it accommodates the evolution of the system without requiring changes

to the architecture. Consider the Figure

Figure

Architectural stability is more vulnerable

requirements [2]. Figure-2 shows that the architecture plays an important role to ensure that a

system satisfies its business and mission goals during implementat

Figure-2: Architecture

However, the capabilities of the designed architecture

implementation does not conform to the designed architecture

the risk of architectural decay. The paper describes that architecture plays an important role in

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

can be classified as to correct errors that are found in operation

, to adapt it for a new platform (adaptive) and to improve its performance

functional characteristics (perfective).

Software architecture illustrates a system’s structure and global properties and consequently

determines not only how the system should be constructed but also leads its evolution. The

stability is an important criterion for evaluating the architecture. The stability of the architecture

is a measure of how well it accommodates the evolution of the system without requiring changes

Consider the Figure-1 which shows the distribution of evolution effort.

Figure-1: Distribution of Evolution Effort

vulnerable by changes in non-functional rather than in functional

2 shows that the architecture plays an important role to ensure that a

system satisfies its business and mission goals during implementation and evolution.

: Architecture-Centric Development & Evolution

However, the capabilities of the designed architecture may possibly be lost

implementation does not conform to the designed architecture. Such a loss of consistency causes

The paper describes that architecture plays an important role in

CSEA) Vol.1, No.5, October 2011

2

to correct errors that are found in operation

and to improve its performance by adding

Software architecture illustrates a system’s structure and global properties and consequently

evolution. The

stability is an important criterion for evaluating the architecture. The stability of the architecture

is a measure of how well it accommodates the evolution of the system without requiring changes

which shows the distribution of evolution effort.

functional rather than in functional

2 shows that the architecture plays an important role to ensure that a

ion and evolution.

be lost when the

. Such a loss of consistency causes

The paper describes that architecture plays an important role in

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

3

improving software quality and provides a solid basis for software evolution. The paper

emphasizes on the importance of early and rapid architecture evolution for minimizing the risk of

architectural decay.

The paper presents the Process Model for Architecture-Centric Evolution which improves the

quality of software systems through maintaining consistency between designed architecture and

implementation. It also increases architecture awareness of developers which assists in

minimizing the risk of Architectural Decay. In the proposed approach consistency checks are

performed before and after the change implementation. It evaluates the implemented architecture

for identifying the risk of architecture’s quality decay and inconsistencies between the

architecture and the implementation. The rest of this paper is organized as follows. Section II

describes the problem description. Section III presents the proposed architecture-centric evolution

process model and also defines every process and its sub-activities in detail. Section IV illustrates

application areas and Section V defines potential research areas. Finally, Section VI concludes

the paper.

2. SCOPE OF RESEARCH

Software systems endure many noteworthy changes throughout their life-cycle in order to follow

the evolution of the problem domains. Generally, the software system architecture cannot follow

the rapid evolution of a problem domain which results in the discrepancies between the

implemented and designed architecture [3]. The preferred way of working is to add new system

features in an ad-hoc manner without changing the architectural description which results in

architectural decay and degrades the overall software quality.

Architecture refactoring is required to avoid this problem. Generally, Architecture refactoring is

deferred until the very last moment when it becomes extremely essential. Delays in performing

small refactoring activities turn into need for architecture reengineering which is more risky and

expensive. The effectiveness of reengineering is also generally not as high as anticipated [1].

Usually maintenance pays attention on comparatively small changes due to time and budget

limitations without considering structural changes, which can lead to imperfect changes and

consequent errors.

As a countermeasure it is good practice to maintain the consistency between the architecture and

the implementation. Consistency checking can be done by deducing information from

implementation, design documents, and model transformations [4]. Design decisions made at the

architectural level directly affect system maintenance and evolution. Hence, a considerable effort

is spent on designing architecture to assist future evolution. However, this effort may possibly be

lost, if the implementation deviates from the designed architecture. Such divergence between the

design and implementation results in Architectural Decay which makes further maintenance tasks

more complex and expensive [5].

3. PROPOSED APPROACH

The architectural decay can be avoided if architectural changes are made as early as possible.

This paper introduces the Architecture-Centric Evolution Process Model, which supports keeping

system architecture up-to-date with the problem domain and thus minimizing the risk of

architectural decay and quality degradation. The model introduces the evolution life cycle in

which it integrates the Architecture evolution with code evolution. It supports maintaining

consistency between architecture and implementation and thus offering the solid basis for

effective evolution.

The process model includes the four fundamental activities (see figure-3); Evolution Analysis and

Validation, Architecture Evolution, Change Implementation and Architecture Assessment.

International Journal of Computer Science, Engineering and Applications (IJ

Figure-3: Architecture

The Evolution Analysis and Validation stage of this model

checks its consistency in architecture

requirements that reflect the system change

risk severity and urgency of proposed changes will be analyzed.

the architecture description according to requested changes.

evolution process considers the proposed evolution as being part of a new architecture version.

Change Implementation modifies the system specification and

implementation environment to reflect the changes

the implemented architecture for identifying the risk of architectural decay and inconsistencies

between the architecture and the implementa

Every process takes some input for performing its task. After the completion of task, it gives

some output which assists next process for achieving its task.

outputs of every process in evolution life cycle.

Figure-4: Architecture-Centric Evolution Process Model with Key inputs & outputs

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

3: Architecture-Centric Evolution Process Model

and Validation stage of this model examines the impact of change and

checks its consistency in architecture description. It also analyses and validates the new

requirements that reflect the system changes. If changes cause the risk of architectural decay, the

risk severity and urgency of proposed changes will be analyzed. Architecture Evolution modifies

itecture description according to requested changes. If inconsistencies are detected, the

evolution process considers the proposed evolution as being part of a new architecture version.

modifies the system specification and implements it in the

to reflect the changes. The Architecture Assessment stage evaluates

for identifying the risk of architectural decay and inconsistencies

between the architecture and the implementation.

Every process takes some input for performing its task. After the completion of task, it gives

some output which assists next process for achieving its task. Figure-4 shows the key inputs and

outputs of every process in evolution life cycle.

Centric Evolution Process Model with Key inputs & outputs

CSEA) Vol.1, No.5, October 2011

4

examines the impact of change and

It also analyses and validates the new

If changes cause the risk of architectural decay, the

Architecture Evolution modifies

If inconsistencies are detected, the

evolution process considers the proposed evolution as being part of a new architecture version.

implements it in the

The Architecture Assessment stage evaluates

for identifying the risk of architectural decay and inconsistencies

Every process takes some input for performing its task. After the completion of task, it gives

4 shows the key inputs and

Centric Evolution Process Model with Key inputs & outputs

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

5

Every process in evolution life cycle has some sub-activities. Each sub-activity performs a

particular task and provides output for assisting other activities. Table-1 illustrates the sub-

activities of every process along with key inputs and outputs.

Table-1: Evolution Processes with Sub-Activities and Key inputs & outputs

Process Sub-Activities Key Inputs Key Outputs

Evolution Analysis

& Validation

Change Impact Analysis Change Requests

Change Plan

Analysis Report

Requirement Validation
System

Specifications

Consistency Checking
Architecture

Descriptions

Architecture

Evolution

Architecture

Modification
Current

Architecture

Description

Updated

Architecture

Descriptions Architecture Versioning

Change

Implementation

System Specification

Updating

Current System

Specifications
Updated System

Specifications &

Implementation
Source Code

Modification

Current System

Implementation

Architecture

Assessment
Architecture Assessment

Updated

Architecture

Descriptions

Updated System

Specifications &

Implementation

Evaluation Report

The rest of the section is organized to explain every process along with its sub-activities in detail.

3.1 Evolution Analysis and Validation

Evolution Analysis and Validation examines the impact of change and checks its consistency in

architecture description. It also analyses and validates the new requirements that reflect the

system changes. It includes three sub-activities.

� Change Impact Analysis

� Requirement Validation

� Consistency Checking

International Journal of Computer Science, Engineering and Applications (IJ

Figure-5: Evolution Analysis & Validation Process

Change Impact Analysis takes the input of requested changes

evaluated to see how much of the system is affected by the change and how much it might cost to

implement the change. If the proposed changes are accepted, a new releas

planned. The outcome of this activity is the release of Change Plan

where changes are required in Architecture descriptions, system specifications and

implementation. New requirements that reflect the system changes are proposed, analyzed and

validated in Requirement Validation activity. The req

whether these requirements satisfy the business goals. The proposed changes are only accepted if

they do not contradict the business goals.

After Requirement Validation, architectural consistency will be ensured.

uses change plan and current architect

will contradict one another after implementing the proposed changes

aims to predict whether changes

maintain consistency, the proposed

unacceptable or trigger the derivation of a new architecture version for which consistency will be

guaranteed. The outcome of this activity is the Analysis Report.

If changes cause the risk of architectural

changes will be analyzed. For this assessment

matrix which illustrates the different categories.

Table-2: Analysis Matrix for the assessment of the Risk of Architectural Decay along with the

Urgency of

Change Minor

A

1-Routine 1A

2-Urgent 2A

3-Most Urgent 3A

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

5: Evolution Analysis & Validation Process

Change Impact Analysis takes the input of requested changes. The impact of these changes is

evaluated to see how much of the system is affected by the change and how much it might cost to

If the proposed changes are accepted, a new release of the

planned. The outcome of this activity is the release of Change Plan which highlights the places

where changes are required in Architecture descriptions, system specifications and

New requirements that reflect the system changes are proposed, analyzed and

validated in Requirement Validation activity. The requirements are analyzed in detail to check

whether these requirements satisfy the business goals. The proposed changes are only accepted if

they do not contradict the business goals.

After Requirement Validation, architectural consistency will be ensured. Consistency C

uses change plan and current architecture descriptions to check whether architectural

after implementing the proposed changes. The consistency checking

to predict whether changes persuade inconsistencies in current architecture. If changes

proposed evolution will be permitted. If not, it will either be

or trigger the derivation of a new architecture version for which consistency will be

ome of this activity is the Analysis Report.

the risk of architectural decay, the risk severity and urgency of

this assessment Analysis Matrix is introduced. Table

different categories.

2: Analysis Matrix for the assessment of the Risk of Architectural Decay along with the

urgency of requested changes.

Severity of the Risk of Architectural Decay

Minor

Moderate

B

Critical

C

Catastrophic

 1B 1C 1D

 2B 2C 2D

 3B 3C 3D

CSEA) Vol.1, No.5, October 2011

6

impact of these changes is

evaluated to see how much of the system is affected by the change and how much it might cost to

of the system is

which highlights the places

where changes are required in Architecture descriptions, system specifications and

New requirements that reflect the system changes are proposed, analyzed and

uirements are analyzed in detail to check

whether these requirements satisfy the business goals. The proposed changes are only accepted if

Consistency Checking

whether architectural elements

consistency checking

architecture. If changes

evolution will be permitted. If not, it will either be

or trigger the derivation of a new architecture version for which consistency will be

of the proposed

Table-2 shows the

2: Analysis Matrix for the assessment of the Risk of Architectural Decay along with the

of the Risk of Architectural Decay

Catastrophic

D

1D

2D

3D

International Journal of Computer Science, Engineering and Applications (IJ

After assessment of the risk of architectural decay and urgency of the proposed changes

require to perform some necessary measures

the required measures against every category.

Table-3: Assessment index and corresponding required measures for maintaining consistency and

The details of the above assessment along with their corresponding required measures will be

included in the Analysis Report.

3.2 Architecture Evolution

Architecture Evolution modifies the architecture description according to requested changes.

It includes two sub-Activities:

� Architecture Modification

� Architecture Versioning

Figure

Architecture descriptions will be

This activity takes input of current architecture description to make changes. Architecture

modification is used to modify the architectural description according to the required changes

introduced in the analysis report. It assists in

architecture and implementation.

activity.

Assessment Index

1A, 1B, 1C, 1D, 2C, 2D, 3D

3C

2A, 2B, 3A, 3B

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

After assessment of the risk of architectural decay and urgency of the proposed changes

to perform some necessary measures for ensuring quality and consistency. Table

the required measures against every category.

3: Assessment index and corresponding required measures for maintaining consistency and

improving quality.

The details of the above assessment along with their corresponding required measures will be

modifies the architecture description according to requested changes.

Modification

Figure-6: Architecture Evolution Process

will be modified according to the Change Plan and the Analysis report

current architecture description to make changes. Architecture

modify the architectural description according to the required changes

introduced in the analysis report. It assists in maintaining consistency between system

re and implementation. The updated architecture description is a major outcome of this

Measures

First Architecture will be updated and afterwards the

implementation will be modified.

A decision will be taken according to Business &

missions goals.

First Implementation will modify and immediately

afterwards Architecture evolution will take place.

CSEA) Vol.1, No.5, October 2011

7

After assessment of the risk of architectural decay and urgency of the proposed changes, it will

consistency. Table-3 shows

3: Assessment index and corresponding required measures for maintaining consistency and

The details of the above assessment along with their corresponding required measures will be

modifies the architecture description according to requested changes.

according to the Change Plan and the Analysis report.

current architecture description to make changes. Architecture

modify the architectural description according to the required changes

consistency between system

The updated architecture description is a major outcome of this

First Architecture will be updated and afterwards the

to Business &

First Implementation will modify and immediately

afterwards Architecture evolution will take place.

International Journal of Computer Science, Engineering and Applications (IJ

If inconsistencies are detected, the evolution process considers

part of a new architecture version

consistency with the proposed change and maintains all previous versions. It also records all

important change operations performed in the previous architecture version

3.3 Change Implementation

Change Implementation modifies the system specification and implements it in the

implementation environment to reflect the changes. It

� System Specification Updating

� Source Code Modification

Figure

System Specification Updating takes

system specification is modified according to new requirements

updated System Specification is a key outcome of this

In Source code modification proposed changes are

environment to reflect the changes

according to updated system specification and architecture

3.4 Architecture Assessment

Architecture Assessment aims to evaluate architecture after it has been implemented. Assessment

of an implemented architecture assists in identifying

inconsistencies between the architecture and the implementation

Architecture Assessment takes inputs of updated architecture descriptions, system specifications

and implementation for checking consistency. The outcome of this phase is an evaluation

containing the results of the assessment and specific actions for adjustment in case of any

discrepancies between the architecture and implementation.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

If inconsistencies are detected, the evolution process considers the proposed evolution as being

w architecture version. Architecture Versioning derives new architecture version for

consistency with the proposed change and maintains all previous versions. It also records all

performed in the previous architecture version.

Change Implementation

Change Implementation modifies the system specification and implements it in the

implementation environment to reflect the changes. It includes two sub-activities:

System Specification Updating

Source Code Modification

Figure-7: Change Implementation Process

System Specification Updating takes input of current system specification for updating.

is modified according to new requirements mentioned in change plan

updated System Specification is a key outcome of this activity.

In Source code modification proposed changes are implemented in the implementation

environment to reflect the changes. It takes the input of current implementation and updates it

according to updated system specification and architecture description.

Architecture Assessment

Architecture Assessment aims to evaluate architecture after it has been implemented. Assessment

of an implemented architecture assists in identifying the risk of architecture’s quality

inconsistencies between the architecture and the implementation.

Architecture Assessment takes inputs of updated architecture descriptions, system specifications

and implementation for checking consistency. The outcome of this phase is an evaluation

containing the results of the assessment and specific actions for adjustment in case of any

discrepancies between the architecture and implementation.

CSEA) Vol.1, No.5, October 2011

8

evolution as being

derives new architecture version for

consistency with the proposed change and maintains all previous versions. It also records all

Change Implementation modifies the system specification and implements it in the

of current system specification for updating. The

mentioned in change plan. The

implemented in the implementation

It takes the input of current implementation and updates it

Architecture Assessment aims to evaluate architecture after it has been implemented. Assessment

architecture’s quality decay and

Architecture Assessment takes inputs of updated architecture descriptions, system specifications

and implementation for checking consistency. The outcome of this phase is an evaluation report

containing the results of the assessment and specific actions for adjustment in case of any

International Journal of Computer Science, Engineering and Applications (IJ

Figure

Figure-8 shows the key inputs Architecture

also shows a key outcome of this activity i.e. an Evaluation Report.

4. APPLICATION AREAS

4.1 Evolution in product lines and

Software product families are a

variable functionalities. Software product lines have received

software companies. A wide variety of companies has significantly reduced the cost of software

development and maintenance and improved the quality of their software products. The product

line approach can be applied to an existing line of products or the organization can also use a new

system or product family to expand its market

architecture and components need to evolve with the requirements posed by new product line

members. Architecture-centric evolution process assists in evolving the software product line

architecture. It keeps architecture consistent a

4.2 Evolution of legacy software through its architecture

The legacy software systems are described as old software systems which are usually designed

and documented inadequately, but still perform a

application. The business value of legacy systems has

consistency and evolution support

as some of their functions are too

reconstruct. Organizations have to make a pragmatic assessment of legacy systems to choose the

most suitable approach for evolving these systems. Architecture

systems improves their business value by providing consistency and improving overall quality.

4.3 Evolution of EAI services

Information systems are now based on integration of existing components that have to cooperate

in a precise manner in order to build a s

Application Integration) domain provides integration models and techniques for assembling

various software applications in a realistic way. EAI architecture defines the elements that

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

Figure-8: Architecture Assessment Process

8 shows the key inputs Architecture Assessment activity is taking for achieving its task. It

also shows a key outcome of this activity i.e. an Evaluation Report.

tion in product lines and families

a set of independent programs that have several

Software product lines have received extensive adoption in many

A wide variety of companies has significantly reduced the cost of software

d maintenance and improved the quality of their software products. The product

line approach can be applied to an existing line of products or the organization can also use a new

system or product family to expand its market. In case of adding new products, product line

architecture and components need to evolve with the requirements posed by new product line

centric evolution process assists in evolving the software product line

architecture. It keeps architecture consistent and improves overall quality.

Evolution of legacy software through its architecture

The legacy software systems are described as old software systems which are usually designed

and documented inadequately, but still perform an important job for the bus

value of legacy systems has become feeble due to the lack of

evolution support. But the importance of legacy systems cannot be undermined

as some of their functions are too important to be scrapped completely and too costly to

Organizations have to make a pragmatic assessment of legacy systems to choose the

most suitable approach for evolving these systems. Architecture-centric evolution

usiness value by providing consistency and improving overall quality.

Evolution of EAI services-oriented architecture

Information systems are now based on integration of existing components that have to cooperate

in a precise manner in order to build a services-based application. The EAI (Enterprise

Application Integration) domain provides integration models and techniques for assembling

various software applications in a realistic way. EAI architecture defines the elements that

CSEA) Vol.1, No.5, October 2011

9

Assessment activity is taking for achieving its task. It

 common and

adoption in many

A wide variety of companies has significantly reduced the cost of software

d maintenance and improved the quality of their software products. The product

line approach can be applied to an existing line of products or the organization can also use a new

products, product line

architecture and components need to evolve with the requirements posed by new product line

centric evolution process assists in evolving the software product line

The legacy software systems are described as old software systems which are usually designed

job for the business critical

become feeble due to the lack of

But the importance of legacy systems cannot be undermined

to be scrapped completely and too costly to

Organizations have to make a pragmatic assessment of legacy systems to choose the

centric evolution of legacy

usiness value by providing consistency and improving overall quality.

Information systems are now based on integration of existing components that have to cooperate

based application. The EAI (Enterprise

Application Integration) domain provides integration models and techniques for assembling

various software applications in a realistic way. EAI architecture defines the elements that

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

10

compose the system and their interaction. The evolution support and the inconsistency between

design and implementation are the major issues addressed by designing and building COTS-based

systems [6]. To maintain the consistency between the architecture and the implementation,

architecture-centric evolution approach is used.

4.4 Architecture-centric evolution process for component-based software

Component-based software engineering (CBSE) emerged as a reuse-based approach to software

development. It promotes an approach to define, implement and integrate or compose loosely

coupled independent components into systems [7]. A new component role can be required to add

to cope with new requirements. The specification of software architecture will also be required to

evolve to meet new requirements. Architecture-centric evolution process provides a controlled

support for component-based software evolution that prevents architecture drift and erosion [8].

5. POTENTIAL RESEARCH AREAS

5.1 Architecture-centric evolution process for modern development methodologies:

RAD, Agile and Extreme Programming

Rapid Application Development (RAD) is a modern software development methodology that

uses nominal planning in support of rapid prototyping. There can be real difficulties with this

approach. Without a specification it may be difficult to validate the system.

Frequent changes have a tendency to corrupt software structure and it makes it more expensive to

change for meeting new requirements. The integration of Agile approaches and software

architecture is possible but it requires that professionals from both fields work together to

overcome evident challenges in this field and should emphasize on the need of research on

integrating these two paradigms. [9]

5.2 Developing new metrics and approaches supporting Architecture-centric

evolution process

Different metrics and patterns can be applied for the software evolution management. New

metrics and approaches could be used in the architecture-centric evolution process for assuring

the quality of a software system not only in the software design phase but also throughout the

software development life cycle. This could be done by calculating a variety of design metrics

from the system architecture and reporting prospective quality harms to the designers and

developers. This could assist in improving the software quality and minimizing the risk of

architectural decay.

5.3 Tools that maintain and impose Architecture-centric evolution process

The automatic tool support for Architecture-centric evolution process could make it more

effective and less time consuming. Consistency checking and architecture assessment could be

done effectively and easily by using efficient tools. The tool support could be provided for

automatically detecting the architectural changes and apply them in the implementation

environment. This could minimize the time and effort for software evolution.

6. CONCLUSION

This paper has described that architecture plays an important role in improving software quality

and provides a solid basis for software evolution. The paper has emphasized on the importance of

early and rapid architecture evolution for minimizing the risk of architectural decay. This paper

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

11

has defined that how software architecture illustrates a system’s structure and global properties

and leads the system evolution. This paper has proposed the Process Model for Architecture-

Centric Evolution for improving the quality of software systems through maintaining consistency

between the architecture and implementation. The paper has argued that the proposed approach

increases architecture awareness of developers which assists in minimizing the risk of

Architectural Decay. In the proposed approach consistency check has been performed before and

after the change implementation. The proposed process model includes the four fundamental

activities; Evolution Analysis and Validation, Architecture Evolution, Change Implementation

and Architecture Assessment. The Evolution Analysis and Validation stage of this model

examines the impact of change and checks its consistency in architecture description. It also

analyses and validates the new requirements that reflect the system changes. Architecture

Evolution modifies the architecture description according to requested changes. Change

Implementation modifies the system specification and implements it in the implementation

environment to reflect the changes. Finally, the Architecture Assessment stage evaluates the

implemented architecture which assists in identifying the risk of architecture’s quality decay and

inconsistencies between the architecture and the implementation.

REFERENCES

[1]. Ilian Pashov, “Feature-Based Methodology for Supporting Architecture Refactoring and Maintenance

of Long-Life Software Systems”, PhD thesis, TU Ilmenau.

[2]. Rami Bahsoon and Wolfgang Emmerich, “Architectural Stability and Middleware: An Architecture-

Centric Evolution Perspective”, workshop on Architecture-Centric Evolution 2006.

[3]. “Architecture-Centric Evolution: New Issues and Trends”, Report on the Workshop ACE at ECOOP-

2006

[4]. Matthias Biehl and Welf Löwe, “Automated Architecture Consistency Checking for Model Driven

Software Development”, Proceedings of the 5th International Conference on the Quality of Software

Architectures: Architectures for Adaptive Software Systems, 2009.

[5]. Jacek Rosik, Jim Buckley, Muhammad Ali Babar, “Design Requirements for an Architecture

Consistency Tool”, in Proceedings of the 21st Annual Psychology of Programming Interest Group

Conference, June 2009.

[6]. Frédéric Pourraz, Hervé Verjus, “An architecture-centric approach for managing the evolution of EAI

services-oriented Architecture”, in Proceedings of the Eighth International Conference on Enterprise

Information Systems Databases and Information Systems Integration, 2006.

[7]. I. Sommerville, “Software Engineering”, 8th ed. Addison Wesley, 2006.

[8]. HY Zhang, Christelle Urtado, Sylvain Vauttier, “Architecture-centric development and evolution

processes for component-based software”, in Proceedings of SEKE'2010.

[9]. Babar Ali M., and A. Pekka, “Architecture-Centric method and agile approaches”, 10th international

conference on agile processes, Dec, 2009.

International Journal of Computer Science, Engineering and Applications (IJ

Authors

Humaira Farid

Humaira Farid is a student of M.S

Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and

Technology (NUST), Pakistan.

Dr. Farooque Azam

Dr. Farooque Azam is an Associate Professor

Engineering, College of Electrical and Mechanical Engineering, National University of

Sciences and Technology (NUST), Pakistan.

from BUAA, Beijing, China. He did his

College of Signals, National University of Sciences and Technology

M. Aqeel Iqbal

M. Aqeel Iqbal Is An Assistant Professor In The

Faculty Of Engineering And Information Technology, Foundation University, Institute Of

Engineering And Management Sciences, Rawalpindi, Pakistan. As A Researcher He Has

A Deep Affiliation With The College of E & ME, Nati

Technology (NUST), Pakistan.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, October 2011

Humaira Farid is a student of M.S (Computer Software Engineering) in the department of Computer

Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and

Associate Professor in the Department of Computer

Engineering, College of Electrical and Mechanical Engineering, National University of

Sciences and Technology (NUST), Pakistan. He did his PhD in Software Engineering

. He did his MS in Software Engineering from Military

National University of Sciences and Technology (NUST), Pakistan.

M. Aqeel Iqbal Is An Assistant Professor In The Department Of Software Engineering,

Faculty Of Engineering And Information Technology, Foundation University, Institute Of

Engineering And Management Sciences, Rawalpindi, Pakistan. As A Researcher He Has

A Deep Affiliation With The College of E & ME, National University Of Sciences And

CSEA) Vol.1, No.5, October 2011

12

in the department of Computer

Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and

