
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

DOI : 10.5121/ijcsea.2011.1609 105

GRAPH MATCHING ALGORITHM FOR TASK

ASSIGNMENT PROBLEM

R.Mohan
1
 and Amitava Gupta

2

1
Dept. of Computer Science and Engineering, National Institute of Technology

Tiruchirapalli Tamil Nadu 620015, India
rmohan@nitt.edu

2
Dept. of Power Engineering Jadavapur University,Kolkata, West Bengal 700098, India

amitg@pe.jusl.ac.in

ABSTRACT

Task assignment is one of the most challenging problems in distributed computing environment. An optimal

task assignment guarantees minimum turnaround time for a given architecture. Several approaches of

optimal task assignment have been proposed by various researchers ranging from graph partitioning based

tools to heuristic graph matching. Using heuristic graph matching, it is often impossible to get optimal task

assignment for practical test cases within an acceptable time limit. In this paper, we have parallelized the

basic heuristic graph-matching algorithm of task assignment which is suitable only for cases where

processors and inter processor links are homogeneous. This proposal is a derivative of the basic task

assignment methodology using heuristic graph matching. The results show that near optimal assignments

are obtained much faster than the sequential program in all the cases with reasonable speed-up.

KEYWORDS

task assignment, load balancing, graph partition, Heuristic graph matching, Symmetrical Multi-processors.

INTRODUCTION

Load balancing is the process by which task modules constituting an application are assigned to

processors, with the goals of maximizing the processor utilization and minimizing the total

turnaround time. This can be viewed as a task assignment problem by which task modules are

assigned to available processors in order to achieve the aforesaid two goals. Achievement of the

above proposal is possible by a number of techniques viz. graph partitioning, graph matching (the

2 most widely used ones), hybrid methodology and mathematical programming. First a survey of

task assignment strategies is presented. Next, the heuristic graph matching based task assignment
by methodology of Shen and Tsai [3] is explained. Finally the parallel algorithm is presented and

its performance is analyzed using several representative test cases.

Graph Partitioning based Methodologies

Graph partitioning techniques view the task as a task graph where the vertices represent the task

modules and edges represent the communication between those tasks. In load balancing, the

graph partitioning methodologies are used to produce equal partitions of the task graph with the

inter-node communication or the volume of such communication minimized. The number of

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

106

partitions depends on the number of processing elements and their topology in the processor

graph. Some factors are:

•Load balance: The computational work of each processor should be balanced, so that no

processor will be waiting for others to complete.

•Communication cost: On a parallel computer, accumulating the contributions from

nodes that are not on the current processor will incur communication cost which must be

minimized.

The graph bisection problem has been studied in the past by many authors (see, e.g., [4], [5], [6])

in the context of graph theory as well as VLSI circuit layout. Advances in parallel computing

hardware and software have renewed interest in the problem. The graph bisection problem is a
NP hard problem, so there are no known algorithms that can find the exact solution to the

problem in polynomial time. Most of the graph bisection methods, therefore, seek a good

approximation to the optimal partitioning that can be calculated efficiently. Some already

proposed algorithms are

• Recursive graph bisection (RGB): algorithm [6] attempts to partition the task graph

recursively. The RGB algorithm first finds the two vertices that are the furthest apart (their

distance is called the diameter of the graph). Then, starting from one of them (the root), the half

of the vertices that are closer to the root from one partition, the rest from other. This process is

then recursively executed on each of the partitions.

• Greedy algorithm starts with a vertex with the smallest degree, and marks its

neighbours, and then the neighbours’ neighbours. The first n/p marked vertices (assuming a task

graph with n vertices to be partitioned amongst p processors) are taken to form one partition and

the procedure is applied to the remaining graph until all of the vertices are marked. This

algorithm [7] is similar to the RGB algorithm, although it is not a bisection algorithm. Like RGB
it has a low complexity of O (n).

• K-L (Kernighan-Lin) algorithm ([4] [8] [9]) is an iterative algorithm. Starting from a

load balanced initial bisection, it first calculates for each vertex the gain in the reduction of edge-

cut that may result if that vertex is moved from one partition of the graph to the other. In each of

inner iteration, it moves the unlocked vertex that has the highest gain, from the partition in

surplus to the partition in deficit. This vertex is then locked and the gains updated. The procedure
stops if the gain of the move is negative, and this negative move is undone which results with

bisection with the smallest edge-cut in this iteration. Other iterations will continue until that time.

If one iteration fails to result in reduction of edge-cut, the problem terminates.

Parallel partitioning algorithms

Although the multilevel approach of Kernighan-Lin Algorithm reduces the computing time

significantly, it can prove to be memory intensive for a very large task graph - often exceeding

the limits of single CPU memories. Furthermore as the ultimate purpose of partitioning is for the

subsequent implementation of the application code on parallel machines, it makes sense to have a

parallel partitioning code. Besides, a fast parallel partitioning algorithm can also be used for the

purpose of dynamic load balancing. There have been a number of efforts in this area.

In [10] [11], the multilevel spectral bisection was parallelized specifically for the Cray

architecture using the Cray SHMEM facility. The linear algebra algorithms are used to parallelize

the tasks. Difficulties arose in the parallel graph coarsening, in particular, in the parallel

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

107

generation of the maximal independent set. These were tackled by using a number of parallel

graph theory algorithms. On a 256 processor Cray T3D, the resulting algorithm PMRSB (Parallel

multilevel recursive bisection algorithm) is able to partition a graph of 1/4 million vertices into

256 sub domains, which is 140 times faster than a workstation using an equivalent serial

algorithm.

In [12], a parallel multilevel p way-partitioning scheme was developed. This is based on work in

the sequential p way partitioning algorithm METIS [13], but with some interesting modification

to facilitate parallelization. In the previous PMRSB algorithm, for finding the maximal

independent set was employed. However unlike MRSB, where the maximal independent set is

used directly to form the coarse graph, here the maximal independent set is used for a different

purpose. By considering one independent set at one time, it is possible to avoid conflicts during

the coarsening stage when the vertices are matched, as well as during the uncoarsening stage
when the boundaries are refined. One way of avoiding this conflict is for the two processors to

communicate with each other and to collaborate on a migration strategy. When there are more

than two processors, this may necessitate a colouring of the processor graphs so that processors

are grouped in pairs and refinement is carried out on boundaries of the paired processors.

The parallel partitioning algorithms use a different refinement strategy. This algorithm is

designed also for dynamic load balancing, the initial partitioning is assumed to be unbalanced.

For any two neighbouring sub domains p and q, the flow (the amount of load to be migrated to

achieve global load balance) is first calculated. The flow from p to q is denoted as f(pq). Let g(pq)

denote the total weight of the vertices on the boundary of p which have a preference to migrate to

q. Let d=max (g(pq)-f(pq)+g(qp)-f(qp), 0), which represents the total weight of all boundary

vertices with a positive gain after the flow is satisfied. Then the load has to be migrated from p to

q. This allows the flow to be satisfied and at the same time an additional load of equal amount is
exchanged between the two processors to optimize the edge-cut.

In other parallel graph partitioning algorithms, the parallel single level algorithm, combining

inertia bisection with K-L refinement was implemented. Possible conflict during the refinement

stage was avoided by the pairing of processors based on the edge colouring of the processor

graph. The quality of the partition was not as good as multilevel algorithms.

In other parallel graph partitioning algorithms, the parallel single level algorithm, combining

inertia bisection with K-L refinement was implemented. Possible conflict during the refinement

stage was avoided by the pairing of processors based on the edge coloring of the processor graph.

The quality of the partition was not as good as multilevel algorithms.

Then a spectral inertia bisection algorithm was introduced. The spectral set of eigenvectors for

the coarsest graph was first calculated which serves as the spectral coordinates of the vertices.

The graph was partitioned with the inertia bisection algorithm, based on these spectral

coordinates. Part of the algorithm was parallelized. This algorithm is also suitable for dynamic

load balancing on applications where the mesh is enriched by the refinement of the individual

elements.

In such a case, the refinement can be captured by updating the vertex weights of the dual graph of

the mesh, without changing the graph itself. The mesh is repartitioned quickly after refinement,

using the spectral information originally calculated for the top-level coarse mesh. Since the size

of the dual graph does not change, the repartitioning time does not change with the increase of the

mesh size, as the refinement steps are carried out.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

108

Existing partitioning software

A number of packages are publicly available. Many of them are constantly being updated.

• CHACO(http://www.cs.sandia.gov/CRF/chac.html)

A package has been available. The latest version CHACO 2.0 uses multilevel combined

with a number of available methods such as K-L refinement, spectral bisection. Available

by request.

• JOSTLE(http://www.gre.ac.uk/jostle/)

Multilevel graph partitioning using p-way refinement. Both the sequential and parallel

version is available free for academic use as an executable, after signing an agreement.

• METIS(http://www.cs.umn.edu/~karypis/metis/metis.html)

Multilevel graph partitioning using p-way refinement. Both the sequential and the parallel

version are available free for down-load.

• PARTY(http://www.unipaderborn.de/fachbereich/AG/monien/RESEARCH/PART/party.

html)

Sits on top of existing packages, offers greedy, multilevel spectral bisection, coordinate

bisection, inertia bisection and other algorithms. Version 1.1 is available after signing a

license.

• PMRSB

parallel multilevel spectral bisection. Available only on CRAY platforms.

• S-HARP [41] (http://www.cs.njit.edu/sohn/sharp/)

Multilevel graph partitioning using multiple eigenvectors and (spectral) inertia bisection

on the coarsest level.

• SCOTCH (http://www.labri.ubordeaux.fr/Equipe/ALiENor/membre/pelegrin/scotch/)

Multilevel implementation of a number of algorithms including K-L. The code is free for

down-load for academic use.

• TOP/DOMDEC

Greedy algorithm, recursive coordinate and graph bisection, recursive inertia bisection,
multilevel spectral bisection algorithm with Tabu search, simulated annealing and

stochastic evolution as smoothers.

• WGPP

Multilevel graph partitioning. Similar to METIS with some new features.

Heuristic Graph Matching

This is a graph matching based method, which uses a task-graph and a processor-graph. While

the task-graph denotes the dependency amongst the task modules, the processor-graph defines

the topology of interconnection amongst the processors. A classical example of this is the work
by Shen and Tsai [3] which uses the well-known A* algorithm to find the optimal task

assignment.

A mapping implies assignment of any one or more of the n task modules to any one or more of

the p processors with no task module assigned to more than one processor. This branch and

bound heuristics based methods starts by an initial mapping and expands the state-space by

generating other permissible mappings. Each mapping or state-space entry has a cost function

associated which is denoted by f. In [3], this cost function is expressed in terms of a single entity

viz. time and may be thought to be composed of two parts viz. g which may be viewed as the cost

of generation of the state-space entry and h, which may be viewed as the cost to generate the

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

109

goal-state from the present state-space entry and is the heuristic weight associated with the state-

space entry. Thus, for each mapping or state-space entry,

f = g + h 1.1

As long as there is an upper bound hmax for h, i.e. h ≤ hmax, the A* algorithm guarantees that an

optimal solution is found [14]. Thus with g = 0, the search becomes a purely heuristic search and

with h = 0 it becomes a best-first search.

If n task modules are assigned to m processors, there can be m
n assignments theoretically

possible. The method proposed by Shen and Tsai has a typical complexity of O (n
2
) for

n≤20 and this complexity approach O (m
n
 n

2
) as n becomes large. Therefore this algorithm is not

suitable for large task graphs.

1.1. Hybrid load balancing methodology for a cluster of SMPs

A hybrid methodology to obtain an optimal task assignment across a cluster of SMPs was

proposed by Gao et. al. in [1][2]. Each processing element of a cluster is a node comprising a

number of tightly coupled processors. The hybrid methodology graph partitioning first assigns the

task modules across all nodes of the cluster so as to have equal load on all nodes with inter-node

communication optimized. Next, modules constituting each of these sub-tasks are assigned to

processors constituting respective nodes using this algorithm of heuristic graph matching. This

algorithm works for a moderate number of modules (approximately 20) per node, but fails for

large numbers. The intra-node task assignment algorithm proposed in [1] has been further

modified by Gao et. al. in [2] where multi step algorithm has been proposed.

Load distribution for parallel application on a cluster of Symmetrical Multiprocessors (SMPs)

posses a challenging problem. A cluster of SMPs essentially comprising of a finite number of

computing nodes, each comprising of 2 or more identical, tightly coupled processing elements,

the nodes being connected over a network. While the approximate method of load balancing

using standard methods like graph partitioning, for example, can produce acceptable task

assignment across the nodes, they cannot be applied to obtain optimal task assignment on the

processor constituting a node. This is because of the complex optimization involved when one
considers the fact that all the processing element in a node have only one network interface and

that the node turn-around is the minimum when the computation and communication activities of

the processing elements can be interleaved optimally.

Motivation for the work done

Though parallel graph partitioning algorithms exist, parallel graph matching algorithms do not.

Graph matching algorithms like the one proposed by Shen and Tsai are extremely useful

considering fact that they can tackle processor heterogeneity; they cannot be used for practical

test cases with a large number of task modules. This is primarily because of the exponential

complexity of the resource hungry A* algorithm. A parallel graph matching methodology is

likely to reduce the size of the state-space handled by each parallel graph-matching task, thus

producing acceptable mapping within acceptable time limits.

For example, if a parallel graph-matching algorithm can substitute the sequential graph matching

part used with the hybrid methodology proposed by Gao et. al. in [1], the processor utilization is
bound to increase and the execution time for finding optimal task assignment on the processor

constituting the SMPs node is bound to reduce. This is further justifiable when one considers the

fact that in case of application integrated load balancing, all processor would be involved in

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

110

finding the optimal task assignment which makes faster restart possible in case of a node failure,

for example.

In this dissertation it is attempted to parallelize the basic heuristic graph-matching algorithm of

task assignment put forwarded by Shen and Tsai. This is particularly suitable for cases where

processors and inter processor links are homogeneous. A typical example is a node of a SMP
cluster comprising a finite number of identical processors.

 This methodology is a derivative of the basic task assignment methodology using heuristic graph

matching proposed in [3] by Shen and Tsai. The methodology is tested on a few representative

test cases Message Passing Interface (MPI) is used as the platforms. The results show that near

optimal assignments are obtained much faster than the sequential program in all the cases.

PARALLEL GRAPH MATCHING ALGORITHM

In this section, the original sequential algorithm proposed by Shen and Tsai in [3] is first

presented. This algorithm is then analyzed and the portions which can be parallelized are
identified. Finally, the parallel graph-matching algorithm is presented and explained with an

illustrative example.

Parallel graph-matching algorithm

The basic methodology proposed by Shen and Tsai is based on a generate and test mechanism.

Generation of state space nodes expands the state space and incurs computation time as

successive nodes are generated and the associated costs are computed. The parallel graph

matching algorithm parallizes the generate mechanism, thus dividing the state space into several

smaller state-spaces. The basic steps involved are as follows.

Let N be the number of parallel graph matching tasks.

Let T = (VT, ET) represent the task graph

P = (VP, EP) represent the processor graph

Let Pi = (Vpi, Epi) be a sub graph of P, which is used by the ith task for mapping.

The number of sub graphs of P is assumed to be equal to the number of tasks. Each parallel

graph-matching task is assumed to follow the steps 1 to 5 followed by the sequential algorithm,

the only difference being the fact that the node for expansion is the one with minimum value of f

computed across all the parallel tasks. For this purpose, it is further assumed that the tasks send to

each other the mapping corresponding to the entry with minimum value of f once a fixed number

of new entries are added to the state-space. This variable is defined as node_count.

Each parallel graph-matching task proceeds as follows: -

Step 1

Put Ki = ø on a list OPEN and set f (Ki) = 0 when f is the evaluation function defined by equation

2.1. If Mglobal represents the global optimal mapping, i.e. the mapping with smallest value of f

found by all graph matching tasks, then initialize this to Ki.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

111

Step 2

 Set n = Mglobal

Step 3

If n represents the state with no unmapped task, with the smallest value of f among all OPEN

nodes, or the number of new additions to the state-space equals node_count then send this optimal

mapping (Mlocal) to all parallel graph-matching tasks. Also wait for others to send in their

Mlocal. Find the mapping with minimum value of Mlocal and set it to Mglobal. If Mglobal has

no unmapped tasks, this is the desired optimal task. Otherwise set n = Mglobal and continue.

Step 4

Remove from OPEN the node n with the smallest f value and put it on a list called CLOSED.

Step 5

Expand the node n, using operators applicable to n and compute f (n') = g (n') + h (n') for each

successor n' of n. it is to be noted that the ith graph matching task generates the successors by

expanding the mapping corresponding to n by adding successive task modules to processors

represented by the set Vpi only. Go back to step 3.

It is clear that the value of node_count determines how frequently the parallel graph matching

tasks communicate. If this value is small, the tasks communicate too often and this increases the

turnaround time so far the task assignment problem is concerned. If this is too large, then the
solution cannot find optimal solution, as many possibilities remain unexplored. The method is

very useful in cases where processors are homogeneous and so are the links as the optimal

mapping is not unique in this case, and the state space contains many replicated entries.

RESULTS AND DISCUSSIONS

Two representative test cases are presented in Fig 1 and Fig 2 representing task graphs. In Fig 1

and Fig 2, the vertices vi, vj represent task modules and the edge (eij) represent the connection

between the vertices vi and vj. The number on the vertices represents the computation time of

task module of that particular vertex. Similarly, the numbers on the edges represent the

communication time involved in data transfer between two vertices vi and vj through edge eij.
The computation and communication time are represented in m sec associated with the vertices

and edges.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

112

Figure 1 A representative task graph with 6 nodes

In Fig 1, the number of nodes in the task graph is 6, which means that there are 6 modules defined

by T = {0, 1, 2, 3….5} which need to be mapped. The computation time associated with these

modules defined by the set TP = {10.0, 15.0, 5.0, 20.0, 15.0, 10.0}. The inter module

communication is defined by the matrix C.

 0.0 0.5 0.0 0.5 0.0 0.0

 0.5 0.0 0.8 0.0 0.2 0.0

 0.0 0.8 0.0 0.1 0.0 0.2

C = 0.5 0.0 0.1 0.0 0.0 0.0

 0.0 0.2 0.0 0.0 0.0 0.3

 0.0 0.0 0.2 0.0 0.3 0.0

Similarly, In Fig 2, the number of nodes in the task graph is 12, defined by T = {0, 1, 2, 3…11}

which need to be mapped. The computation time associated with these modules defined by the set

TP = {10.0, 15.0, 5.0, 20.0, 15.0, 10.0, 10.0, 5.0, 2.0, 1.0, 5.0, 10.0}.

Figure 2 A representative task graph with 12 nodes

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

113

0.0 0.5 0. 0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

 0.5 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6

 0.0 0.8 0.0 0.1 0.0 0.2 0.0 0.0 0.5 0.0 0.4 0.0

 0.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6

 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.6

 0.0 0.0 0.2 0.0 0.3 0.0 0.6 0.0 0.3 0.0 0.0 0.0

C = 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.5 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2 0.4 0.0 0.0

 0.0 0.0 0.5 0.0 0.0 0.3 0.0 0.2 0.0 0.5 0.0 0.0

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.3 0.0

 0.3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0

 0.0 0.6 0.0 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The number of homogenous processors involved is assumed to be two to start with and the

communication link speed is same between two modules of the application it maps.

First the heuristic function h (n) is assumed to be 0 for the state space based search algorithm.

Next, the test is repeated with a non-zero h (n). Each case is compared to corresponding

sequential implementation.

An index called the optimality index denoted by µ is introduced to quantify the result.

 µ =
l)(Sequentia timed turnarounOptimal

)(Parrallel timed turnarounOptimal
 3.1

Similarly, an index η is defined an

 η =
l)(Sequentia generated nodes Nos.

)(Parrallel generated nodes Nos.
 3.2

Table-1 Results for a task graph with 6 task modules setting h(n) = 0

node_

count

Optimal mapping Turnaround

time
(m sec)

No. of

nodes
generated

No. of nodes

(sequential)

Optimality

index

2 0A1B2B3A4B5A 42.09 32 32 1.0

3 0A1A2B3B4B5A 42.20 9 32 0.99

4 0B1B2B3A4A5A 46.59 6 32 0.90

6 0B1B2B3B4B5A 69.69 6 32 0.60

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

114

Table-2 Results for a task graph with 12 task modules setting h(n) = 0

node_coun

t

Optimal mapping Turn

around

time
(m sec)

No. of

nodes

generated

No. of

nodes

(sequential)

Optimalit

y index

2 0B 1A 2B 3B 4A 5A 6B

7B 8B 9B 10A 11A

74.199 1292 1292 0.841

3 0B 1B 2A 3A 4B 5A 6A

7B 8B 9B 10B 11A

62.500 84 1292 0.99

4 0B 1B 2B 3A 4A 5A 6B

7B 8B 9B 10B 11A

64.300 20 1292 0.970

6 0B 1B 2B 3B 4B 5A 6A

7A 8A 9A 10A 11A

72.699 13 1292 0.858

8 0B 1B 2B 3B 4B 5B 6B

7A 8A 9A 10A 11A

95.19 12 1292 0.655

10 0B 1B 2B 3B 4B 5B 6B

7B 8B 9A 10A 11A

104.80 12 1292 0.595

Table-3 Test case for task graph of Fig. 1 with 6 task modules with h (n)≠0

node_count Optimal mapping Turnaround

time

(m sec)

No. of

nodes

generated

No. of

nodes

(sequential)

Optima

lity

Index

2 0B 1A 2A 3B 4A 5A 48.59 32 32 0.86

3 0A 1A 2B 3B 4B 5A 42.20 9 32 0.99

4 0B 1B 2B 3A 4A 5A 46.59 6 32 0.90

6 0B 1B 2B 3B 4B 5A

69.69 6 32 0.60

Table-4 Test case for task graph of Fig. 2 with 12 task modules with h (n)≠0

node_cou

nt

Optimal mapping Turnaroun

d time

(m sec)

No. Of

nodes

generated

No. of

nodes for

sequential

Optimality

index

2 0B 1B 2B 3A 4A 5A 6B

7B 8B 9A 10B 11A

62.70 1476 1052 1.0

3 0B 1B 2A 3A 4B 5B 6A

7A 8B 9B 10A 11A

63.200 100 1052 0.992

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

115

4 0B 1B 2B 3A 4A 5A 6B

7B 8B 9B 10B 11A

64.300 36 1052 0.975

6 0B 1B 2B 3B 4B 5A 6A

7A 8A 9A 10A 11A

72.69 12 1052 0.862

8 0B 1B 2B 3B 4B 5B 6B

7A 8A 9A 10A 11A

95.19 12 1052 0.658

10 0B 1B 2B 3B 4B 5B

6B7B 8B 9A 10A 11A

104.80 12 1052 0.592

3.2 Inferences from the tables

The results presented in Tables 1 through 4 show that following:-

a) As the value of node_count increases, the size of the search state-space reduces.

b) As the value of node_count is varied, optimality index also varies. It is maximum at a

certain value of the ratio α, where

α =
 nodes nos_

node_count
 3.3

The variable nos_nodes represents the number of task modules. While µ defines the

quality of solution reported by the parallel implementation, η defines the efficiency of the

parallel implementation in terms of the time required to find optimal solution. From

results, it is clear that higher the value of µ, lower the value of η because of the fact that

to achieve a higher value of µ, the parallel graph matching tasks must communicate more

often, thus reducing the value of η. For each case, the variation of indices µ and η with

the ratio α is plotted and the plots are represented in Fig 3a, Fig 3b (test case of Fig 1

with h(n) = 0 and h(n) ≠0) , Fig 4a and Fig 4b (test case of Fig 2 with h(n) =0 and h(n)

≠0) . The plots in solid line represent η and plots in dashed lines represent µ . The plots

indicate that the variation of µ and η with α follows the same pattern for all the 4 cases.

From the plots it is seen that a mapping which is 90% optimal (µ ≥ 0.9) is obtained for α

≤ 0.5 in all cases. The corresponding values of η lies between 0.1 and 0.3. This means

that a 90% optimal solution is obtainable at roughly one-third time by the parallel

implementation when compared to sequential implementation.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

116

Figure 3a. Variation of µ, η with α, h(n)=0 Figure 3b. Variation of µ, η

with α, h(n)≠0 for test case 1 for test case 1

Figure 4a. Variation of µ, η with α, h(n) ≠0 Figure 4b. Variation of µ, η with α,

h(n)≠0 for test case 2 for test case 2

It is further seen that with h(n) ≠ 0, the value of η reduces much faster as α is increased which

means that heuristic search further increases the efficiency of parallel graph matching algorithm.

The theoretical value of α has to be matched against the actual value of α supported by the

computation and communication speeds.

β =
tionimplementa parallelfor msec in timeactual

 tionimplementa sequentialfor msec in timeactual
 3.4

Then the actual value of β will depend upon the computation and communication speeds

associated with parallel graph-matching tasks. The value of β is determined with α=0.4 for

graphs represented by Fig 1(test case 1) and Fig 2 (test case 2) with h(n) =0 and h(n) ≠0 and the

results are presented in Table5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ, η

µ, η

µ, η
µ, η

α
α

α α

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

117

Table-5 Actual speed up obtained

Test Case ββββ

Case 1, Sequential 1.0

Case 1, h(n) =0 26.0

Case 1, h(n) ≠0 19.0

Case 2, Sequential 1.0

Case 2, h(n) =0 1.4

Case 2, h(n) ≠0 1.86

This represents the actual time taken from launch of the parallel job to its completion. Though the

size of the state-space reduces drastically, the overheads incurred in communication over the

network and mpirun to launch and terminate processes actually increase the turnaround time. This
implies that the methodology shall be effective for cases with large number of task modules

where the speed-up due to reduction is state-space size makes up for these overheads.

4.CONCLUSION

This paper establishes a methodology by which the original heuristic graph matching algorithm

can be parallelized so that large practical test case can be handled. The parallel implementation

actually uses divide and conquer policy by which the size of the state-space is reduced and hence

the complexity. This is because of the fact that each task actually tries to map the tasks on a

selected number of processors but not all at the same time. The methodology is especially

effective in cases where all processors and inter processor communication links are identical.
Thus, this is ideal for further increasing the effectiveness of the methodology proposed by Gao et.

al. in [2] to find optimal task mapping on a cluster of SMPs.

5.FURTHER WORK

The following points are identified for further research

• To investigate for multiprocessor (>2) cases.

• To investigate behavior of the parallel implementation for large test cases.

• To investigate the use of a heuristic bound to eliminate expansion of ‘non-promising’

nodes in the state-space.

6.REFERENCES

[1] Gao, H. Schmidt, A., Gupta, A. and Luksch, P., Load balancing for Spatial-Grid-Based Parallel

Numeric Simulation on Clusters of SMPs, Proceeding of the Euromicro PDP2003 conference,

February 5-7,2003, Genoa, Italy, IEEE Computer Society Publications, pp. 75-82.

[2] Gao, H. Schmidt, A., Gupta, A. and Luksch, P., A Graph-matching based Intra-node Load balancing

Methodology for clusters of SMPs, Proceedings of the 7th World Multiconference on systems,

Cubernetics and Informatics (SCI 2003), July 2003.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.6, December 2011

118

[3] Chien-chung Shen and Wen-Hsiang Tsai, A Graph Matching Approach to Optimal task assignment

in Distributed computing systems using a Minimax Criterion, IEEE Transactions on Computers, vol.

C-34,No.3, March 1985.

[4] B.W.Kernighan and S.Lin, An efficient Heuristic procedure for partitioning graphs, Bell Systems

Tech, J. 49(1970), pp 291-308.

[5] B.Mohar, The Laplacian spectrum of graphs, Technical Report, Department of mathematics,

University of Ljubljana, Ljubljana, Yugoslavia, 1988.

[6] T.N.Bui, S.Chaudhuri, F.T.Leighton, M.Sipser, Graph Bisection Algorithms with good average case

behavior, Combinatorica, 7 (1987), pp.171-191.

[7] R.D.Williams, Performance of Dynamic load balancing algorithms for unstructured mesh

calculations, Concurrency: Practice and Experience, 3 (1991), pp. 457-481.

[8] C.Farhat, A simple and efficient automatic FEM domain decomposer, Computers and Structures,

28(1988), pp.579-602.

[9] C.M Fiduccia and R.M.Mattheyses, A liner-time heuristic for improve network partitions, ACM IEEE

Nineteenth Design Automation Conference Proceedings, vol.1982, ch.126, pp 175-181, 1982.

[10] P.Sadayappan, F.Ercal and J.Ramanujam, Cluster Partitioning approach to mapping parallel program

onto a hypercube, Parallel Computing, 13(1990), pp. 1-16.

[11] S. T. BARNARD AND H. D. SIMON, A parallel implementation of multilevel recursive spectral

bisection for application to adaptive unstructured meshes, in: SIAM Proceedings Series 195, D.H.

Bailey, P. E. Bjorstad, Jr Gilbert, M. V. Mascagni, R. S. Schreiber, H. D. Simon, V. J. Torczon, J. T.

Watson, eds., SIAM, Philadelphia, 1995, pp. 627-632.

[12] S. T. BARNARD, PMRSB: parallel multilevel recursive spectral bisection, Manuscript, 1996.

[13] G. KARYPIS AND V. KUMAR, Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs,

Technical Report TR 96-036, Department of Computer Science, University of Minnesota, 1996.

[14] Nils J. Nilsson, Artificial intelligence: a new synthesis, ISBN: 1-55860-467-7, March 1998.

