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ABSTRACT 
 
Task assignment is one of the most challenging problems in distributed computing environment. An optimal 

task assignment guarantees minimum turnaround time for a given architecture. Several approaches of 

optimal task assignment have been proposed by various researchers ranging from graph partitioning based 

tools to heuristic graph matching. Using heuristic graph matching, it is often impossible to get optimal task 

assignment for practical test cases within an acceptable time limit. In this paper, we have parallelized the 

basic heuristic graph-matching algorithm of task assignment which is suitable only for cases where 

processors and inter processor links are homogeneous. This proposal is a derivative of the basic task 

assignment methodology using heuristic graph matching. The results show that near optimal assignments 

are obtained much faster than the sequential program in all the cases with reasonable speed-up.  
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INTRODUCTION 

 
Load balancing is the process by which task modules constituting an application are assigned to 

processors, with the goals of maximizing the processor utilization and minimizing the total 

turnaround time. This can be viewed as a task assignment problem by which task modules are 

assigned to available processors in order to achieve the aforesaid two goals. Achievement of the 

above proposal is possible by a number of techniques viz. graph partitioning, graph matching (the 

2 most widely used ones), hybrid methodology and mathematical programming. First a survey of 

task assignment strategies is presented. Next, the heuristic graph matching based task assignment 
by methodology of Shen and Tsai [3] is explained. Finally the parallel algorithm is presented and 

its performance is analyzed using several representative test cases. 

 

Graph Partitioning based Methodologies   

 
Graph partitioning techniques view the task as a task graph where the vertices represent the task 

modules and edges represent the communication between those tasks. In load balancing, the 

graph partitioning methodologies are used to produce equal partitions of the task graph with the 

inter-node communication or the volume of such communication minimized. The number of 
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partitions depends on the number of processing elements and their topology in the processor 

graph. Some factors are: 

 

•Load balance: The computational work of each processor should be balanced, so that no 

processor will be waiting for others to complete.  

 
•Communication cost: On a parallel computer, accumulating the contributions from 

nodes that are not on the current processor will incur communication cost which must be 

minimized. 

 

The graph bisection problem has been studied in the past by many authors (see, e.g., [4], [5], [6]) 

in the context of graph theory as well as VLSI circuit layout. Advances in parallel computing 

hardware and software have renewed interest in the problem. The graph bisection problem is a 
NP hard problem, so there are no known algorithms that can find the exact solution to the 

problem in polynomial time. Most of the graph bisection methods, therefore, seek a good 

approximation to the optimal partitioning that can be calculated efficiently. Some already 

proposed algorithms are 

 

• Recursive graph bisection (RGB): algorithm [6] attempts to partition the task graph 

recursively. The RGB algorithm first finds the two vertices that are the furthest apart (their 

distance is called the diameter of the graph). Then, starting from one of them (the root), the half 

of the vertices that are closer to the root from one partition, the rest from other. This process is 

then recursively executed on each of the partitions. 

 
• Greedy algorithm starts with a vertex with the smallest degree, and marks its 

neighbours, and then the neighbours’ neighbours. The first n/p marked vertices (assuming a task 

graph with n vertices to be partitioned amongst p processors) are taken to form one partition and 

the procedure is applied to the remaining graph until all of the vertices are marked. This 

algorithm [7] is similar to the RGB algorithm, although it is not a bisection algorithm. Like RGB 
it has a low complexity of O (n). 

  

• K-L (Kernighan-Lin) algorithm ([4] [8] [9]) is an iterative algorithm. Starting from a 

load balanced initial bisection, it first calculates for each vertex the gain in the reduction of edge-

cut that may result if that vertex is moved from one partition of the graph to the other. In each of 

inner iteration, it moves the unlocked vertex that has the highest gain, from the partition in 

surplus to the partition in deficit. This vertex is then locked and the gains updated. The procedure 
stops if the gain of the move is negative, and this negative move is undone which results with 

bisection with the smallest edge-cut in this iteration. Other iterations will continue until that time. 

If one iteration fails to result in reduction of edge-cut, the problem terminates. 

  

Parallel partitioning algorithms  

 
Although the multilevel approach of Kernighan-Lin Algorithm reduces the computing time 

significantly, it can prove to be memory intensive for a very large task graph - often exceeding 

the limits of single CPU memories. Furthermore as the ultimate purpose of partitioning is for the 

subsequent implementation of the application code on parallel machines, it makes sense to have a 

parallel partitioning code. Besides, a fast parallel partitioning algorithm can also be used for the 

purpose of dynamic load balancing. There have been a number of efforts in this area.  

 
In [10] [11], the multilevel spectral bisection was parallelized specifically for the Cray 

architecture using the Cray SHMEM facility. The linear algebra algorithms are used to parallelize 

the tasks. Difficulties arose in the parallel graph coarsening, in particular, in the parallel 
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generation of the maximal independent set. These were tackled by using a number of parallel 

graph theory algorithms. On a 256 processor Cray T3D, the resulting algorithm PMRSB (Parallel 

multilevel recursive bisection algorithm) is able to partition a graph of 1/4 million vertices into 

256 sub domains, which is 140 times faster than a workstation using an equivalent serial 

algorithm.  

 
In [12], a parallel multilevel p way-partitioning scheme was developed. This is based on work in 

the sequential p way partitioning algorithm METIS [13], but with some interesting modification 

to facilitate parallelization. In the previous PMRSB algorithm, for finding the maximal 

independent set was employed. However unlike MRSB, where the maximal independent set is 

used directly to form the coarse graph, here the maximal independent set is used for a different 

purpose. By considering one independent set at one time, it is possible to avoid conflicts during 

the coarsening stage when the vertices are matched, as well as during the uncoarsening stage 
when the boundaries are refined. One way of avoiding this conflict is for the two processors to 

communicate with each other and to collaborate on a migration strategy. When there are more 

than two processors, this may necessitate a colouring of the processor graphs so that processors 

are grouped in pairs and refinement is carried out on boundaries of the paired processors. 

 

The parallel partitioning algorithms use a different refinement strategy. This algorithm is 

designed also for dynamic load balancing, the initial partitioning is assumed to be unbalanced. 

For any two neighbouring sub domains p and q, the flow (the amount of load to be migrated to 

achieve global load balance) is first calculated. The flow from p to q is denoted as f(pq). Let g(pq) 

denote the total weight of the vertices on the boundary of p which have a preference to migrate to 

q. Let d=max (g(pq)-f(pq)+g(qp)-f(qp), 0), which represents the total weight of all boundary 

vertices with a positive gain after the flow is satisfied. Then the load has to be migrated from p to 

q. This allows the flow to be satisfied and at the same time an additional load of equal amount is 
exchanged between the two processors to optimize the edge-cut.  

 

In other parallel graph partitioning algorithms, the parallel single level algorithm, combining 

inertia bisection with K-L refinement was implemented. Possible conflict during the refinement 

stage was avoided by the pairing of processors based on the edge colouring of the processor 

graph. The quality of the partition was not as good as multilevel algorithms.  

 
In other parallel graph partitioning algorithms, the parallel single level algorithm, combining 

inertia bisection with K-L refinement was implemented. Possible conflict during the refinement 

stage was avoided by the pairing of processors based on the edge coloring of the processor graph. 

The quality of the partition was not as good as multilevel algorithms.  

 

Then a spectral inertia bisection algorithm was introduced. The spectral set of eigenvectors for 

the coarsest graph was first calculated which serves as the spectral coordinates of the vertices. 

The graph was partitioned with the inertia bisection algorithm, based on these spectral 

coordinates. Part of the algorithm was parallelized. This algorithm is also suitable for dynamic 

load balancing on applications where the mesh is enriched by the refinement of the individual 

elements.  

 

In such a case, the refinement can be captured by updating the vertex weights of the dual graph of 

the mesh, without changing the graph itself. The mesh is repartitioned quickly after refinement, 

using the spectral information originally calculated for the top-level coarse mesh. Since the size 

of the dual graph does not change, the repartitioning time does not change with the increase of the 

mesh size, as the refinement steps are carried out. 
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Existing partitioning software   

 
A number of packages are publicly available. Many of them are constantly being updated.  

 

• CHACO(http://www.cs.sandia.gov/CRF/chac.html)  

A package has been available. The latest version CHACO 2.0 uses multilevel combined 

with a number of available methods such as K-L refinement, spectral bisection. Available 

by request.  

• JOSTLE(http://www.gre.ac.uk/jostle/)  

Multilevel graph partitioning using p-way refinement. Both the sequential and parallel 

version is available free for academic use as an executable, after signing an agreement.  

• METIS(http://www.cs.umn.edu/~karypis/metis/metis.html)  

Multilevel graph partitioning using p-way refinement. Both the sequential and the parallel 

version are available free for down-load.  

• PARTY(http://www.unipaderborn.de/fachbereich/AG/monien/RESEARCH/PART/party.

html)  

Sits on top of existing packages, offers greedy, multilevel spectral bisection, coordinate 

bisection, inertia bisection and other algorithms. Version 1.1 is available after signing a 

license.  

• PMRSB  

parallel multilevel spectral bisection. Available only on CRAY platforms.  

• S-HARP [41] (http://www.cs.njit.edu/sohn/sharp/)  

Multilevel graph partitioning using multiple eigenvectors and (spectral) inertia bisection 

on the coarsest level.  

• SCOTCH (http://www.labri.ubordeaux.fr/Equipe/ALiENor/membre/pelegrin/scotch/)  

Multilevel implementation of a number of algorithms including K-L. The code is free for 

down-load for academic use.  

• TOP/DOMDEC  

Greedy algorithm, recursive coordinate and graph bisection, recursive inertia bisection, 
multilevel spectral bisection algorithm with Tabu search, simulated annealing and 

stochastic evolution as smoothers.  

• WGPP  

Multilevel graph partitioning. Similar to METIS with some new features.  
 

Heuristic Graph Matching 

 
This is a graph matching based method, which uses a task-graph and a processor-graph. While 

the task-graph denotes the dependency amongst the task modules, the processor-graph defines 

the topology of interconnection amongst the processors. A classical example of this is the work 
by Shen and Tsai [3] which uses the well-known A* algorithm to find the optimal task 

assignment. 

 

A mapping implies assignment of any one or more of the n task modules to any one or more of 

the p processors with no task module assigned to more than one processor. This branch and 

bound heuristics based methods starts by an initial mapping and expands the state-space by 

generating other permissible mappings. Each mapping or state-space entry has a cost function 

associated which is denoted by f. In [3], this cost function is expressed in terms of a single entity 

viz. time and may be thought to be composed of two parts viz. g which may be viewed as the cost 

of generation of the state-space entry and h, which may be viewed as the cost to generate the 
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goal-state from the present state-space entry and is the heuristic weight associated with the state-

space entry. Thus, for each mapping or state-space entry, 

 

f = g + h                        1.1 

 

As long as there is an upper bound hmax for h, i.e. h ≤ hmax, the A* algorithm guarantees that an 

optimal solution is found [14].  Thus with g = 0, the search becomes a purely heuristic search and 

with h = 0 it becomes a best-first search. 

 

If n task modules are assigned to m processors, there can be m
n assignments theoretically 

possible. The method proposed by Shen and Tsai has a typical complexity of O (n
2
) for  

n≤20 and this complexity approach O (m
n
 n

2
) as n becomes large. Therefore this algorithm is not 

suitable for large task graphs.  
 

1.1. Hybrid load balancing methodology for a cluster of SMPs 

 
A hybrid methodology to obtain an optimal task assignment across a cluster of SMPs was 

proposed by Gao et. al. in [1][2]. Each processing element of a cluster is a node comprising a 

number of tightly coupled processors. The hybrid methodology graph partitioning first assigns the 

task modules across all nodes of the cluster so as to have equal load on all nodes with inter-node 

communication optimized. Next, modules constituting each of these sub-tasks are assigned to 

processors constituting respective nodes using this algorithm of heuristic graph matching. This 

algorithm works for a moderate number of modules (approximately 20) per node, but fails for 

large numbers. The intra-node task assignment algorithm proposed in [1] has been further 

modified by Gao et. al. in [2] where multi step algorithm has been proposed. 

 

Load distribution for parallel application on a cluster of Symmetrical Multiprocessors (SMPs) 

posses a challenging problem. A cluster of SMPs essentially comprising of a finite number of 

computing nodes, each comprising of 2 or more identical, tightly coupled processing elements, 

the nodes being connected over a network. While the approximate method of load balancing 

using standard methods like graph partitioning, for example, can produce acceptable task 

assignment across the nodes, they cannot be applied to obtain optimal task assignment on the 

processor constituting a node. This is because of the complex optimization involved when one 
considers the fact that all the processing element in a node have only one network interface and 

that the node turn-around is the minimum when the computation and communication activities of 

the processing elements can be interleaved optimally.  

 

Motivation for the work done 
 
Though parallel graph partitioning algorithms exist, parallel graph matching algorithms do not. 

Graph matching algorithms like the one proposed by Shen and Tsai are extremely useful 

considering fact that they can tackle processor heterogeneity; they cannot be used for practical 

test cases with a large number of task modules. This is primarily because of the exponential 

complexity of the resource hungry A* algorithm. A parallel graph matching methodology is 

likely to reduce the size of the state-space handled by each parallel graph-matching task, thus 

producing acceptable mapping within acceptable time limits. 

 

For example, if a parallel graph-matching algorithm can substitute the sequential graph matching 

part used with the hybrid methodology proposed by Gao et. al. in [1], the processor utilization is 
bound to increase and the execution time for finding optimal task assignment on the processor 

constituting the SMPs node is bound to reduce. This is further justifiable when one considers the 

fact that in case of application integrated load balancing, all processor would be involved in 
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finding the optimal task assignment which makes faster restart possible in case of a node failure, 

for example. 

 

In this dissertation it is attempted to parallelize the basic heuristic graph-matching algorithm of 

task assignment put forwarded by Shen and Tsai. This is particularly suitable for cases where 

processors and inter processor links are homogeneous. A typical example is a node of a SMP 
cluster comprising a finite number of identical processors.  

 

 This methodology is a derivative of the basic task assignment methodology using heuristic graph 

matching proposed in [3] by Shen and Tsai. The methodology is tested on a few representative 

test cases Message Passing Interface (MPI) is used as the platforms. The results show that near 

optimal assignments are obtained much faster than the sequential program in all the cases. 

 

PARALLEL GRAPH MATCHING ALGORITHM 

 
In this section, the original sequential algorithm proposed by Shen and Tsai in [3] is first 

presented. This algorithm is then analyzed and the portions which can be parallelized are 
identified. Finally, the parallel graph-matching algorithm is presented and explained with an 

illustrative example. 

 

Parallel graph-matching algorithm 

 
The basic methodology proposed by Shen and Tsai is based on a generate and test mechanism. 

Generation of state space nodes expands the state space and incurs computation time as 

successive nodes are generated and the associated costs are computed. The parallel graph 

matching algorithm parallizes the generate mechanism, thus dividing the state space into several 

smaller state-spaces. The basic steps involved are as follows. 

 

Let N be the number of parallel graph matching tasks. 

 

Let T = (VT, ET) represent the task graph 

 

P = (VP, EP) represent the processor graph 

 

Let Pi = (Vpi, Epi) be a sub graph of P, which is used by the ith task for mapping. 

 
The number of sub graphs of P is assumed to be equal to the number of tasks. Each parallel 

graph-matching task is assumed to follow the steps 1 to 5 followed by the sequential algorithm, 

the only difference being the fact that the node for expansion is the one with minimum value of f 

computed across all the parallel tasks. For this purpose, it is further assumed that the tasks send to 

each other the mapping corresponding to the entry with minimum value of f once a fixed number 

of new entries are added to the state-space. This variable is defined as node_count. 

Each parallel graph-matching task proceeds as follows: - 
 

Step 1 

 

Put Ki = ø on a list OPEN and set f (Ki) = 0 when f is the evaluation function defined by equation 

2.1. If Mglobal represents the global optimal mapping, i.e. the mapping with smallest value of f 

found by all graph matching tasks, then initialize this to Ki. 
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Step 2  

 

 Set n = Mglobal 

 

Step 3 

 

If n represents the state with no unmapped task, with the smallest value of f among all OPEN 

nodes, or the number of new additions to the state-space equals node_count then send this optimal 

mapping (Mlocal) to all parallel graph-matching tasks. Also wait for others to send in their 

Mlocal. Find the mapping with minimum value of Mlocal and set it to Mglobal. If Mglobal has 

no unmapped tasks, this is the desired optimal task. Otherwise set n = Mglobal and continue.  

 

Step 4 

 

Remove from OPEN the node n with the smallest f value and put it on a list called CLOSED. 

 

Step 5 

 

Expand the node n, using operators applicable to n and compute  f (n')  =  g (n') + h (n') for each 

successor n' of n. it is to be noted that the ith graph matching task generates the successors by 

expanding the mapping corresponding to n by adding successive task modules to processors 

represented by the set Vpi only. Go back to step 3. 

 

It is clear that the value of node_count determines how frequently the parallel graph matching 

tasks communicate. If this value is small, the tasks communicate too often and this increases the 

turnaround time so far the task assignment problem is concerned. If this is too large, then the 
solution cannot find optimal solution, as many possibilities remain unexplored. The method is 

very useful in cases where processors are homogeneous and so are the links as the optimal 

mapping is not unique in this case, and the state space contains many replicated entries. 

 

RESULTS AND DISCUSSIONS 

 
Two representative test cases are presented in Fig 1 and Fig 2 representing task graphs. In Fig 1 

and Fig 2, the vertices vi, vj represent task modules and the edge (eij) represent the connection 

between the vertices vi and vj. The number on the vertices represents the computation time of 

task module of that particular vertex. Similarly, the numbers on the edges represent the 

communication time involved in data transfer between two vertices vi and vj through edge eij. 
The computation and communication time are represented in m sec associated with the vertices 

and edges.  

 

 

 

 

 
 

 

 

 

 

 

 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011 
    

112 

                                                                

                                                                                       

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A representative task graph with 6 nodes   

 
In Fig 1, the number of nodes in the task graph is 6, which means that there are 6 modules defined 

by T = {0, 1, 2, 3….5} which need to be mapped. The computation time associated with these 

modules defined by the set TP = {10.0, 15.0, 5.0, 20.0, 15.0, 10.0}. The inter module 

communication is defined by the matrix C. 

 
  0.0 0.5 0.0 0.5 0.0 0.0 

  0.5 0.0 0.8 0.0 0.2 0.0 

  0.0 0.8 0.0 0.1 0.0 0.2 

C = 0.5 0.0 0.1 0.0 0.0 0.0 

  0.0 0.2 0.0 0.0 0.0 0.3 

  0.0 0.0 0.2 0.0 0.3 0.0 

        

Similarly, In Fig 2, the number of nodes in the task graph is 12, defined by T = {0, 1, 2, 3…11} 

which need to be mapped. The computation time associated with these modules defined by the set 

TP = {10.0, 15.0, 5.0, 20.0, 15.0, 10.0, 10.0, 5.0, 2.0, 1.0, 5.0, 10.0}.           

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

Figure 2 A representative task graph with 12 nodes 
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0.0 0.5  0. 0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

  0.5 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6 

  0.0 0.8 0.0 0.1 0.0 0.2 0.0 0.0 0.5 0.0 0.4 0.0 

  0.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 

  0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.6 

  0.0 0.0 0.2 0.0 0.3 0.0 0.6 0.0 0.3 0.0 0.0 0.0 

C = 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.5 0.0 0.0 0.0 0.0 

  0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2 0.4 0.0 0.0 

  0.0 0.0 0.5 0.0 0.0 0.3 0.0 0.2 0.0 0.5 0.0 0.0 

  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.3 0.0 

  0.3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 

  0.0 0.6 0.0 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

The number of homogenous processors involved is assumed to be two to start with and the 

communication link speed is same between two modules of the application it maps. 

 

First the heuristic function h (n) is assumed to be 0 for the state space based search algorithm. 

Next, the test is repeated with a non-zero h (n). Each case is compared to corresponding 

sequential implementation. 
 

An index called the optimality index denoted by µ is introduced to quantify the result. 

 

                  µ = 
l)(Sequentia   timed turnarounOptimal

)(Parrallel   timed turnarounOptimal
                                               3.1 

 

Similarly, an index η is defined an   

 

         η = 
l)(Sequentia generated nodes Nos.

)(Parrallel generated nodes Nos.
                                                 3.2 

 
Table-1 Results for a task graph with 6 task modules setting h(n) = 0 

node_

count 

Optimal mapping Turnaround 

time  
(m sec) 

No. of 

nodes 
generated 

No. of nodes  

(sequential)  

Optimality 

index 

2 0A1B2B3A4B5A 42.09 32 32 1.0 

3 0A1A2B3B4B5A 42.20 9 32 0.99 

4 0B1B2B3A4A5A 46.59 6 32 0.90 

6 0B1B2B3B4B5A 69.69 6 32 0.60 
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Table-2 Results for a task graph with 12 task modules setting h(n) = 0 

node_coun

t 

Optimal mapping Turn 

around 

time 
(m sec) 

No. of 

nodes 

generated 

No. of 

nodes  

(sequential) 

Optimalit

y index 

2 0B 1A 2B 3B 4A 5A 6B 

7B 8B 9B 10A 11A 

74.199 1292 1292 0.841 

3 0B 1B 2A 3A 4B 5A 6A 

7B 8B 9B 10B 11A 

62.500 84 1292 0.99 

4 0B 1B 2B 3A 4A 5A 6B 

7B 8B 9B 10B 11A 

64.300 20 1292 0.970 

6 0B 1B 2B 3B 4B 5A 6A 

7A 8A 9A 10A 11A 

72.699 13 1292 0.858 

8 0B 1B 2B 3B 4B 5B 6B 

7A 8A 9A 10A 11A 

95.19 12 1292 0.655 

10 0B 1B 2B 3B 4B 5B 6B 

7B 8B 9A 10A 11A 

104.80   12 1292 0.595 

 

Table-3 Test case for task graph of Fig. 1 with 6 task modules with h (n)≠0 

node_count Optimal mapping Turnaround 

time  

(m sec) 

No. of 

nodes 

generated 

No. of 

nodes 

(sequential) 

Optima

lity  

Index 

2 0B 1A 2A 3B 4A 5A 48.59 32 32 0.86 

3 0A 1A 2B 3B 4B 5A 42.20 9 32 0.99 

4 0B 1B 2B 3A 4A 5A 46.59 6 32 0.90 

6 0B 1B 2B 3B 4B 5A 

 

69.69 6 32 0.60 

 

 

Table-4 Test case for task graph of Fig. 2 with 12 task modules with h (n)≠0 

node_cou

nt 

Optimal mapping Turnaroun

d time  

(m sec) 

No. Of 

nodes 

generated 

No. of 

nodes for 

sequential 

Optimality 

index 

2 0B 1B 2B 3A 4A 5A 6B 

7B 8B 9A 10B 11A 

62.70 1476 1052 1.0 

3 0B 1B 2A 3A 4B 5B 6A 

7A 8B 9B 10A 11A 

63.200   100 1052 0.992 
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4 0B 1B 2B 3A 4A 5A 6B 

7B 8B 9B 10B 11A 

64.300 36 1052 0.975 

6 0B 1B 2B 3B 4B 5A 6A 

7A 8A 9A 10A 11A 

72.69 12 1052 0.862 

8 0B 1B 2B 3B 4B 5B 6B 

7A 8A 9A 10A 11A 

95.19 12 1052 0.658 

10 0B 1B 2B 3B 4B 5B 

6B7B 8B 9A 10A 11A 

104.80 12 1052 0.592 

 

3.2 Inferences from the tables 

 
The results presented in Tables 1 through 4 show that following:- 

 

a) As the value of node_count increases, the size of the search state-space reduces. 

b) As the value of node_count is varied, optimality index also varies. It is maximum at a 

certain value of the ratio α,  where  

                

α = 
 nodes nos_

node_count
                                                                     3.3 

The variable nos_nodes represents the number of task modules. While µ defines the 

quality of solution reported by the parallel implementation, η defines the efficiency of the 

parallel implementation in terms of the time required to find optimal solution. From 

results, it is clear that higher the value of µ, lower the value of η because of the fact that 

to achieve a higher value of µ, the parallel graph matching tasks must communicate more 

often, thus reducing the value of η. For each case, the variation of indices µ and η with 

the ratio α is plotted and the plots are represented in Fig 3a, Fig 3b (test case of Fig 1 

with h(n) = 0 and h(n) ≠0) , Fig 4a and Fig 4b (test case of Fig 2 with h(n) =0 and h(n) 

≠0) . The plots in solid line represent η and plots in dashed lines represent µ . The plots 

indicate that the variation of µ and η with α follows the same pattern for all the 4 cases. 

From the plots it is seen that a mapping which is 90% optimal (µ ≥ 0.9) is obtained for α 

≤ 0.5 in all cases. The corresponding values of η lies between 0.1 and 0.3. This means 

that a 90% optimal solution is obtainable at roughly one-third time by the parallel 

implementation when compared to sequential implementation. 
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Figure 3a. Variation of µ, η with α, h(n)=0                Figure 3b. Variation of µ, η                

with α, h(n)≠0 for test case 1                                                 for test case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a. Variation of µ, η with α, h(n) ≠0                             Figure 4b. Variation of µ, η with α, 

h(n)≠0 for test case 2                                                     for test case 2 

                                                                                                          

It is further seen that with h(n) ≠ 0, the value of  η  reduces much faster as α is increased which 

means that heuristic search further increases the efficiency of parallel graph matching algorithm. 

The theoretical value of α has to be matched against the actual value of α supported by the 

computation and communication speeds.  

 

β = 
tionimplementa parallelfor  msec in  timeactual

 tionimplementa sequentialfor  msec in  timeactual
                             3.4 

 

Then the actual value of β will depend upon the computation and communication speeds 

associated with parallel graph-matching tasks. The value of β  is determined with α=0.4 for 

graphs represented by Fig 1(test case 1) and Fig 2 (test case 2) with h(n) =0 and h(n) ≠0 and the 

results are presented in Table5. 
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Table-5 Actual speed up obtained 

Test Case  ββββ 

 

Case 1, Sequential 1.0 

Case 1, h(n) =0 26.0 

Case 1, h(n) ≠0 19.0 

Case 2, Sequential 1.0 

Case 2, h(n) =0 1.4 

Case 2, h(n) ≠0 1.86 

 
This represents the actual time taken from launch of the parallel job to its completion. Though the 

size of the state-space reduces drastically, the overheads incurred in communication over the 

network and mpirun to launch and terminate processes actually increase the turnaround time. This 
implies that the methodology shall be effective for cases with large number of task modules 

where the speed-up due to reduction is state-space size makes up for these overheads. 

 

4.CONCLUSION 

 
This paper establishes a methodology by which the original heuristic graph matching algorithm 

can be parallelized so that large practical test case can be handled. The parallel implementation 

actually uses divide and conquer policy by which the size of the state-space is reduced and hence 

the complexity. This is because of the fact that each task actually tries to map the tasks on a 

selected number of processors but not all at the same time. The methodology is especially 

effective in cases where all processors and inter processor communication links are identical. 
Thus, this is ideal for further increasing the effectiveness of the methodology proposed by Gao et. 

al. in [2] to find optimal task mapping on a cluster of SMPs. 

 

5.FURTHER WORK 

 
The following points are identified for further research 

• To investigate for multiprocessor (>2) cases. 

• To investigate behavior of the parallel implementation for large test cases. 

• To investigate the use of a heuristic bound to eliminate expansion of ‘non-promising’ 

nodes in the state-space. 
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