
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

DOI : 10.5121/ijcsea.2012.2209                                                                                                                   115 

 

 

BINARY TREE SORT IS MORE ROBUST 

THAN QUICK SORT IN AVERAGE CASE 

 
Soubhik Chakraborty*

1
 and Rajarshi Sarkar

2 

 
1
Department of Applied Mathematics, BIT Mesra, Ranchi-835215, India 

2
Department of Computer Science & Engineering , BIT Mesra, Ranchi-835215, India 

 
Email of the corresponding author: soubhikc@yahoo.co.in 

 

 

ABSTRACT 

 
Average case complexity, in order to be a useful and reliable measure, has to be robust. The probability 

distribution, generally uniform, over which expectation is taken should be realistic over the problem 

domain. But algorithm books do not certify that the uniform inputs are always realistic. Do the results hold 

even for non uniform inputs? In this context we observe that Binary Tree sort is more robust than the fast 

and popular Quick sort in the average case. 

 

KEY WORDS 

 
Binary Tree sort, robustness, expectation, probability distribution, average case complexity 

 

1. Introduction 
 

Average Case complexity is both interesting and intriguing part of algorithm analysis. It is 

interesting as some algorithms with bad worst case complexity performs better on the average 

like Quick sort and Binary Tree sort, the latter being investigated here. It is intriguing as for a 

complex code it is difficult to identify the pivotal operation or the pivotal region in the code for 

taking mathematical expectation for finding the average case complexity. Moreover, the 

probability distribution over which expectation is taken (which is generally uniform) may not be 

realistic over the domain of the problem. For comparison based sorting algorithms, the dominant 

operation turns out to be comparison. But algorithm books do not certify that the uniform inputs 

are always realistic. It is quite possible that the inputs come from non uniform distributions such 

as Binomial. Do the results derived assuming uniform inputs hold even for non uniform inputs? 

In other words, is the average case complexity having a robustness appeal? Quick sort 

unfortunately is not very robust (Sourabh and Chakraborty [1]). But our study shows that Binary 

Tree sort which has average and worst case complexity similar to those of Quick sort, namely 

O(nlogn) and O(n
2
) respectively, is quite robust . Using computer experiments, a series of runs of 

a code for various inputs, we verify that the model y = a+bx+error where x = nlog2n and y is 

average (mean) sorting time, does hold remarkably well even for non uniform inputs like 

Binomial, Poisson and Standard Normal. For a comprehensive literature on sorting, we refer to 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

116 

 

Knuth[2]. For a sound theoretical discussion on sorting with reference to the input probability 

distribution, Mahmoud[3] should be consulted. The next section gives the algorithm of Binary 

Tree sort. In section 3 we provide the statistical analysis. Section 4 gives a brief discussion on the 

results. Section 5 is reserved for conclusion. 
 

2. Algorithm for Binary Tree Sort[4][5]: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1.Binary Search Tree 

 

a) In order to build the binary search tree, we begin with the 0
th
 element 16 which we take 

as the root of the tree. 

b) While inserting the 1
st
 element, i.e. 7, 7 is compared with its root element 16 and  being 

less than 16 it is made the left child of the root node 16. 

c) While inserting the 2
nd

 element of the list, i.e. 18, 18 is compared with the root element 

16.But 18 is greater than 16, so it is made the right child of the root node 16. 

d) Proceeding in a similar fashion, all the elements are appropriately placed in the binary 

search tree. 

e) Now to get the elements in the sorted order, the tree is traversed in in-order. The in-order 

traversal of the binary search tree lists the elements in ascending order.         
 

In-order traverse: 

  

1) Traverse the left subtree of the root R in in-order. 

2) Process the root R.  

3) Traverse the right subtree of R in in-order.   

 

16 

7 18 

14 

95 

22 

62 6 

8 30 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

117 

 

3. Statistical Analysis 
 

Our experimental work deals with certain empirical results in Binary tree sort algorithm. Here we 

make a statistical case study on the robustness of average complexity measures, which are 

derived assuming uniform distribution, for non-uniform inputs(both discrete and continuous).For 

simulating different variates, we consulted Kennedy and Gentle[6].  
 

We have done a robustness study of Binary tree sort algorithm to verify whether the O(nlogn) 

complexity holds in the average case if the input comes from distributions other than uniform. We 

primarily include Monte Carlo Simulation (where inputs from different probability distributions 

will be simulated) and statistical modeling using simple linear regression with the size of input as 

the predictor and average sorting time as the response variable. We are taking 100 trials for 

calculating the average time of sorting different discrete and continuous distribution inputs of 

sample size n. The observation have been taken on fixed parameters for different distribution, but 

with varying sample size n in the range [5000, 50000]. The standard non uniform probability 

distributions investigated are Binomial, Poisson and Normal, the first two being discrete while the 

last one is continuous. We will of course be investigating discrete uniform and continuous 

uniform distributions also for the sake of completeness.  

 
System Specification: 
 

Processor : Intel(R) Celeron(R) CPU 2.13GHz 

Hard Disk : 80GB 

RAM : 256MB 

Operating System : Windows XP 
 

3.1 Average Case Complexity of Binary Tree Sort for Binomial Distribution Inputs: 
 

The Binomial distribution Binomial (m, p) inputs are taken with parameters m and p, where 

m=100 and p=0.5 are fixed. The empirical results are shown in table 1 and fig. 2.    
 

Table 1: Table of mean sorting time and standard deviation (both in seconds) of Binomial distribution 

inputs for Binary tree sort 

N n logn Mean time SD 

5000 18494.85 0.0086 0.0078 

10000 40000.00 0.0140 0.0139 

15000 62641.37 0.0273 0.0146 

20000 86020.60 0.0389 0.0234 

25000 109948.50 0.0483 0.0279 

30000 134313.64 0.0542 0.0326 

35000 159042.38 0.0602 0.0385 

40000 184082.40 0.0691 0.0402 

45000 209394.56 0.0742 0.0475 

50000 234948.50 0.0825 0.0502 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

118 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Plot showing empirical O(nlogn) complexity for binomial inputs 

Experimental results as shown in fig.2 are supporting  O(n logn) complexity. We write 

yavg(n)=Oemp(nlogn). 

 

3.2. Average Case Complexity for Poisson Distribution Inputs: 

 
The Poisson distribution Poisson (µ) inputs are taken with parameter µ where µ=1 is fixed. The 

empirical results are shown in table 2 and fig. 3. 

 

Table 2: Table of mean sorting time and standard deviation (both in sec.) of Poisson 

distribution inputs for Binary tree sort   

 

n n logn Mean time SD 

5000 18494.85 0.0032 0.0064 

10000 40000.00 0.0048 0.0073 

15000 62641.37 0.0158 0.0121 

20000 86020.60 0.0220 0.0159 

25000 109948.50 0.0314 0.0139 

30000 134313.64 0.0346 0.0251 

35000 159042.38 0.0391 0.0199 

40000 184082.40 0.0436 0.0250 

45000 209394.56 0.0543 0.0291 

50000 234948.50 0.0591 0.0302 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

119 

 

 

 

 

 

 

 

 

 

 

Fig.3 Plot showing empirical O(nlogn) complexity for Poisson inputs 

Experimental results as shown in above fig. 3 are supporting O(n logn) complexity .We write yavg 

(n)=Oemp(nlogn). 

 

3.3. Average Case Complexity for Discrete Uniform Distribution Inputs: 

 
The Discrete Uniform [1, 2, 3….., k] inputs are taken with parameter k where k=50 is fixed. The 

empirical results are shown in table 3 and fig.4. 

 

Table 3: Table of mean sorting time and standard deviation (both in sec.) of Discrete 

Uniform distribution inputs for Binary tree sort 

 

N n logn Mean time SD 

5000 18494.85 0.0031 0.0062 

10000 40000.00 0.0110 0.0072 

15000 62641.37 0.0124 0.0116 

20000 86020.60 0.0190 0.0154 

25000 109948.50 0.0217 0.0173 

30000 134313.64 0.0297 0.0176 

35000 159042.38 0.0296 0.0202 

40000 184082.40 0.0390 0.0234 

45000 209394.56 0.0564 0.0418 

50000 234948.50 0.0602 0.0378 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Plot showing empirical O(nlogn) complexity for Discrete Uniform inputs 

 

Experimental results as shown in above fig.4 are again supporting O(n log n) complexity. We 

write yavg (n)=Oemp(nlogn). 

 

3.4. Average Case Complexity for Continuous Uniform Distribution Inputs:   

 
The Continuous Uniform distribution Continuous Uniform [0, θ] inputs are taken with parameter 

mean  θ,where θ =1 is fixed. The empirical results are shown in table 4 and fig.5.  

 

Table 4: Table of mean sorting time and standard deviation (both in sec.) of Continuous Uniform 

distribution inputs for Binary tree sort   

 

N n logn Mean time SD 

5000 18494.85 0.0031 0.0062 

10000 40000.00 0.0080 0.0080 

15000 62641.37 0.0173 0.0109 

20000 86020.60 0.0201 0.0099 

25000 109948.50 0.0266 0.0172 

30000 134313.64 0.0313 0.0157 

35000 159042.38 0.0375 0.0224 

40000 184082.40 0.0453 0.0256 

45000 209394.56 0.0484 0.0284 

50000 234948.50 0.0545 0.0296 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

121 

 

 

Fig. 5. Plot showing empirical O(nlogn) complexity for Continuous Uniform inputs 

 

Experimental results as shown in above fig.5 are supporting O(n log n) complexity.  We write yavg 

(n)=Oemp(nlogn). 

 

3.5. Average Case Complexity for Standard Normal Distribution Inputs: 

 
For the Standard Normal distribution inputs, the empirical results are shown in table 5 and fig.6.  

 
Table 5: Table of mean sorting time and standard deviation (both in sec.) of Standard Normal distribution 

inputs for Binary tree sort 

 

N n logn Mean time SD 

5000 18494.85 0.0000 0.0000 

10000 40000.00 0.0062 0.0076 

15000 62641.37 0.0064 0.0078 

20000 86020.60 0.0064 0.0078 

25000 109948.50 0.0092 0.0075 

30000 134313.64 0.0115 0.0067 

35000 159042.38 0.0150 0.0000 

40000 184082.40 0.0156 0.0004 

45000 209394.56 0.0175 0.0065 

50000 234948.50 0.0185 0.0056 

 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

122 

 

 

Fig.6  Plot showing empirical O(nlogn) complexity for Standard Normal inputs. 

 

Experimental results as shown in above fig.6 are supporting O(n log n) complexity. We write yavg 

(n)=Oemp(nlogn).  

 

Remark: Box Muller transformation was used for simulating standard normal variates (Kennedy 

and Gentle [6]).  

 

4. Discussion 

 
There are a few points to be discussed. There is an important result which says average case 

complexity under the universal distribution equals worst case complexity [7]. So for those 

algorithms whose worst case complexity is different (higher or worse) than average case 

complexity, it is risky to say “this algorithm has a bad worst case but performs better on the 

average” without verifying the robustness. Since Binary tree sort is robust while Quick sort is not, 

we can use Binary tree sort in case there is a possibility that the sorting elements need not be 

uniform. The other important question is: why did we work on time which is system dependent? 

The answer to this question is that time of a computing operation is actually the weight (and not 

the count) of the operation and time of the entire code is a weighted sum of the computing 

operations, the weights being the corresponding times. A mathematical complexity bound (like 

big oh) is count based and operation specific. A bound that is weight based and consequently 

allows for mixing of different types of operations (like mixing comparisons with interchanges in 

sorting) is essentially a statistical bound. Empirical O, written as O with a subscript emp, is only 

an empirical estimate of the statistical bound obtained over a finite range by supplying numerical 

values to the weights. And these numerical values are obtained by running computer experiments. 

So design and analysis of computer experiments become crucial especially when the response is a 

complexity such as time. For a general literature on computer experiments we refer to the seminal 

paper by Sacks et. al. [8] and the book by Fang, Li and Sudjianto [9].  A recent book which gives 

a computer experiment outlook to algorithmic complexity is by Chakraborty and Sourabh [10]. 

This is the first published book on statistical complexity bounds. 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

123 

 

5. Conclusion 

 
The robustness of average case measure O(nlogn) for Binary tree sort has be verified by 

observing mean time. This may be crossed checked against the mean comparisons experimentally 

counted rather than working on time directly. Only for algorithms such as Heap sort where worst 

and average complexities are equal, it is safe to rely on an average complexity measure. In case 

average case complexity seems to be better than the same for worst case, the robustness must be 

confirmed first as otherwise it could be a dangerous practice to rely on it. The recent rejection of 

some proofs (see [11] in addition to [1] for example) is testimony to this fact. And this is 

precisely where Binary Tree sorts beats the fast and popular Quick sort.  

 

References 

 
[1] S. K. Sourabh and S. Chakraborty, How robust is quicksort average complexity? arXiv:0811.4376v1 

[cs.DS] 

[2] D. E. Knuth, The Art of Programming, Vol. 3: Sorting and Searching, Pearson  Edu. reprint, 2000 

[3] H. Mahmoud, Sorting: A Distribution Theory, John Wiley, 2000 

[4] Y. Kanetkar, Data Structures through C, BPB publications, New Delhi, 2nd Ed.,2009  

[5] S. Lipschutz (Adapted by G. A. V. Pai), Data Structures, Schaum’s Outlines Series, Tata McGraw-

Hill Publishing Company Ltd. 2006.  

[6] W. Kennedy and J. Gentle, Statistical Computing, Marcel Dekker Inc., 1980 

[7] .M. Li and P.M.B Vitanyi, Average case complexity under the universal distribution equals worst 

case complexity, Inf . Proc. Lett., 42,no.3,1992,145-149 

[8] Sacks, J., W. Welch, T. Mitchell and H. Wynn, Design and Analysis of Computer          Experiments, 

Statistical Science, vol. 4(4), 1989 

[9] Fang, K. T., Li, R. and Sudjianto, A., Design and Modeling of Computer Experiments, Chapman and 

Hall, 2006 

[10] Chakraborty, S. and Sourabh, S. K., A Computer Experiment Oriented Approach to           

Algorithmic Complexity, Lambert Academic Publishing, 2010 

[11] S. Chakraborty, S. K. Sourabh, How Robust are Average Complexity Measures? A Statistical Case 

Study, Applied Math. and Compu., vol. 189(2), 2007, 1787-1797 


