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ABSTRACT 

 
This paper investigates the design problem of adaptive controller and synchronizer for the Qi-Chen system 

(2005), when the system parameters are unknown. First, we build an adaptive controller to stabilize the Qi-

Chen chaotic system to its unstable equilibrium at the origin. Then we build an adaptive synchronizer to 

achieve global chaos synchronization of the identical Qi-Chen chaotic systems with unknown parameters. 

The results derived for adaptive stabilization and adaptive synchronization for the Qi-Chen chaotic system 

are established using adaptive control theory and Lyapunov stability theory. Numerical simulations have 

been shown to demonstrate the effectiveness of the adaptive control and synchronization schemes derived 

in this paper for the Qi-Chen chaotic system. 
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1. INTRODUCTION 

 
Chaotic systems are nonlinear dynamical systems with the following characteristics: extreme 

sensitivity to changes in initial conditions, random-like behaviour, deterministic motion, 

trajectories of chaotic systems pass through any point an infinite number of times. 

Experimentally, chaos was first discovered by Lorenz ([1], 1963) while he was simulating 
weather models. A chaotic system simpler than the Lorenz system was proposed by Rössler ([2], 

1976). The theoretical equations of the Rössler system were later found to be useful in modelling 

equilibrium in chemical reactions. 

 

The control of chaotic systems is to design state feedback control laws that stabilizes the chaotic 

systems around the unstable equilibrium points. Active control technique is used when the system 

parameters are known and adaptive control technique is used when the system parameters are 

unknown [3-4]. 

 

Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic 

attractors are coupled or when a hyperchaotic attractor drives another hyperchaotic attractor. In 

the last two decades, there has been significant interest in the literature on the synchronization of 

chaotic and hyperchaotic systems [5-16].  
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In 1990, Pecora and Carroll [5] introduced a method to synchronize two identical chaotic systems 

and showed that it was possible for some chaotic systems to be completely synchronized. From 

then on, chaos synchronization has been widely explored in a variety of fields including physical 

systems [6], chemical systems [7], ecological systems [8], secure communications [9-10], etc. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

has been used. If a particular chaotic system is called the master or drive system and another 

chaotic system is called the slave or response system, then the idea of synchronization is to use 

the output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically.  

 

The seminal work by Pecora and Carroll (1990) has been followed by a variety of impressive 

approaches in the literature such as the sampled-data feedback method [11], OGY method [12], 

time-delay feedback method [13], backstepping method [14], active control method [15-20], 

adaptive control method [21-25], sliding mode control method [26-28], etc. 

 

This paper is organized as follows. In Section 2, we give a description of the Qi-Chen chaotic 

system (Qi, Chen, Du, Chen and Yuan, [29], 2005). In Section 3, we derive results for the 

adaptive control of Qi-Chen chaotic system with unknown parameters. In Section 4, we derive 

results for the adaptive synchronization of the identical Qi-Chen chaotic systems with unknown 

parameters. Section 5 contains a summary of the main results derived in this paper. 

 

2.  SYSTEM DESCRIPTION 

 
The Qi-Chen system ([29], 2005) is described by the 3D dynamics 

1 2 1 2 3

2 1 2 1 3

3 1 2 3

( )x a x x x x

x cx x x x

x x x bx

= − +

= − −

= −

&

&

&

        (1) 

where
1 2 3, ,x x x are the state variables of the system and , ,a b c are constant, positive parameters of 

the system. 

The system (1) is chaotic when the parameter values are taken as 

  35,  8 / 3a b= =  and 80c =        (2) 

Figure 1 describes the strange attractor of the Qi-Chen chaotic system (1). 

When the parameter values are taken as in (2) for the Qi-Chen chaotic system (1), the system 

linearization matrix at the equilibrium point 0 (0,0,0)E = is given by 

35 35 0

80 1 0

0 0 8 / 3

A

− 
 

= − 
 − 

 

which has the eigenvalues 

 1 2 373.5788,   2.6667,   37.5788λ λ λ= − = − =  
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Since 3λ is a positive eigenvalues of ,A it follows from Lyapunov stability theory [30] that the 

Qi-Chen system (1) is unstable at the equilibrium point 0 (0,0,0).E =  

 

  

Figure 1. The Strange Attractor of the Qi-Chen Chaotic System 

 

3. ADAPTIVE CONTROL OF THE QI-CHEN CHAOTIC SYSTEM 

 
3.1 Theoretical Results 

 
In this section, we design adaptive control law for globally stabilizing the Qi-Chen system (2005), 

when the parameter values are unknown.  

 

Thus, we consider the controlled Qi-Chen system, which is described by the 3D dynamics 

 

1 2 1 2 3 1

2 1 2 1 3 2

3 1 2 3 3

( )x a x x x x u

x cx x x x u

x x x bx u

= − + +

= − − +

= − +

&

&

&

           (3) 
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where 1 2,u u and 3u are feedback controllers to be designed using the states 1 2 3, ,x x x and 

estimates ˆˆ ˆ, ,a b c of the unknown parameters , ,a b c of the system. 

In order to ensure that the controlled system (3) globally converges to the origin asymptotically, 

we consider the following adaptive control functions 

1 2 1 2 3 1 1

2 1 2 1 3 2 2

3 1 2 3 3 3

ˆ( )

ˆ

ˆ

u a x x x x k x

u cx x x x k x

u x x bx k x

= − − − −

= − + + −

= − + −

       (4) 

where ˆˆ,a b  and  ĉ are estimates of the parameters ,a b and  ,c  respectively, and , ( 1, 2,3)ik i =  

are positive constants. 

Substituting the control law (4) into the controlled Qi-Chen dynamics (3), we obtain 

1 2 1 1 1

2 1 2 2

3 3 3 3

ˆ( ) ( )  

ˆ( )  

ˆ( )  

x a a x x k x

x c c x k x

x b b x k x

= − − −

= − −

= − − −

&

&

&

       (5) 

Let us now define the parameter errors as 

           ˆˆ,    a be a a e b b= − = −   and  ˆ
ce c c= −       (6) 

Using (6), the closed-loop dynamics (5) can be written compactly as 

  

1 2 1 1 1

2 1 2 2

3 3 3 3

 ( )  

 

  

a

c

b

x e x x k x

x e x k x

x e x k x

= − −

= −

= − −

&

&

&

       (7) 

For the derivation of the update law for adjusting the parameter estimates ˆˆ,a b and ˆ,c the 

Lyapunov approach is used.  

Consider the quadratic Lyapunov function 

  ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , )

2
a b c a b cV x x x e e e x x x e e e= + + + + +          (8) 

which is a positive definite function on 
6.R  

Note also that 

   ˆˆ ˆ,   ,   a b ce a e b e c= − = − = −
&& && & &          (9) 

Differentiating V along the trajectories of (7) and using (9), we obtain   
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( ) ( )2 2 2 2

1 1 2 2 3 3 1 2 1 3 1 2
ˆˆ ˆ ( )a b cV k x k x k x e x x x a e x b e x x c = − − − + − − + − − + − 
&& &&   (10) 

 In view of Eq. (10), the estimated parameters are updated by the following law:   

     

1 2 1 4

2

3 5

1 2 6

ˆ ( )

ˆ

ˆ

a

b

c

a x x x k e

b x k e

c x x k e

= − +

= − +

= +

&

&

&

               (11) 

where 
4 5,k k and 

6k are positive constants. 

Substituting (11) into (10), we get 

          
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6   a b cV k x k x k x k e k e k e= − − − − − −&         (12) 

which is a negative definite function on 
6.R  

Thus, by Lyapunov stability theory [30], we obtain the following result. 

Theorem 1. The controlled Qi-Chen system (1) with unknown parameters is globally and 

exponentially stabilized for all initial conditions 
3(0)x R∈ by the adaptive control law (4), where 

the update law for the parameters is given by (11) and ,  ( 1, ,6)ik i = K are positive constants.  

 

3.2 Numerical Results 

 
For the numerical simulations, the fourth order Runge-Kutta method is used to solve the chaotic 

system (3) with the adaptive control law (4) and the parameter update law (11). 

The parameters of the Qi-Chen system (3) are selected as   35,  8 / 3a b= =  and  80.c =                      

For the adaptive and update laws, we take 5,   ( 1,2, ,6).ik i= = K  

Suppose that the initial values of the estimated parameters are  

           ˆˆ ˆ(0) 6,   (0) 18,   (0) 5a b c= = =  

The initial state of the controlled Qi-Chen system (3) is taken as  

1 2 3(0) 21,   (0) 16,   (0) 30x x x= = − =  

When the adaptive control law (4) and the parameter update law (11) are used, the controlled 

modified hyperchaotic Lü system converges to the equilibrium 0 (0,0,0)E = exponentially as 

shown in Figure 2.  
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The time-history of the parameter estimates is shown in Figure 3. The time-history of the 

parameter estimation errors is shown in Figure 4. 

 

Figure 2. Time Responses of the Controlled Qi-Chen System  

 

Figure 3.  Time-History of the Parameter Estimates ˆˆ ˆ( ),  ( ),  ( )a t b t c t  
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Figure 4.  Time-History of the Parameter Estimates , ,a b ce e e  

4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL QI-CHEN CHAOTIC 

SYSTEMS 

 
4.1 Theoretical Results 

 
In this section, we discuss the adaptive synchronization of identical Qi-Chen chaotic systems 

(2005) with unknown parameters. 

 

As the master system, we consider the Qi-Chen dynamics described by 

             

1 2 1 2 3

2 1 2 1 3

3 1 2 3

( )x a x x x x

x cx x x x

x x x bx

= − +

= − −

= −

&

&

&

                             (13) 

where , ( 1, 2,3)ix i = are the state variables and , ,a b c are unknown system parameters. 

The system (13) is chaotic when the parameter values are taken as 

  35,  8 / 3a b= =   and  80.c =                           
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As the slave system, we consider the modified hyperchaotic Lü dynamics described by 

  

1 2 1 2 3 1

2 1 2 1 3 2

3 1 2 3 3

( )y a y y y y u

y cy y y y u

y y y by u

= − + +

= − − +

= − +

&

&

&

                               (14) 

where , ( 1, 2,3)iy i = are the state variables and , ( 1, 2,3)iu i = are the nonlinear controllers to be 

designed. 

The synchronization error is defined by 

    ,   ( 1, 2,3)i i ie y x i= − =                 (15) 

Then the error dynamics is obtained as 

  

1 2 1 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

( )e a e e y y x x u

e ce e y y x x u

e be y y x x u

= − + − +

= − − + +

= − + − +

&

&

&

         (16) 

Let us now define the adaptive control functions 
1 2 3( ), ( ), ( )u t u t u t as 

  

1 2 1 2 3 2 3 1 1

2 1 3 1 3 1 3 2 2

3 3 1 2 1 2 3 3

ˆ( )

ˆ

ˆ

u a e e y y x x k e

u ce e y y x x k e

u be y y x x k e

= − − − + −

= − + + − −

= − + −

           (17) 

where ˆˆ,a b and ĉ are estimates of the parameters ,a b and ,c  respectively, and , ( 1, 2,3)ik i = are 

positive constants. 

Substituting the control law (17) into (16), we obtain the error dynamics as 

  

1 2 1 1 1

2 1 2 2

3 3 3 3

ˆ( )( )

ˆ( )

ˆ( )

e a a e e k e

e c c e k e

e b b e k e

= − − −

= − −

= − − −

&

&

&

               (18)               

Let us now define the parameter errors as 

    

ˆ

ˆ

ˆ

a

b

c

e a a

e b b

e c c

= −

= −

= −

              (19) 
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Substituting (19) into (18), the error dynamics simplifies to 

    

1 2 1 1 1

2 1 2 2

3 3 3 3

( )a

c

b

e e e e k e

e e e k e

e e e k e

= − −

= −

= − −

&

&

&

                      (20) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

Consider the quadratic Lyapunov function 

         ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , )

2
a b c a b c

V e e e e e e e e e e e e= + + + + +           (21) 

which is a positive definite function on 
6.R  

Note also that 

  

ˆ

ˆ

ˆ

a

b

c

e a

e b

e c

= −

= −

= −

&&

&
&

&&

                  (22) 

Differentiating V along the trajectories of (20) and using (22), we obtain   

  
2 2 2 2

1 1 2 2 3 3 1 2 1 3 1 2
ˆˆ ˆ( )  a b cV k e k e k e e e e e a e e b e e e c    = − − − + − − + − − + −     

&& &&        (23) 

In view of Eq. (23), the estimated parameters are updated by the following law: 

  

1 2 1 4

2

3 5

1 2 6

ˆ ( )

ˆ

ˆ

a

b

c

a e e e k e

b e k e

c e e k e

= − +

= − +

= +

&

&

&

                  (24) 

where 4 5,k k and 6k are positive constants. 

Substituting (24) into (23), we get 

    
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6   a b cV k e k e k e k e k e k e= − − − − − −&           (25) 

From (25), we find that V&  is a negative definite function on 
6.R  

Thus, by Lyapunov stability theory [30], it is immediate that the synchronization error and the 

parameter error decay to zero exponentially with time for all initial conditions. 

Hence, we have proved the following result. 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.1, February 2012 

90 

 

Theorem 2.  The identical Qi-Chen systems (13) and (14) with unknown parameters are globally 

and exponentially synchronized for all initial conditions by the adaptive control law (17), where 

the update law for parameters is given by (24) and , ( 1, ,6)ik i = K are positive constants. � 

4.2 Numerical Results 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two 

systems of differential equations (13) and (14) with the adaptive control law (17) and the 

parameter update law (24). 

We take the parameter values as in the chaotic case, viz. 

  35,    8 / 3,    80a b c= = =         

We take the positive constants ,  ( 1, ,8)ik i = K as  

5ik =   for  1,2, ,6.i = K  

Suppose that the initial values of the estimated parameters are 

    ˆˆ ˆ(0) 12,   (0) 9,   (0) 26a b c= = =  

We take the initial values of the master system (13) as 

1 2 3(0) 7,   (0) 5,   (0) 16x x x= = − =  

We take the initial values of the slave system (14) as  

1 2 3(0) 33,   (0) 18,   (0) 7y y y= = = −  

Figure 5 shows the adaptive chaos synchronization of the identical Qi-Chen systems. 

Figure 6 shows the time-history of the synchronization error 1 2 3, , .e e e  

Figure 7 shows the time-history of the parameter estimates ˆˆ ˆ( ), ( ), ( ).a t b t c t  From this figure, it is 

clear that the parameter estimates converge to the original values 35,a = 8 / 3,b = 80,c =  

respectively. 

Figure 8 shows the time-history of the parameter estimation errors , , .a b ce e e   
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Figure 5. Adaptive Synchronization of the Qi-Chen Systems 

 

Figure 6.  Time-History of the Synchronization Error 1 2 3, ,e e e  
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Figure 7. Time-History of the Parameter Estimates ˆˆ ˆ( ), ( ), ( )a t b t c t  

 

Figure 8.  Time-History of the Parameter Estimation Error , ,a b ce e e  
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5. CONCLUSIONS 

 
In this paper, we applied adaptive control theory for the stabilization and synchronization of the 

Qi-Chen system (2005)   with unknown system parameters. First, we designed adaptive control 

laws to stabilize the Qi-Chen system to its unstable equilibrium point at the origin based on the 

adaptive control theory and Lyapunov stability theory. Then we derived adaptive synchronization 

scheme and update law for the estimation of system parameters for the identical Qi-Chen systems 

with unknown parameters. Our synchronization schemes were established using Lyapunov 

stability theory. Since the Lyapunov exponents are not required for these calculations, the 

proposed adaptive control method is very effective and convenient to achieve chaos control and 

synchronization of the Qi-Chen chaotic system. Numerical simulations are shown to demonstrate 

the effectiveness of the proposed adaptive stabilization and synchronization schemes. 
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