
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

DOI : 10.5121/ijcsea.2012.2216                                                                                                                   185 

 

 

ENERGY EFFICIENT SCHEDULING FOR REAL-TIME 

EMBEDDED SYSTEMS WITH PRECEDENCE AND 

RESOURCE CONSTRAINTS 

Santhi Baskaran
1
 and P. Thambidurai

2 

1
Department of Information Technology, Pondicherry Engineering College, Puducherry, 

India 

 
santhibaskaran@pec.edu 

 
2
Department of Computer Science and Engineering, Pondicherry Engineering College, 

Puducherry, India 

 
ptdurai@pec.edu 

ABSTRACT 

 
Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. 

Maintaining high performance, while extending the battery life between charges is an interesting challenge 

for system designers. Dynamic Voltage Scaling and Dynamic Frequency Scaling allow us to adjust supply 

voltage and processor frequency to adapt to the workload demand for better energy management. Usually, 

higher processor voltage and frequency leads to higher system throughput while energy reduction can be 

obtained using lower voltage and frequency. Many real-time scheduling algorithms have been developed 

recently to reduce energy consumption in the portable devices that use voltage scalable processors. For a 

real-time application, comprising a set of real-time tasks with precedence and resource constraints 

executing on a distributed system, we propose a dynamic energy efficient scheduling algorithm with 

weighted First Come First Served (WFCFS) scheme. This also considers the run-time behaviour of tasks, to 

further explore the idle periods of processors for energy saving. Our algorithm is compared with the 

existing Modified Feedback Control Scheduling (MFCS), First Come First Served (FCFS), and Weighted 

scheduling (WS) algorithms that uses Service-Rate-Proportionate (SRP) Slack Distribution Technique. Our 

proposed algorithm achieves about 5 to 6 percent more energy savings and increased reliability over the 

existing ones. 

 

KEYWORDS 

 
Distributed Real-time System, DVS, Dynamic Slack, Energy efficient Scheduling 

 

1. INTRODUCTION 

 
Many embedded command and control systems used in manufacturing, chemical processing, 

avionics, telemedicine, and sensor networks are mission-critical. These systems usually comprise 

of applications that must accomplish certain functionalities in real-time [1]. Dynamic voltage 

scaling (DVS) is an effective technique to reduce CPU energy. DVS takes advantage of the 

quadratic relationship between supply voltage and energy consumption, which can result in 

significant energy savings. By reducing processor clock frequency and supply voltage, it is 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

186 

 

possible to reduce the energy consumption at the cost of performance of processors [2]. Battery 

powered portable systems have been widely used in many applications. As the quantity and the 

functional complexity of battery powered portable devices continue to rise, energy-efficient 

design of such devices has become increasingly important. Also these systems have to 

concurrently perform a multitude of complex tasks under stringent time constraints. Thus 

minimizing power consumption and extending battery lifespan while guaranteeing the timing 

constraints has become a critical aspect in designing such systems. The focus is on task 

scheduling algorithms to meet timing constraint while minimizing system energy consumption. 

In order to make energy efficient, in the scheduling, the execution time of the tasks can be 

extended up to the worst case delay for each task set. In real-time system designs, Slack 

Management is increasingly applied to reduce energy consumption and optimize the system with 

respect to its performance and time overheads. In energy efficient scheduling, the set of tasks will 

have certain deadline before which they should finish their execution and hence there is always a 

time gap between the actual execution time and the deadline. It is called slack time [3]. Therefore 

to minimize the energy consumed and to satisfy the deadline of the tasks, the processors run at 

variable speeds there by reducing the energy consumed by them. This is simulated with various 

task sets on different set of processors using proposed and existing task scheduling algorithms. 

 

In this paper homogeneous distributed embedded systems executing a set of dependent tasks of a 

real-time application, which are normally represented by a task graph, is considered. The 

algorithm aims to reduce the energy consumption without missing any deadlines for a hard real-

time task and with minimum deadline misses for soft real-time tasks [4]. Resources should be 

allocated efficiently among tasks and also care should be taken to see that no deadlock occurs [5].  

Therefore it is necessary to introduce resource management mechanisms that can adapt to 

dynamic changes in resource availability and requirement. 

 

This paper is organized in the following way. The related work is addressed in Section II. The 

various models used in this work are described in Section III. Proposed algorithm is described in 

Section IV. Section V discusses the simulation and analysis of results. Finally Section VI 

concludes this paper with future work. 

 

2. RELATED WORK 

 
The two most commonly used techniques that can be used for energy minimization in distributed 

embedded systems are Dynamic Voltage Scaling (DVS) [6] and Dynamic Power Management 

(DPM) [7]. The application of these system-level energy management techniques can be 

exploited to the maximum if we can take advantage of almost all of the idle time and slack time in 

between processor busy times. Hence, the major challenge is to design an efficient scheduling 

algorithm which can exploit the slack time and idle time of processors in the distributed 

embedded systems to the maximum. Various energy-efficient slack management schemes have 

been proposed for these real-time distributed systems. The static scheduling algorithm uses 

critical path analysis and distributes the slack during the initial schedule [8]. The dynamic 

scheduling algorithm [9] provides best effort service to soft aperiodic tasks and reduces power 

consumption by varying voltage and frequencies. Resource adaptation techniques for energy 

management in distributed real-time systems need to be coordinated to meet global energy and 

real-time requirements. This issue is addressed based on feedback-based techniques [10], [11] to 

allocate the overall slack in the entire system. 

 

One of the existing works for distributed real-time system is based on feedback control 

scheduling. This MFCS algorithm [11] can provide real-time performance guarantees efficiently, 

even in open environments. This algorithm framework has three components; Monitors that track 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

187 

 

the CPU utilization of each processor; Resource reclaimer that computes difference between 

task’s actual execution time and worst case execution time for local and global slack adjustment; 

and Feedback scheduler that performs resource reclaimer recommended schedule adaptations 

dynamically. A processor in the distributed system receives subtasks of different tasks, arrived to 

the global Feedback scheduler. Within each processor the tasks are scheduled by the Basic 

scheduler using Earliest Deadline First algorithm (EDF), since EDF has been proven to be an 

optimal uniprocessor scheduling algorithm [12]. EDF algorithm allows dynamic rescheduling and 

pre-emption in the queues and processing nodes. The Monitor module periodically checks the 

processor utilization and sends message to the global feedback scheduler, which on arrival of a 

new task decides to assign the task to a processor where the utilization criterion for the local EDF 

scheduler is still satisfied. 

 

Another existing work for distributed embedded real-time system uses Service Rate Proportionate 

(SRP) slack distribution technique [13] for energy efficiency. Both the Dynamic and the Rate-

Based scheduling schemes have been examined with this technique. It introduces SRP a dynamic 

slack management technique to reduce power consumption. The SRP technique improves 

performance/overhead by 29 percent compared to contemporary techniques. This system does not 

consider resource constraints among the dependent tasks. In this work, a scheduling algorithm 

known as Weighted First Come First Served (WFCFS) with an efficient dynamic slack 

management technique is proposed, such that energy efficiency of the processors increases still 

maintaining the precedence, resource and timing constraints. 

 

3. MODELS 

 
In this section, we briefly discuss the system, application, precedence, resource and slack 

management models that we have used in our work. 

 

3.1. System and Application Model 

 
A distributed embedded system with p homogeneous processors each with its private memory is 

considered for scheduling the given real-time application. The system requires the complete 

details of the task processing times (i.e.) the execution time and deadline before program 

execution. Each processing element (PE) in the system is voltage scalable and, can support 

continuous voltage and speed changes. We assume that the energy consumption, when the 

processor is idle, is ignored.  

 

The real-time applications can be modelled by a task graph G = (V,E), where V is the set of 

vertices each of which represents one computation (task), and E is the set of directed edges that 

represent the data dependencies between vertices. For each directed edge (vi, vj), there is a 

significant inter-processor communication (IPC) cost when the data from vertex vi in one PE is 

transmitted to vertex vj in another PE. The data communication cost in the same processor can be 

ignored. Each real-time application has an end-to-end deadline D, by which it has to complete its 

execution and produce the result.  

 

The frequency selection is influenced by making a task more or less urgent by shifting its 

deadline back and forth. The range within which the local deadline at node i can be varied is 

bounded by [Si−,Si+]. The values for S can be derived from the local task parameters.  If wceti 

represents the worst case execution times of the local task at node i, then  
 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

188 

 

 

3.2. Precedence Model 
 

Tasks of a real-time application considered in this paper have precedence constraints. For 

example, a task Ti can become eligible for execution only after a task Tj has completed because Ti 

may require Tj’s results. For implementing precedence constraints DAG is used. Precedence 

constraints between tasks can also be modelled as resource dependencies. The precedence 

constraint that Tj precedes Ti is equivalent to the situation where Ti requires a logical resource 

(before it can start its execution) that is available only after Tj has completed its execution. 

 

 

 

 

 

 

 

 

Figure 1. Precedence Constraints of a Task Set 

Thus, if Tj has completed its execution before Ti arrives, then this logical resource is immediately 

available for Ti and Ti becomes eligible to execute upon arrival. Furthermore, if Tj has not 

completed its execution when Ti arrives, then the logical resource is not available and, therefore, 

Ti is conceptually blocked upon arrival. Later, when Tj completes its execution, the logical 

resource becomes available and Ti is unblocked. 
 

3.3. Resource Model 
 

To model non-CPU resources and resource requests, we make the following assumptions: 
 

1) Resources are reusable and can be shared, but have mutual exclusion constraints. Thus, 

only one task can be using a resource at any given time. This applies to physical 

resources, such as disks and network segments, as well as logical resources, such as 

critical code sections that are guarded by semaphores. 

2) Only a single instance of a resource is present in the system. This requires that a task 

explicitly specify which resource it wants to access. This is exactly the same resource 

model as assumed in protocols such as the Priority Inheritance Protocol and Priority 

Ceiling Protocol [14]. 

3) A task can only request a single instance of a resource. If multiple resources are needed 

for a task to make progress, it must acquire all the resources through a set of consecutive 

resource requests. In general, the requested time intervals of holding resources may be 

overlapped. 
 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

189 

 

We assume that a task can explicitly release resources before the end of its execution. Thus, it is 

necessary for a task that is requesting a resource to specify the time to hold the requested 

resource. We refer to this time as HoldTime [15]. The scheduler uses the HoldTime information 

at run time to make scheduling decisions. 
 

3.4. Slack Management Model 
 

In real-time system designs, slack management is increasingly applied to reduce power 

consumption and optimize the system with respect to its performance and time overheads. This 

slack management technique exploits the idle time and slack time of the system through DVS in 

order to achieve the highest possible energy consumption.  In energy efficient scheduling, the set 

of tasks will have certain deadline before which they should finish their execution and hence there 

is always a time gap between the actual execution time and the deadline. It is called slack time. 

 

Conventional real-time systems are usually over estimated to schedule and provide resources 

using the wcet. In average case, real-time tasks rarely execute up to their worst case execution 

time (wcet). In many applications, actual case execution time (acet) is often a small fraction of 

their wcet. However, such slack times are only known at runtime through resource reclaimers. 

This slack is passed to schedulers to determine whether the next job should utilize the slack time 

or not. 

 

The main challenge is to obtain and distribute the available slack in order to achieve the highest 

possible energy savings with minimum overhead. But most of these do not address dynamic task 

inputs. Only a few that attempt to handle dynamic task inputs assume no resource constraints 

among tasks. But in reality, few tasks need exclusive accesses to a resource. In exclusive mode no 

two real-time tasks are allowed to share a common resource. If a resource is accessed by a real-

time task, it is not left free until the task’s execution is completed. Other tasks in need of the same 

resource must wait until the resource gets freed. Our proposed algorithm handles this issue 

through the Restriction Vector (RV) [16] algorithm. 

 

Our slack management algorithm decides when and at which voltage should each task be 

executed in order to reduce the system's energy consumption while meeting the timing and other 

constraints. Our solution includes two phases: First we use static power management schemes 

based on wcet to statically assign a time slot to each task. Then we apply dynamic scheduling 

algorithm to further reduce energy consumption by exploiting the slack arising from the run-time 

execution time variation. Here a small amount of slack time called unit slack is added to all the 

tasks and finally we find the subset of tasks that can be allocated this slack time so that total 

energy consumption is minimized while the deadline constraint is also met. 
 

4. PROPOSED ENERGY EFFICIENT SCHEDULING ALGORITHM 
 
We proposed a new algorithm called Weighted FCFS which increases the efficiency of the 

system by reducing the total energy consumption. In addition to this deadline hit ratio is a major 

factor to be considered in a soft real-time system for better QoS. Our proposed algorithm 

increases the deadline hit ratio and thereby improving the quality of the system. 

 

4.1. Weighted FCFS Scheduling Algorithm 

 
In the weighted FCFS method weight is assigned to each task based on the number of tasks on 

which it depends. First the tasks are inserted into the queue in the non decreasing order of the 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

190 

 

arrival time. Then the tasks in the queue are sorted according to the increasing order of their 

weight. The pseudo code for weighted FCFS is given in Figure 2. 

 

4.2. Restriction Vector (RV) Algorithm 

 
Resource reclaiming [17] refers to the problem of utilizing resources left unused by a task when it 

executes less than its wcet, because of data-dependent loops and conditional statements in the task 

code or architectural features of the system, such as cache hits and branch predictions, or both. 

Resource reclaiming is used to adapt dynamically to these unpredictable situations so as to 

improve the system’s resource utilization and thereby improve its schedulability. 

 

The resource reclaiming algorithm used is a restriction vector (RV) based algorithm proposed in 

[15] for tasks having resource and precedence constraints. Two data structures namely restriction 

vector (RV) and completion bit matrix (CBM) are used in the RV algorithm. Each task Ti has an 

associated n component vector, RVi [1 . . . n], where n is the number of processors. RVi[ j] for a 

task Ti contains the last task in T< i(j) that must be completed before the execution of Ti begins, 

where T< i(j) denotes the set of tasks assigned to processor Pj that are scheduled in feasible 

schedule (pre-run schedule) to finish before Ti starts. CBM is an m X n Boolean matrix indicating 

whether a task has completed execution, where m is the number of tasks in the feasible schedule. 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

191 

 

 

Figure 2. Pseudo Code for WFCFS Algorithm 

 

4.3. Dynamic Slack Management Algorithm 
 

The pseudo code of the dynamic slack management algorithm for energy efficiency is given in 

Figure 3.  



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

192 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3. Pseudo Code for Dynamic Slack Management Algorithm 
 

5. SIMULATION AND ANALYSIS OF RESULTS 
 

A simulator was developed to simulate voltage scalable processor which dynamically adjusts the 

processor speed according to the algorithm selected. A continuous voltage scaling model is used 

and hence the processor speed can be adjusted continuously from its maximum speed to a 

minimum speed which is assumed to be 25% of its maximum speed.  
 

For simulation, scheduling task sets and task graphs are generated using the following approach: 

• Task sets are randomly generated with parameters such as arrival time, acet, wcet and 

resource constraints. 

• The wcet is taken randomly and acet is also randomly generated such that it is 40 to 100 

percent of wcet. 

• The overall deadline is generated such that it is always greater than or equal to the sum of 

acet of all the tasks in DAG. 

 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

193 

 

Task graph is randomly generated using adjacency matrix where 0 represents the tasks that are 

not dependent on any other tasks and 1 represents the dependency, with varying breadth and 

depth. 

 

5.1. Evaluation Parameters 

 
The performance parameters considered for evaluating and comparing our system with the 

existing systems are Power Consumption Ratio and Deadline Hit Ratio. 

 

Power consumption ratio is the rate of power consumed by the system at scaled down voltage and 

frequency to the rate of power consumed at maximum operating voltage and frequency. Deadline 

hit ratio is defined as the number of input tasks that complete execution before their respective 

deadlines  to the total number of tasks admitted in the system for execution.   

 

5.2. Result Analysis 

 
The power consumption ratio between the existing and the proposed algorithms were analyzed. 

For each set of tasks varied from 5 to 50, the number of processors is kept constant and the power 

consumption ratio for a minimum of ten randomly generated DAGs was calculated. The average 

of these values was plotted in the chart. This method was repeated by changing the number of 

processors and the comparison was made between the existing and the proposed algorithms.  

 
Table 1. Comparison of Power Consumption 

 

The average power consumption for the existing and proposed algorithms is shown in Table 1. 

The value in each row is average of values obtained by varying the number of processors from 2 

to 10. If  the number of processors in the distributed embedded system is two the algorithms were 

not able to schedule more than 10 tasks, as all task set cases above 10 missed their deadline. From 

the table it is seen that the average power consumption of the proposed algorithm is 5 to 6 percent 

more than the exixting ones. This comparison is presented as a chart in Figure 4. 

 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

194 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of Power Consumption Ratio  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of Deadline Hit Ratio  

 

For all cases from p = 2 to 10, proposed algorithm WFCFS with the dynamic slack management 

technique consumed less power than the existing MFCS, FCFS and WS algorithms with the SRP 

slack management technique, when resource contraint is added to the real-time application in 

addition to the  precedence and time constraints. 

 
The deadline hit ratio is also compared among the existing and proposed algorithms by varying 

the number of tasks from 5 to 50 and the number of processors from 2 to 10. The averge deadline 

hit ratio is shown in Figure 5. The maximum number of tasks is taken to be 50, because real-time 

applications with dependent tasks above 50 is very very rare. The number of processors is also 

limited to 10, as this number itself rare for a distributed embedded system. Upto p = 6 the 

proposed algorithm gives better deadline hit ratio compared to the existing ones. For p>=7, all the 

algorithms resulted in 100% deadline hit ratio. 

 

6. CONCLUSION 

 
In this work, an energy efficient real-time scheduling algorithm for distributed embedded systems 

is presented. This scheduling algorithm is capable of handling task graphs with precedence and 

resource constraints in addition to timing constraints. The major contribution of this work is the 

development of improved FCFS scheduling algorithm called Weighted FCFS. The proposed 

dynamic slack distribution technique efficiently utilizes the available slack and in turn increases 

the efficiency of the system. It also exploits the idle intervals by putting the processor in power 

down mode to reduce the power consumption. The proposed algorithm increases the deadline hit 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012 

195 

 

ratio when compared to the existing ones and thus increases the reliability. Simulation results 

show 5 to 6 percent less power is consumed by the proposed algorithm compared with the 

existing algorithms. 

 

Fault tolerant issues may be considered in the future work for such real-time distributed 

embedded systems. Another important future work may be extending this algorithm for a 

heterogeneous distributed real-time system with varying capacity processors and communication 

links. 

 

REFERENCES 

 
[1]  Rabi N. Mahapatra and Wei Zhao, (2005) “An Energy-Efficient Slack Distribution Technique for 

Multimode Distributed Real-Time Embedded Systems”, IEEE Transactions on Parallel and 

Distributed Systems, vol. 16, no. 7.  

[2]  Changjiu Xian, Yung-Hsiang Lu and Zhiyuan Li, (2008) Dynamic Voltage Scaling for Multitasking 

Real-Time Systems with Uncertain Execution Times,  In: IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 27, no. 8.  

[3]  Subrata Acharya and Rabi N. Mahapatra, (2008) A Dynamic Slack Management Technique for Real-

Time Distributed Embedded Systems, In: IEEE Transactions on Computers, vol. 57, no. 2.  

[4] W. Yuan and K. Nahrstedt, (2003) Energy-efficient soft real-time CPU scheduling for mobile 

multimedia systems, In: ACM Symposium on Operating Systems Principles, pp. 149-163.  

[5]  C. Shen, K. Ramamritham and J.A. Stankovic, (1993) Resource reclaiming in multiprocessor real-

time systems, In: IEEE Transactions on . Parallel and Distributed Systems, vol. 4, no. 4, pp. 382-397.  

[6]  T. Ishihara and H. Yasuura, (1998) Voltage Scheduling Problem for Dynamically Variable Voltage 

Processors, In: International Symposium on  Low Power Electronics and Design, pp. 197-202.  

[7]   L. Benini, A. Bogliolo, and G. De Micheli, (2000) A Survey of Design Techniques for System-Level 

Dynamic Power Management,  In: IEEE Transactions on VLSI Systems,  pp. 299-316.  

[8]  P. B. Jorgensen and J. Madsen, (1997) Critical path driven co synthesis for heterogeneous target 

architectures, In:  International Workshop on Hardware/ Software Code,  pp. 15–19.  

[9]   M. T. Schmitz and B. M. Al-Hashimi, ( 2001) Considering power variations of DVS processing 

elements for energy minimization in distributed systems, In: International Symposium on  System  

Synthesis, pp. 250–255.  

[10]  C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, (2002) Feedback Control Real- Time Scheduling: 

Framework, Modeling, and Algorithms, In: Real-Time Systems Journal, Special Issue on Control-

theoretical Approaches to Real-Time Computing, pp. 85-126.  

[11]  Santhi Baskaran and P. Thambidurai, (2010) Power Aware Scheduling for Resource Constrained 

Distributed Real Time Systems, In: International Journal on Computer Science and Engineering Vol. 

02, No. 05, pp. 1746 -1753.  

[12]  C.M. Krishna and Shin K. G., Real-Time Systems, (1997) Tata McGraw-Hill.  

[13]  Subrata Acharya and Rabi N. Mahapatra, (2008) A Dynamic Slack Management Technique for Real-

Time Distributed Embedded Systems, In: IEEE Transactions on Computers, Vol. 57, No. 2.  

[14]  L. Sha, R. Rajkumar, and J.P. Lehoczky, (1990) Priority Inheritance Protocols: An Approach to Real-

Time Synchronization, In: IEEE Transactions on Computers, Vol. 39, No. 9, pp. 1175-1185.  

[15]  Peng Li, Haisang Wu, Binoy Ravindran and E. (2006) Douglas Jensen, A Utility Accrual Scheduling 

Algorithm for Real-Time Activities with Mutual Exclusion Resource Constraints, In: IEEE 

Transactions on Computers, Vol. 55, No. 4.  

[16]  G. Manimaran, C. Siva ram Murthy, Machiraju Vijay, and K. Ramamritham, (1997) New algorithms 

for resource reclaiming from precedence constrained tasks in multiprocessor real-time systems, In: 

Journal of Parallel and Distributed Computing, Vol. 44, No. 2, pp. 123-132.  

[17]  C. Shen, K. Ramamritham and J.A. Stankovic, (1993) Resource reclaiming in multiprocessor real-

time systems, In: IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 4, pp. 382-397.  


