
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

DOI : 10.5121/ijcsea.2012.2211                                                                                                                   131 

 

 

LOCAL OBSERVER DESIGN FOR NONLINEAR 

CONTROL SYSTEMS AROUND EQUILIBRIA 

 
Sundarapandian Vaidyanathan

1
  

 

1
Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University 

Avadi, Chennai-600 062, Tamil Nadu, INDIA 
 

sundarvtu@gmail.com 

 

 

ABSTRACT 

 
In this paper, new results have been derived for the local observer design for nonlinear control systems 

with real parametric uncertainty around equilibia. In this paper, it is first shown that equilibrium-state 

detectability is a necessary condition for the existence of local asymptotic observers for any nonlinear 

system and using this result, it is shown that for the classical case, when the state equilibrium does not 

change with the real parametric uncertainty, and when the plant output is purely a function of the state, 

there is no local asymptotic observer for the plant. Next, it is shown that in sharp contrast to this case, for 

the general case of problems where we allow the state equilibrium to change with the real parametric 

uncertainty, there generically exist local exponential observers even when the plant output is purely a 

function of the state. In this paper, a characterization and construction procedure for local exponential 

observers for a general class of nonlinear systems with real parametric uncertainty has also been derived 

under some stability assumptions. It is also shown that for the general class of nonlinear systems 

considered, the existence of local exponential observers in the presence of inputs implies, and is implied by 

the existence of local exponential observers in the absence of inputs. 
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1. INTRODUCTION 

 
The local and global observer design are important problems in the control engineering literature 

because state estimators are needed for system monitoring and for the implementation of state 

feedback control laws designed for control systems. 

 

For linear control systems, the observer design problem was introduced and fully solved by 

Luenberger ([1], 1964). For nonlinear control systems, the observer design problem was 

introduced by Thau ([2], 1973). During the past three decades, the observer design problem for 

nonlinear control systems has been studied extensively in the control engineering literature [2-

16]. 

A necessary condition for the existence of an exponential observer for nonlinear control systems 

was obtained by Xia and Gao ([3], 1988).  On the other hand, sufficient conditions for nonlinear 

observers have been obtained in the control systems literature from an impressive variety of 
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points of view. Kou, Elliott and Tarn ([4], 1975) obtained sufficient conditions for the existence 

of exponential observers using Lyapunov-like method. In [5-9], suitable coordinate 

transformations were found under which a nonlinear control system is transferred into a canonical 

form, where the observer design is carried out. In [10-11], Tsinias derived sufficient Lyapunov-

like conditions for the existence of asymptotic observers for nonlinear systems. A harmonic 

analysis approach was proposed by Celle et al.  ([12], 1989) for the synthesis of nonlinear 

observers.  

In ([13], 1997), Xia and Zeitz proposed a method for the design of continuous observers for 

uniformly observable nonlinear systems. In ([14], 1997), Yao, Zhang and Kovacevic derived 

results for the design of state functional observer state feedback for systems with input time 

delays is addressed using the factorization approach in the frequency domain. 

A characterization of local exponential observers for nonlinear control systems was first obtained 

by Sundarapandian ([15], 2002). In [14], necessary and sufficient conditions were obtained for 

exponential observers for Lyapunov stable nonlinear systems and an exponential observer design 

was provided which generalizes the observer design of Luenberger [1] for linear systems. Krener 

and Kang ([16], 2003) introduced a new method for the design of observers for nonlinear systems 

using backstepping. 

This paper investigates the local observer design problem for a general class of nonlinear systems 

with real parametric uncertainty. In this paper, we consider a general class of nonlinear systems 

described by 

  
( , ) ( , )

( , )

x f x g x u

y h x

λ λ

λ

= +

=

&
        (1) 

where  
n

x ∈R  is the state, 
lλ ∈R  is the real parametric uncertainty,  

m
u ∈R  the input and  

p
y ∈R  the output. We assume that the state  x  is defined in an open neighbourhood of an 

isolated state equilibrium  
n

x
∗ ∈R  and the input u belongs to a class  Υ  of admissible input 

functions. 

In Sections 2 and 3, we assume that  Υ consists of all locally 
1
C  functions  u  with (0) 0.u =  

In Section 4, we assume that Υ  consists of all inputs of the form 

  ( )u r ω=          (2) 

where  ω  is the state of a neutrally stable exosystem given by 

 ( )sω ω=&          (3) 

We also assume that the parametric uncertainty  λ  takes values in an open neighbourhood  G  of 

the origin of  .l
R   

We set  ( , ).Y h X G=   

We also assume that 
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  ( ,0) 0,   ( ,0) 0f x g x
∗ ∗= =  and  ( ,0) 0h x

∗ =  

In this paper, it is first shown that equilibrium-state detectability is a necessary condition for the 

existence of local asymptotic observers for the nonlinear system (1). Using this condition, we 

establish that for the classical case of problems when the state equilibrium does not change with 

the real parametric uncertainty, there does not exist any local asymptotic observer for the 

nonlinear plant. Next, we show that in sharp contrast to this case, for the general case of problems 

where we allow the state equilibrium to change with the real parametric uncertainty, there 

typically exist local exponential observers even when the plant output is purely a function of the 

state.  

In this paper, we also derive necessary and sufficient conditions for local exponential observers 

and using this, we deduce a simple construction procedure for the design of exponential observers 

for the nonlinear plants with exogenous inputs. In this context, we also derive a new result which 

states that under some stability assumptions on the plant, the existence of local exponential 

observers for the nonlinear plant (1) in the presence of inputs implies and is implied by the 

existence of local exponential observers for the plant (1) in the absence of inputs. Thus, this new 

result simplifies the nonlinear observer design problem significantly. 

 

This paper is organized as follows. In Section 2, we state the basic definitions of local observers 

around equilibria. In Section 3, we derive a necessary condition for local asymptotic observers for 

nonlinear systems and discuss its applications. In Section 4, we derive new results for the local 

observer design for nonlinear systems around equilibria. Section 5 contains a summary of the 

main results derived in this paper. 

 

2.  BASIC DEFINITIONS 

 
In this paper, we study the local observer design problem for the nonlinear plant (1).  

Since  λ   is a real parametric uncertainty, it may not be available for measurement. Thus, we 

may consider  λ  as an additional state variable and estimate λ  as well.  

Thus, we consider the plant (1) in an extended form as 

( , ) ( , )

0

( , )

x f x g x u

y h x

λ λ

λ

λ

= +

=

=

&

&         (4) 

In this paper, we derive new results for local asymptotic observers and local exponential 

observers for the nonlinear plant (4) with real parametric uncertainty around the equilibrium point 

( ,0) .n l
x

∗ ∈ ×R R  

Definition 1. [15] Consider the nonlinear system (candidate observer) defined by 

( , , , )

( , , , )

z z y u

z y u

ϕ µ

µ ψ µ

=

=

&

&
        (5) 
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where the state z of the candidate observer (5) is defined locally (say, in the neighbourhood X of 

x
∗
 in

n
R ) and the state µ of the candidate observer (5) is defined locally (say, in the 

neighbourhood G of the origin in 
l
R ).   

We assume that ϕ and ψ are locally 
1
C mappings such that  

 ( ,0,0,0) 0xϕ ∗ =  and ( ,0,0,0) 0xψ ∗ =   

We define the estimation error e by 

1

2

e z x
e

e µ λ

     
= = −     

    
        (6) 

We say that the candidate observer (5) is a local asymptotic (resp. local exponential) observer for 

the plant (4) if the following conditions are satisfied: 

(O1) If (0) 0,e = then ( ) 0e t ≡ for all 0t ≥ and all u ∈ U  

(O2) There exists a neighbourhood V of the origin of 
n l×R R such that for all values of 

(0) ,e V∈ the estimation error ( ) 0e t → asymptotically (resp. exponentially) as 

.t → ∞  � 

We note that the error satisfies the differential equation 

1 1 2

2 1 2

( , , , ) ( , ) ( , )

( , , , )

e x e e y u f x g x u

e x e e y u

ϕ λ λ λ

ψ λ

= + + − −

= + +

&

&
 

We consider the composite system 

   

1 1 2

2 1 2

( , ) ( , )

0

( , , , ) ( , ) ( , )

( , , , )

x f x g x u

e x e e y u f x g x u

e x e e y u

λ λ

λ

ϕ λ λ λ

ψ λ

= +

=

= + + − −

= + +

&

&

&

&

     (7) 

Next, we state a simple lemma which gives a geometric characterization of the condition (O1) in 

Definition 1. 

Lemma 1. [15] The following statements are equivalent. 

(a) The condition (O1) in Definition 1 holds for the composite system (4)-(5). 

(b) For all ,x X∈ Gλ ∈ and for all ,u ∈ U we have 

( , ( , ), ) ( , ) ( , )

( , ( , ), ) 0

x h x u f x g x u

x h x u

ϕ λ λ λ

ψ λ

= +

=
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(c) The submanifold defined via 0e = is invariant under the flow of the composite system 

(7). � 

Lemma 2. [15] Consider the plant (4) and the candidate observer (5). Then the condition (O1) of 

Definition 1 holds if and only if the mappings ϕ  and ψ  have the following form: 

( , , , ) ( , ) ( , ) ( , , , )

( , , , ) ( , , , )

z y u f z g z u z y u

z y u z y u

ϕ µ µ µ α µ

ψ µ β µ

= + +

=
 

where α and β are locally 
1
C mappings with 

( ,0,0,0) 0,xα ∗ =   ( ,0,0,0) 0,xβ ∗ =  

and also such that 

( , , ( , ), ) 0,    ( , , ( , ), ) 0.x h x u x h x uα λ λ β λ λ= =   � 

3. A NECESSARY CONDITION FOR LOCAL ASYMPTOTIC OBSERVERS FOR 

NONLINEAR SYSTEMS 

 
In this section, we shall show that if the plant (4) has a local asymptotic observer of the form (5), 

then the plant (4) must be equilibrium detectable, i.e. if ( ( ), ( ))x t tλ  is the solution of the system 

(4) with small initial condition 
0 0( (0), (0)) ( , )x xλ λ= near the equilibrium  ( ,0)x

∗
 satisfying 

( ) ( ( ), ( )) 0,y t h x t tλ= ≡ then ( ( ), ( ))x t tλ must converge to ( ,0)x
∗

asymptotically as .t → ∞  

Since 
0( ) ,tλ λ≡ the equilibrium-state detectability requirement is equivalent to requiring that the 

solution ( ( ), ( ))x t tλ yielding zero output for the plant (4) must be such that ( )x t x
∗→  

asymptotically as t → ∞ and 
0 0.λ =  

Theorem 1. A necessary condition for the existence of a local asymptotic observer for the plant 

(4) is that the plant (4) is equilibrium-state detectable, i.e. any solution trajectory ( ( ), ( ))x t tλ  of 

(4) with small initial condition 0 0( (0), (0)) ( , )x xλ λ= near the equilibrium ( ,0)x
∗

satisfying  

( ) ( ( ), ( )) 0y t h x t tλ= ≡  

must be such that ( )x t x
∗→ asymptotically as t → ∞ and 0 0.λ =  

Proof. This is a simple consequence of Lemma 2 for local asymptotic observers for nonlinear 

control systems. 

Suppose that the candidate observer defined by (5) is a local asymptotic observer for the plant (4). 

Then by Lemma 2, the system (5) has the form 
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( , ) ( , ) ( , , , )

( , , , )

z f z g z u z y u

z y u

µ µ α µ

µ β µ

= + +

=

&

&
      (8) 

where α and β are locally 
1
C mappings with 

( ,0,0,0) 0,xα ∗ =   ( ,0,0,0) 0,xβ ∗ =       (9) 

and also such that 

( , , ( , ), ) 0,    ( , , ( , ), ) 0.x h x u x h x uα λ λ β λ λ= =        (10) 

Consider any solution trajectory ( ( ), ( ))x t tλ  of (4) with small initial condition 

0 0( (0), (0)) ( , )x xλ λ= near the equilibrium ( ,0)x
∗

satisfying  

( ) ( ( ), ( )) 0y t h x t tλ= ≡        (11) 

Then the observer dynamics (8) simplifies to 

( , ) ( , ) ( , ,0, )

( , ,0, )

z f z g z u z u

z u

µ µ α µ

µ β µ

= + +

=

&

&
      (12) 

and the equations (10) simplify to 

( , ,0, ) 0,    ( , , 0, ) 0.x u x uα λ β λ= =       (13) 

Taking (0)z x
∗= and (0) 0,µ = it follows that the observer trajectory ( ( ), ( ))z t tµ  satisfies 

( )z t x
∗≡ and ( ) 0tµ ≡ for all t ∈R.  

Hence, by the definition (O2) of the definition of local asymptotic observers, it follows that as 
,t → ∞  

 
( )

0
( ) 0

x t x

tλ

∗  
− →  

   
  asymptotically 

or equivalently that 

( )
0

( )

x t x

tλ

∗ −
→ 

 
 asymptotically 

Since we know that  

( )
( )

( )

x t x
x t x

tλ

∗
∗  −

− ≤  
 

  and  
( )

( )
( )

x t x
t

t
λ

λ

∗ −
≤  
 

 for all ,t ∈R  
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it also follows that ( )x t x
∗→ and ( ) 0tλ → as .t → ∞  

Since 0( ) ,tλ λ≡ we must have 0 0.λ =  

This completes the proof. � 

Using Theorem 1, we can prove the following result which says that there is no local asymptotic 

observer for the plant (4) if the equilibrium x x
∗= does not change with the real parametric 

uncertainty, i.e.  ( , ) 0f x λ∗ = and ( , ) 0,g x λ∗ = and if the output function y is purely a function 

of ,x i.e. 

( , ) ( )y h x xλ γ= =  

Before we prove this result, we observe that there are many plants in nonlinear control systems 

which satisfy the assumption 

 ( , ) 0f x λ∗ =  and  ( , ) 0g x λ∗ =       (14) 

In classical bifurcation theory, a standard assumption is that there is a trivial solution from which 

the bifurcation is to occur ([17], p.149]. Thus, in the classical bifurcation case, the control plant 

(4) is often assumed to satisfy (14) for all λ so that x x
∗= is an equilibrium for all parameter 

values. 

Another class of plants which satisfy the assumption (14) is one in which 

( , ) ( ) ( )a bf x f x f xλ λ= +  and  ( , ) ( ) ( )a bg x g x g xλ λ= +    (15) 

with  

  ( ) 0,   ( ) 0,   ( ) 0,   ( ) 0a b a bf x f x g x g x
∗ ∗ ∗ ∗= = = =     (16) 

Next, as a consequence of Theorem 1, we establish the following result. 

Theorem 2. Suppose that the plant (4) satisfies the assumption (14) so that x x
∗= is an 

equilibrium for all values of the parameter λ  and also that the output function y is purely a 

function of x , i.e. it has the form ( ).y xγ=  Then there is no local asymptotic observer for the 

plant (4). 

Proof. We show that the plant (4) is not equilibrium-state detectable. Suppose that we take 

(0)x x
∗=  and 

0(0) ,λ λ= where 
0 0λ ≠ is any small initial condition. Then we have ( )x t x

∗≡  

for all t ∈R and it follows that 

( ) ( ( ), ( )) ( ( )) ( ) 0y t h x t t x t xλ γ γ ∗= = = =      (17) 
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However, 0( ) 0.tλ λ= ≠  This shows that the plant (4) is not equilibrium-state detectable. From 

the necessary condition given in Theorem 1, it is then immediate that there is no local asymptotic 

observer for the plant (4). � 

Corollary 1. Under the same assumptions in Theorem 2, there is no local exponential observer 

for the plant (4).  � 

Theorem 2 and Corollary 1 are for the classical case of nonlinear control systems with real 

parametric uncertainty, i.e., systems of the form (4) satisfying the assumption (14).  

In the next section, we shall show that in sharp contrast to this case, for the general case of 

nonlinear control systems with real parametric uncertainty, where we allow the state equilibrium 

to change with the parameter, there typically exist local exponential observers even when the 

output function y is purely a function of ,x i.e. it has the form 

 ( ).y xγ=  

 4. OBSERVER DESIGN FOR NONLINEAR SYSTEMS AROUND EQUILIBRIA 

 
In this section, we suppose that the class U consists of inputs u of the form 

( ),u r ω=          (18) 

where ω satisfies the autonomous system (exosystem) 

 ( )sω ω=&   with  (0) 0s =        (19) 

The state ω of the exosystem (19) lies in an open neighbourhood W of the origin of .s
R  One can 

view the equations (18) and (19) as an input generator. We assume that the exosystem dynamics 

(19) is neutrally stable at 0.ω = Basically, this requirement means that the exosystem (19) is 

Lyapunov stable in both forward and backward time at 0.ω =  

In this section, we first derive a basic theorem that completely characterizes the existence of local 

exponential observers of the form (5) for nonlinear plants of the form (4). We note that this result 

holds for both classical and general cases of systems with real parametric uncertainty. 

Using (18) and (19), the plant (4) can be expressed as 

( , ) ( , ) ( )

0

( )

( , )

x f x g x r

s

y h x

λ λ ω

λ

ω ω

λ

= +

=

=

=

&

&

&
       (20) 

Also, the composite system (7) can be written as 
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1 1 2

2 1 2

( , ) ( , ) ( )

0

( )

( , , ( , ), ( )) ( , ) ( , ) ( )

( , , ( , ), ( ))

x f x g x r

s

e x e e h x r f x g x r

e x e e h x r

λ λ ω

λ

ω ω

ϕ λ λ ω λ λ ω

ψ λ λ ω

= +

=

=

= + + − −

= + +

&

&

&

&

&

u

   (21) 

Theorem 3. Suppose that the plant dynamics in (20) is Lyapunov stable at the equilibrium 

( , , ) ( ,0,0).x xλ ω ∗=  Then the candidate observer (5) is a local exponential observer for the plant 

(20) if and only if 

(a) The submanifold defined via 0e = is invariant under the flow of the composite system 

(21). 

(b) The dynamics 

 
1 1 2

2 1 2

( , ,0,0)

( , ,0,0)

e e e

e e e

ϕ

ψ

=

=

&

&
 

is locally exponentially stable at 0.e =  

Proof. The necessity follows immediately from Definition 1 for local exponential observers and 

Lemma 1. The sufficiency can be established using Lyapunov stability theory as in [15]. � 

As an application of Theorem 3, we establish the following result, which states that when the 

plant dynamics in (20) is Lyapunov stable at ( , , ) ( ,0,0),x xλ ω ∗= the existence of a local 

exponential observer for the plant (20) in the presence of inputs implies and is implied by the 

existence of a local exponential observer for the plant (20) in the absence of inputs.  

For the purpose of proving this result, we note that the unforced plant corresponding to 0ω = is 

given by 

( , )

0

( , )

x f x

y h x

λ

λ

λ

=

=

=

&

&

u

         (22) 

Theorem 4. Suppose that the plant dynamics in (20) is Lyapunov stable at ( , , ) ( ,0,0).x xλ ω ∗=  

If the system 

( , , , )

( , , , )

z z y u

z y u

ϕ µ

µ ψ µ

=

=

&

&
        (23) 

is a local exponential observer for the full plant (20), then the system defined by 
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( , , , 0)

( , , , 0)

z z y

z y

ϕ µ

µ ψ µ

=

=

&

&
        (24) 

is a local exponential observer for the unforced plant (22). Conversely, if the system 

  
( , , )

( , , )

z z y

z y

η µ

µ σ µ

=

=

&

&
         (25) 

is a local exponential observer for the unforced plant (22) near ( , ) ( ,0),x xλ ∗= then the system 

defined by 

  
( , , , ) ( , , ) ( , )

( , , , ) ( , , ) 0

z z y u z y g z u

z y u z y

ϕ µ η µ µ

µ ψ µ σ µ

       
= = +       

       

&

&
    (26) 

is a local exponential observer for the full plant (20) near ( , , ) ( ,0,0).x xλ ω ∗=  

Proof. The first part of this theorem is straightforward. Indeed, if the candidate observer (23) is a 

local exponential observer for the full plant (20), by taking 0,u = it is immediate that the 

resulting candidate observer (24) is a local exponential observer for the unforced plant (22). 

The second part of the theorem follows by verifying the conditions (a) and (b) given in Theorem 

3 for the candidate observer (26). � 

 

Let ( , )C A
∗ ∗

denote the linearization pair for the unforced plant (22) at ( , ) ( ,0),x xλ ∗= i.e.  

[ ]C C Z∗ =   and 
0 0

A P
A

∗  
=  
 

      (27) 

where 

 ( ) ( ) ( ) ( ),0 ,  ,0 ,  ,0 ,  ,0
h h f f

C x Z x A x P x
x xλ λ

∗ ∗ ∗ ∗∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
  (28) 

In view of the construction procedure outlined in Theorem 4, we first derive some important 

results on the exponential observer design for the unforced plant (22).  

First, we state the following necessary condition for the local exponential observers that can be 

established as in [15]. 

Theorem 5. If the unforced plant (22) has a local exponential observer near the equilibrium 

( , ) ( ,0),x xλ ∗= then the pair ( , )C A
∗ ∗

is detectable. � 

Corollary 2. If the full plant (20) has a local exponential observer near the equilibrium 

( , , ) ( ,0,0),x xλ ω ∗=  then the pair ( , )C A
∗ ∗

is detectable.  
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Proof. The assertion follows immediately from Theorems 4 and 5. � 

Using the necessary condition given in Theorem 5, we establish the following result, which gives 

a simple necessary condition for the existence of local exponential observers for the unforced 

plant (22). 

Theorem 6. If the unforced plant (22) has a local exponential observer near the equilibrium 

( , ) ( ,0),x xλ ∗= then the pair ( , )C A is detectable and  

rank dim( )
Z

l
P

λ
 

= = 
 

       (29) 

Proof. Suppose that the unforced plant (22) has a local exponential observer near the equilibrium 

( , ) ( ,0).x xλ ∗=  Then by Theorem 5, the pair ( , )C A
∗ ∗

is detectable.  

By PBH rank test [19], a necessary and sufficient condition for ( , )C A
∗ ∗

to be detectable is that  

  rank
C

n l
I Aξ

∗

∗

 
= + 

− 
        (30) 

for all complex numbers ξ in the closed right-half plane (RHP), i.e. in the region, where 

Re( ) 0.ξ ≥  

We note that 

0

C Z
C

I A P
I A

I

ξ
ξ

ξ

∗

∗

 
   = − −   −    

 

Thus, it is immediate that (30) holds for all complex numbers ξ in the closed RHP only if  

 rank
C

n
I Aξ

 
= − 

 

for all complex numbers ξ in the closed RHP and  

 rank
Z

l
P

 
= 

 
 

In view of the PBH rank test for detectability [19], the above necessary condition is the same as 

requiring that ( , )C A is detectable and 
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rank dim( )
Z

l
P

λ
 

= = 
 

 

This completes the proof. � 

Corollary 2. If the full plant (22) has a local exponential observer near the equilibrium 

( , , ) ( ,0,0),x xλ ω ∗=  then the pair ( , )C A is detectable and 

rank dim( )
Z

l
P

λ
 

= = 
 

 

Proof. This is a simple consequence of Theorems 4 and 6. � 

Next, we show that the necessary condition given in Theorem 5 is also sufficient for the existence 

of a local exponential observer for the unforced plant (20) when the unforced plant dynamics in 

(20) is Lyapunov stable at the equilibrium ( , ) ( ,0).x xλ ∗=  

Theorem 7. Suppose that the plant dynamics in (22) is Lyapunov stable at the equilibrium 

( , ) ( ,0)x xλ ∗= and suppose also that the matrix A K C
∗ ∗ ∗− is Hurwitz for some matrix .K

∗
 

Then the dynamical system defined by 

[ ]
( , )

( , )
0

z f z
K y h z

µ
µ

µ
∗   

= + −   
   

&

&
      (31) 

is a local exponential observer for the unforced plant (22) near ( , ) ( ,0).x xλ ∗=  

Proof. It is easy to check that the candidate observer (31) satisfies the conditions (a) and (b) of 

Theorem 3. � 

When ( , )C A
∗ ∗

is detectable, by the reduction procedure outlined in Theorem 4, we can use the 

local exponential observer (31) constructed for the unforced plant (22) to construct a local 

exponential observer for the full plant (20). 

Theorem 8. Suppose that the plant dynamics in (20) is Lyapunov stable at the equilibrium 

( , , ) ( ,0,0)x xλ ω ∗= and suppose also that the matrix A K C
∗ ∗ ∗− is Hurwitz for some matrix .K

∗
 

Then the dynamical system defined by 

[ ]
( , ) ( , )

( , )
0

z f z g z u
K y h z

µ µ
µ

µ
∗+   

= + −   
   

&

&
    (32) 

is a local exponential observer for the full plant (20) near the equilibrium ( , , ) ( ,0,0).x xλ ω ∗=  

Proof. The assertion is a simple consequence of the reduction procedure outlined in Theorems 4 

and 7. � 
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Corollary 3. Suppose that the plant dynamics in (20) is Lyapunov stable at the equilibrium 

( , , ) ( ,0,0)x xλ ω ∗= and that the output function y is purely a function of ,x i.e. it has the form 

( ).y xγ=  Assume that the equilibrium x x
∗= of the plant dynamics in x , viz. 

( , ) ( , ) ( )x f x g x rλ λ ω= +&       (33) 

changes with the real parametric uncertainty .λ In this case, the system linearization pair  

( , )C A
∗ ∗

 has the form 

 [ ]0C C∗ =   and  .
0 0

A P
A

∗  
=  
 

 

If the pair ( , )C A
∗ ∗

is detectable, then the full plant (20) has a local exponential observer given by 

Eq. (32), where K ∗
is any matrix such that A K C

∗ ∗ ∗− is Hurwitz. � 

Remark 1. It is a well-known result in Control Theory that the system linearization pair 

( , )C A
∗ ∗

is generically observable [20]. Thus, from Corollary 3, there generically exist local 

exponential observers of the form (32) for the full plant (20) under the following conditions: 

(a) The plant dynamics in (20) is Lyapunov stable at ( , , ) ( ,0,0).x xλ ω ∗=  

(b) The equilibrium x x
∗= of the plant dynamics (33) changes with the real parametric 

uncertainty. 

(c) The output function y is purely a function of ,x i.e. it has the form ( ).y xγ= � 

5. CONCLUSIONS 

 
In this paper, we showed that equilibrium-state detectability is a necessary condition for the 

existence of local asymptotic observers for any nonlinear system. Using this result, we established 

that for the classical case, when the equilibrium does not change with the parametric uncertainty 

and when the plant output is purely a function of the state, there is no local asymptotic observer 

for the plant. We also showed that in sharp contrast to this case, for the general case of problems 

where we allow the state equilibrium to change with the parametric uncertainty, there typically 

exist local exponential observers even when the plant output is purely a function of the state. 

Next, we derived a procedure for local exponential observers for a general class of nonlinear 

systems with real parametric uncertainty under some stability assumptions and showed that the 

existence of local exponential observers in the presence of inputs implies, and is implied by the 

existence of local exponential observers in the absence of inputs. 
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