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ABSTRACT

Non-Trivial Reversible Identities (NTRIs) are reversible circuits that have equal inputs and outputs. NTRIs
of arbitrary size cannot be detected, in general, using optimization algorithms in the literature. Existence of
NTRIs in a circuit will cause a slow down by increasing the number of gates and the quantum cost. NTRIs
might arise because of an integration of two or more optimal reversible circuits. In this paper, an
algorithm that detects and removes NTRIs in polynomial time will be proposed. Experiments that show the
bad effect of NTRIs and the enhancement using the proposed algorithm will be presented.
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1. INTRODUCTION

Reversible logic [1,2] is one of the hot areas of research. It has many applications in quantum
computation [3,4], low-power CMOS [5,6] and many more. Synthesis of reversible circuits
cannot be done using conventional ways [7]. Synthesis and optimization of Boolean systems on
non-standard computers that promise to do computation more powerfully [8] than classical
computers, such as quantum computers, is an essential aim in the exploration of the benefits that
may be gain from such systems. A function is reversible if it maps an input vector to a unique
output vector, and vice versa [9], i.e. we can re-generate the input vector from the output vector
(reversibility).

A lot of work has been done trying to find an efficient reversible circuit for an arbitrary reversible
function. Reversible truth table can be seen as a permutation matrix of size 2n×2n. In one of the
research directions, it was shown that the process of synthesizing linear reversible circuits can be
reduced to a row reduction problem of n × n non-singular matrix [10]. Standard row reduction
methods such as Gaussian elimination and LU-decomposition have been proposed [11]. In
another research direction, search algorithms and template matching tools using reversible gates
libraries have been used [12,13,14,15]. These will work efficiently for small circuits. A method is
given in [16], where a very useful set of transformations for Boolean quantum circuits is shown.
In this method, extra auxiliary bits are used in the construction that will increase the hardware
cost. In [17], it was shown that there is a direct correspondence between reversible Boolean
operations and certain forms of classical logic known as Reed-Muller expansions. This shows the
possibility of handling the problem of synthesis and optimization of reversible Boolean logic
within the field of Reed-Muller logic. A lot of work has been done trying to find an efficient
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reversible circuit for an arbitrary multi-output Boolean functions by using templates [18,19] and
data-structure-based optimization [20]. A method to generate optimal 4-bit reversible circuits has
been proposed [21]. In [22], a very useful set of rules for optimizing reversible circuits and sub-
circuits with common-target gates has been proposed. Benchmarks for reversible circuits have
been established [23].

Figure 1. CnNOT gates. The black circle ● indicates the control bits, and the symbol ⊕ indicates
the target bit. (a) CnNOT gate with n control bits. (b) C0NOT gate with no control bits. (c) C1NOT
gate with one control bit. (d) C2NOT gate with two control bits.

The problem of identity circuits has been discussed in the literature, for example [15,18,19,20],
where templates for NTRIs has been generated and optimization of the reversible circuits has
been done using these templates. The time required to perform the template matching will
increase with the number of templates used. In [24,25], a method has been proposed to generate
NTRIs, it shows that the size of the NTRIs might increase dramatically and this will make the
detection and elimination of NTRIs more complicated.

The aim of the paper is to put a highlight on the problem of non-trivial reversible identities
(NTRIs) that might appear after integrating two or more optimal reversible circuits to do more
complex tasks. The existence of a NTRI will form a bug in the optimality of the design without
affecting the correctness of the circuit. A NTRT bug in a computationally correct circuit will
cause unnecessary increase in the number of gates and the total quantum cost of the circuit. The
paper proposes an algorithm that detects and removes arbitrary NTRIs in polynomial time without
affecting the original output of the circuit. The paper is organized as follows. Section 2 gives a
short background on reversible gates. Section 3 introduces the problem of NTRIs and gives some
examples. Section 4 proposes a polynomial time algorithm to detect and remove NTRIs. Section
5 shows the results of the experiments. The paper ends up with a conclusion in Section 6.

2. BACKGROUND

2.1. Reversible Circuits

In building a reversible circuit with n variables, an n × n reversible circuit will be used. CnNOT
gate is the main primitive gate that will be used in building the circuit since it was shown to be
universal for reversible computation [7]. CnNOT gate is defined as follows:

Definition 2.1 (CnNOT gate)

CnNOT is a reversible gate denoted as,
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with n inputs: xn-2, xn-3,…, x0 (known as control bits) and fin (known as target bit), and n outputs:
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Figure 2. A reversible circuit with three inputs/outputs represented as acyclic directed graph where the flow
of the circuit if from left to right.

i.e. the target bit will be flipped if and only if all the control bits are set to 1. Some special cases
of the general CnNOT gate have their own names, CnNOT gate with no control bits is called NOT
gate as shown in Figure 1-b, where the bit will be flipped unconditionally. CnNOT gate with one
control bit is called Feynman gate as shown in Figure 1-c. CnNOT gate with two control bits is
called Toffoli gate as shown in Figure 1-d. For the sake of readability and to keep consistency
with the literature, C0NOT, C1NOT, C2NOT and C3NOT will be written for short as NOT, CNOT,
TOF and TOF4 respectively.

Using the above reversible gates, a reversible circuit is represented as acyclic directed graph
(DAG), i.e. loops of gates or internal loops in a gate are not allowed, where the gates are cascaded
from left to right. Figure 2 shows a DAG for the circuit NOT(c) CNOT(b,a) TOF(a,b,c)
CNOT(c,b) NOT(b) TOF(c,b,a).

2.2. Quantum Cost

Quantum cost is a term that appears in the literature and is used to refer to the technological cost
of building CnNOT gates. The quantum cost of a reversible circuit is subject to optimization as
well as the number of CnNOT gates used in the circuit.  The quantum cost of a CnNOT gate is
based primarily on the number of bits involved in the gate, i.e. the number of elementary
operations required to build the CnNOT gate [26]. The calculation of the quantum cost for the
circuits shown in this paper is based on the cost table available in [23]. The state-of-art shows that
both NOT(xi) and CNOT(xi;f) have quantum cost = 1, TOF(xi,xj;f) has a quantum cost = 5, and
TOF4(xi,xj,xk;f) has a quantum cost = 13.

3. NON-TRIVIAL REVERSIBLE IDENTITIES

Circuit identities are usually refer to two or more circuits with the same specification but with
different designs [22]. This is usually used to simplify and optimize reversible circuits [19]. In the
context of this paper, reversible identities will refer to circuits that output their input without any
change, i.e. do nothing. The existence of reversible identities in a circuit will increase the number
of gates and the quantum cost. Reversible identities can be classified as trivial and non-trivial
reversible identities.

Trivial reversible identities are those gates that can be easily detected and removed from a
reversible circuit. For example, if two adjacent gates are identical then they can be removed due
to reversibility. If the same concept is applied recursively on a circuit, many gates can be
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removed. For example, consider the circuit CNOT(b,a) TOF(a,b,c) CNOT(c,b) CNOT(c,b)
TOF(a,b,c)  ≡ CNOT(b,a). The two TOF(a,b,c) gates cannot be removed together until the two
CNOT(c,b) gates are removed. The problem of detection and removal of trivial reversible
identities are not the main target of the paper, although they will be handled inclusively when
dealing with non-trivial reversible identities.

Figure 3. Non-trivial Reversible Identities.

Non-trivial reversible identities (NTRIs) are reversible identities that can be partially detected and
removed using template-based optimization algorithm [15,18,19,20,22]. Figure 3 shows two
examples of NTRIs. Applying any known optimization algorithm not taking NTRIs in
consideration will report that these designs cannot be optimized further. Figure 4-a shows another
example of NTRI that is slightly optimized using [22] by decreasing the number of gates by one
as shown in Figure 4-b. NTRIs must be removed completely from the circuit.

Figure 4. A NTRI before, part-a, and after, part-b, optimization.

It is important here to differentiate between synthesis and optimization of reversible circuits to
show a situation where NTRI might arise as a bug. Synthesis of a reversible circuit is the process
of constructing, from scratch, the best design for a given specification. Synthesis process always
includes optimization. Optimization of a reversible circuit is the process of enhancing an existing
design for a given specification by decreasing the number of gates and/or the quantum cost for a
given circuit. NTRI is not likely to occur during the synthesizing process, while NTRI might arise
as a problem during the optimization process of an integrated circuit that includes two or more
computationally correct optimal circuits.

Figure 5. Two Reversible circuits are required to be integrated such that circuit in part-b should be added to
the rear of circuit in part-a.



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.4, August 2012

53

Figure 6. Circuit in part-a shows the discovered NTRI (the bug) and circuit in part-b shows the final circuit
after elimination of the NTRI.

To Design a reversible circuit that does a complex task, it will not be practical to do the synthesis
process of that circuit from scratch. Instead, the complex task should be broken down to a set of
simple modules, design the optimal circuit for each module then integrate the optimal designs in a
complete design that perform the required task. NTRI might arise during the process of
integration. For example, consider the two reversible circuits shown in Figure 5, where each
circuit cannot be optimized further using any known optimization algorithm [22]. Consider that
these two circuits should be integrated such that circuit in Figure 5-b should be added to the rear
of circuit in Figure 5-a. The integrated circuit contains 23 gates with quantum cost = 125. No
further optimization can be done on the integrated circuit although it is bugged by NRTI in the
middle. Figure 6-a shows the NRTI and Figure 6-b shows the circuit with 15 gates and quantum
cost = 53 after removing the NTRI. Arrows in Figure 5-a and Figure 5-b mark the start and the
end of the NTRI respectively. In the next section, an algorithm to remove NTRIs in polynomial
time will be proposed. It is important to notice that this algorithm is not a substitution for the
current optimization algorithms in the literature; this algorithm is recommended to be used as a
module after any optimization algorithm.

4. DETECTION AND ELIMINATION OF NTRIS

4.1. Data Structures

Consider a finite set A={0, 1, ..., N-1} and a bijection  : A → A, then  can be written as,

,
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i.e.  is a permutation of A. Let A be an ordered set, then the top row can be eliminated and  can
be written as,

[ ].)1(,),2(),1(),0( −N  (4)

Any reversible circuit with n inputs can be considered as a permutation  and Eqn.(4) is the
specification of this reversible circuit such that N=2n.

In order to detect reversible identities, it is required to store the output of the circuit after applying
every gate. Two data structures are used in the proposed algorithm, Circuit and CurrentSpecs.
The first data structure, Circuit, is a one dimensional array of size m, where m is the number of
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gates in the reversible circuit. Circuit stores the gates of the reversible circuit such that, Circuit[1]
contains the first gate and Circuit[m] contains the last gate.

The second data structure, CurrentSpecs, is used to store the output specification after applying
every gate in the reversible circuit. CurrentSpecs is a two dimensional array of size N × m.

4.2. The Algorithm

The outline of the proposed algorithm is as follows: Run the circuit by applying one gate at a
time. Store the specification after applying each gate, and compare the current specification at
position i with all the previously stored specifications. If specification at position i is equal to
specification at position j, where j<i, then remove gates from point j to point i. Repeat the
detection until no more reversible identities are found.

The correctness of the algorithm is proved as follows. The while loop from Line:3 to Line:19 will
repeat until no more reversible identities exist in Circuit. The for loop from Line:7 to Line:18
traces Circuit one gate at a time and stores the circuit from gate 0 to gate i in CurrentCircuit.
CurrentSpecs[i] stores the specification for the circuit at point i. The for loop from Line:10 to
Line:17 checks if there exist any reversible identity by comparing specification of point i with
specification of point j such that 1≤ j<i. At Line:11, if an identity is found, then gates from point j
to point i is removed from Circuit, and the algorithm starts all over again looking for more
reversible identities.

The best case running time exists when no identities exist in Circuit where the while loop from
Line:3 to Line:19 will run once so the algorithm has Θ(m2). The worst case running time exists
when Circuit contains gates such that every two adjacent gates are identical where the while loop
will repeat m/2 times, so the algorithm has Θ(m3). The proposed algorithm can detect and
eliminate identities from the reversible circuit in polynomial time.
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Table 1. Optimal 4-bits reversible circuits from [21] bugged by random NTRIs and optimized using [22],
where the pair (g,c) represents the number of gates (g) and the quantum cost (c).

Benchmark
Optimal
Circuit[21]

Random
Identity

Insertion
Pt.

Optimal
(g,c)[21]

Bugged
(g,c)

Optimized
(g,c)[22]

4_49 APP1.1.a APP1.1.b 6 (12,32) (19,61) (19,61)
4bit-7-8 APP1.2.a APP1.2.b 5 (7,19) (14,40) (12,34)
decode42 APP1.3.a APP1.3.b 4 (10,30) (16,52) (15,51)
hwb4 APP1.4.a APP1.4.b 7 (11,39) (16,64) (16,62)
imark APP1.5.a APP1.5.b 5 (7,19) (17,43) (11,37)
mperk APP1.6.a APP1.6.b 4 (9,15) (22,52) (22,52)
Oc5 APP1.7.a APP1.7.b 2 (11,39) (23,65) (16,52)
Oc6 APP1.8.a APP1.8.b 11 (12,60) (20,74) (20,74)
Oc7 APP1.9.a APP1.9.a 13 (13,41) (29,219) (28,207)
Oc8 APP1.10.a APP1.10.b 9 (11,47) (25,197) (15,79)
primes4 APP1.11.a APP1.11.b 4 (10,42) (18,98) (13,77)
Rd32 APP1.12.a APP1.12.b 3 (4,8) (10,54) (8,46)
shift4 APP1.13.a APP1.13.b 4 (4,18) (20,146) (13,101)

5. EXPERIMENTAL RESULTS

Two software have been developed to test the effect of the existence of arbitrary NTRIs on the
optimization of reversible circuits. The first generates random reversible circuits with NTRIs and
the second generates random NTRIs. Experiments are based on 4-bits reversible circuits as a
prototype.

The first experiment is done by inserting a random NTRI in a randomly chosen insertion point in
the middle of optimal 4-bits reversible circuits [21]. Then the latest optimization method [22]
using [27] is applied to test the effect of NTRIs on the final number of gates and the quantum cost
of the circuit. Table 1 shows the results of the experiment where NTRIs affect the number of
gates and the quantum cost. Applying Algorithm 1 before [22] gives the optimal results. Circuits
used in the experiment are shown in Appendix 1.

The second experiment is used to test Algorithm 1 by generating random reversible circuits then
calculate the number of gates and the quantum cost in the following cases: (1) before applying
any method, (2) after applying [22], (3) after applying the proposed method then applying [22].
Table 2 shows the results of the experiment where a better result is obtained using the proposed
algorithm. Circuits used in the experiment are shown in Appendix 2.

6. CONCLUSIONS

Non-trivial reversible identities (NTRIs) are bugs that might arise when integrating reversible
circuits and will cause a slow down, an increase in the number of gates and the quantum cost of
the integrated circuits. Time required by methods based on templates to detect and remove NTRIs
will increase with the number of templates used. The structure of NTRIs with large size is not
known so far. A polynomial time algorithm is proposed to detect and eliminate NTRIs. The
proposed algorithm is not a substitution of any optimization algorithm in the literature. The paper
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recommends the proposed algorithm to be used together with any optimization algorithm to
handle the problem of NTRIs.

Table 2. Random reversible circuits with NTRIs optimized using [22] alone and optimized using a hybrid
system from the proposed algorithm and [22], where the pair (g, c) represents the number of gates (g) and

the quantum cost (c).

Specification Random
Circuit

Original
(g,c)

Optimized
(g,c) [22]

Optimized
+NTRIs
Removal
(g,c)

[12,7,2,5,0,15,14,11,
6,3,10,1,8,9,4,13]

APP2.1 (21,113) (17,103) (10,30)

[7,14,9,6,11,0,13,2,
5,15,10,12,1,4,3,8]

APP2.2 (30,210) (30,204) (18,102)

[10,15,0,7,14,9,6,1,
13,12,5,3,11,8,4,2]

APP2.3 (23,103) (23,101) (13,43)

[12,9,11,14,6,7,8,10,
2,3,4,5,15,13,0,1]

APP2.4 (22,90) (22,90) (9,36)

[0,1,15,8,4,5,9,14,
11,12,7,6,3,13,10,2]

APP2.5 (23,137) (19,105) (10,50)

[3,0,1,6,7,2,5,4,
11,8,9,14,15,10,13,12]

APP2.6 (25,133) (19,99) (6,14)

[6,11,5,4,2,0,1,
15,14,3,12,8,7,9,13,10]

APP2.7 (21,137) (20,132) (15,59)

[12,15,5,8,3,2,1,10,
7,14,13,6,11,0,9,4]

APP2.8 (23,125) (23,125) (15,53)

[0,1,6,5,7,8,15,2,
14,13,12,3,11,4,9,10]

APP2.9 (17,65) (16,64) (11,47)

[0,10,2,15,8,9,4,1,
6,5,14,3,12,13,11,7]

APP2.10 (20,80) (19,75) (13,57)

[8,9,10,2,4,7,6,5,
0,15,13,3,12,14,1,11]

APP2.11 (21,93) (21,93) (12,80)

[6,15,0,1,9,2,7,4,
11,10,5,12,3,14,13,8]

APP2.12 (29,73) (29,73) (17,53)

[9,3,10,11,12,13,1,7,
0,8,14,2,15,4,5,6]

APP2.13 (25,81) (17,69) (12,52)
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Circuits used in the first experiment where "#" shows the insertion point of the NTRI bug.

http://www.cs.uvic.ca/
http://ceit.aut.ac.ir/QDA/RCV.htm


International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.4, August 2012

58

APP1.1.a

NOT(a) CNOT(c, a) CNOT(a, d) TOF(a, b, d) CNOT(d, a) # TOF(c, d, b) TOF(a, d, c) TOF(b, c, a) TOF(a,
b, d) NOT(a) CNOT(d, b) CNOT(d, c)

APP1.1.b

TOF(b, d, c) CNOT(c, a) CNOT(d, c) CNOT(c, a) TOF4(a, b, d, c) CNOT(d, a) TOF4(a, b, d, c) CNOT(d,
c)

APP1.2.a

CNOT(d, b) CNOT(d, a) CNOT(c, d) TOF4(a, b, d, c) # CNOT(c, d) CNOT(d, b) CNOT(d, a)

APP1.2.b

CNOT(d, b) TOF(a, d, c) CNOT(c, a) TOF(a, d, b) CNOT(d, b) CNOT(c, a) TOF(a, d, c) TOF(c, d, b)

APP1.3.a

CNOT(c, b) CNOT(d, a) CNOT(c, a) # TOF(a, d, b) CNOT(b, c) TOF4(a, b, c, d) TOF(b, d, c) CNOT(c, a)
CNOT(a, b) NOT(a)

APP1.3.b

TOF(b, d, a) CNOT(d, b) TOF(c, d, b) CNOT(d, b) TOF(c, d, a) TOF(b, d, a) TOF(c, d, b)

APP1.4.a

CNOT(b, d) CNOT(d, a) CNOT(a, c) TOF4(b, c, d, a) CNOT(d, b) CNOT(c, d) TOF(a, c, b) # TOF4(b, c,
d, a) CNOT(d, c) CNOT(a, c) CNOT(b, d)

APP1.4.b

TOF(c, d, b) TOF(a, d, c) TOF(a, d, b) TOF(c, d, b) TOF(a, d, c)

APP1.5.a

TOF(c, d, a) TOF(a, b, d) CNOT(d, c) CNOT(b, c) # CNOT(d, a) TOF(a, c, b) NOT(c)

APP1.5.b

TOF(a, d, b) CNOT(c, a) CNOT(d, a) CNOT(c, a) TOF(c, d, b) CNOT(d, a) CNOT(d, b) TOF(c, d, b)
CNOT(d, b) TOF(a, d, b)

APP1.6.a

NOT(c) CNOT(d, c) TOF(c, d, b) # TOF(a, c, d) CNOT(b, a) CNOT(d, a) CNOT(c, a) CNOT(a, b)
CNOT(b, c)

APP1.6.b

CNOT(d, b) CNOT(d, a) CNOT(c, a) TOF(a, d, b) CNOT(d, b) CNOT(c, a) TOF(a, d, b) TOF(a, d, b)
TOF(c, d, a) CNOT(d, a) CNOT(d, b) TOF(a, d, b) TOF(c, d, a)
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APP1.7.a

TOF(b, d, c) # TOF(c, d, b) TOF(a, b, c) NOT(a) CNOT(d, b) CNOT(a, c) TOF(b, c, d) CNOT(a, b)
CNOT(c, a) CNOT(a, c) TOF4(a, b, d, c)

APP1.7.b

CNOT(d, b) CNOT(c, a) CNOT(d, a) CNOT(c, a) CNOT(d, b) TOF(c, d, a) CNOT(d, a) TOF(c, d, b)
CNOT(d, b) TOF(c, d, b) TOF(c, d, a) CNOT(d, b)

APP1.8.a

TOF4(b, c, d, a) TOF4(a, c, d, b) CNOT(d, c) TOF(b, c, d) TOF(c, d, a) TOF4(a, b, d, c) CNOT(b, a)
NOT(a) CNOT(c, b) CNOT(d, c) CNOT(a, d) # TOF(b, d, c)

APP1.8.b

TOF(c, d, a) CNOT(c, a) CNOT(d, b) TOF(c, d, a) CNOT(d, a) CNOT(d, a) CNOT(c, a) CNOT(d, b)

APP1.9.a

TOF(b, d, c) TOF(a, b, d) CNOT(b, a) TOF4(a, c, d, b) CNOT(c, b) CNOT(d, c) TOF(a, c, d) NOT(b)
NOT(d) CNOT(b, c) TOF(b, d, a) TOF(a, c, d) # CNOT(c, a)

APP1.9.a

TOF4(a, b, d, c) TOF(a, d, b) TOF4(a, b, d, c) TOF4(a, c, d, b) TOF4(a, b, d, c) TOF(a, d, b) TOF4(a, d, c,
b) TOF4(a, b, d, c) TOF4(a, d, c, b) TOF(a, d, b) TOF4(a, c, d, b) TOF4(a, b, d, c) TOF(a, d, b) TOF4(a, c,
d, b) TOF4(a, b, d, c) TOF4(a, c, d, b)

APP1.10.a

CNOT(d, a) TOF(b, c, a) TOF(c, d, b) TOF4(a, b, d, c) TOF(a, b, d) TOF(a, d, b) NOT(a) NOT(b) TOF(b,
d, a) # CNOT(a, d) TOF(b, c, d)

APP1.10.b

TOF(a, d, b) TOF(a, d, b) TOF4(a, c, d, b) TOF4(a, b, d, c) TOF4(a, d, c, b) TOF(a, d, b) TOF4(a, c, d, b)
TOF4(a, b, d, c) TOF4(a, b, d, c) TOF4(a, c, d, b) TOF(a, d, b) TOF4(a, c, d, b) TOF4(a, b, d, c) TOF4(a, c,
d, b)

APP1.11.a

CNOT(d, c) CNOT(c, a) CNOT(b, c) # NOT(b) TOF(b, c, d) TOF4(a, b, d, c) TOF(a, c, b) NOT(a)
TOF4(a, c, d, b) CNOT(b, a)

APP1.11.b

TOF(a, c, b) TOF4(a, c, d, b) TOF(a, d, b) TOF(b, d, a) TOF(b, d, a) TOF(a, d, b) TOF4(a, c, d, b) TOF(a,
c, b)

APP1.12.a

TOF(a, b, d) CNOT(a, b) # TOF(b, c, d) CNOT(b, c)
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APP1.12.b

TOF(c, d, b) TOF4(a, c, d, b) TOF(a, d, b) TOF4(a, c, d, b) TOF(c, d, b) TOF(a, d, b)

APP1.13.a

TOF4(a, b, c, d) TOF(a, b, c) CNOT(a, b) # NOT(a)

APP1.13.b

TOF(a, d, b) TOF(b, d, c) TOF(a, d, b) TOF(a, d, b) TOF4(a, c, d, b) TOF4(a, b, d, c) TOF(b, d, c) TOF4(a,
c, d, b) TOF(b, d, c) TOF(a, d, b) TOF(b, d, c) TOF(a, d, b) TOF4(a, c, d, b) TOF(a, d, b) TOF4(a, c, d, b)
TOF4(a, b, d, c)

B    Appendix 2

Circuits used in the second experiment where [...]  shows the NTRI discovered by the proposed
algorithm.

APP2.1

CNOT(b, c) NOT(b) TOF4(a, b, c, d) CNOT(a, b) [TOF(a, d, b) TOF(b, d, c) TOF4(a, c, d, b) TOF4(a, b,
d, c) TOF(b, d, c) TOF4(a, c, d, b) TOF(b, d, c) TOF(a, d, b) TOF(b, d, c) TOF4(a, b, d, c) ]CNOT(a, d)
TOF(a, d, b) NOT(b) TOF(a, b, c) NOT(c) TOF(c, d, b) CNOT(c, d)

APP2.2

TOF4(a, c, d, b) CNOT(c, a) TOF4(a, c, d, b) NOT(c) TOF(b, d, c) TOF(a, d, c) [TOF4(a, c, d, b) TOF(a, d,
b) TOF4(a, b, d, c) TOF(a, d, b) TOF4(a, b, d, c) TOF(a, d, b) TOF(a, d, c) TOF4(a, c, d, b) TOF4(a, b, d,
c) TOF(a, d, b) TOF(a, d, c) TOF4(a, b, d, c) ]TOF(a, b, d) TOF(a, d, b) TOF4(b, c, d, a) CNOT(a, b)
CNOT(c, a) CNOT(c, d) TOF(a, d, b) TOF4(a, b, c, d) CNOT(b, c) TOF(a, d, c) TOF4(a, b, c, d) CNOT(b,
c)

APP2.3

TOF(a, d, c) TOF4(b, c, d, a) CNOT(d, a) CNOT(c, b) NOT(b) [CNOT(d, b) TOF(b, d, a) TOF(c, d, b)
TOF(b, d, a) TOF4(a, c, d, b) CNOT(d, b) TOF(b, d, a) TOF(c, d, b) TOF(b, d, a) TOF4(a, c, d, b) TOF(c,
d, b) ]CNOT(d, b) CNOT(b, d) CNOT(c, d) TOF4(a, c, d, b) CNOT(a, c) TOF(c, d, b) CNOT(a, b)

APP2.4

NOT(c) NOT(d) NOT(b) CNOT(a, d) [CNOT(d, b) TOF(b, d, a) TOF4(a, c, d, b) TOF(b, d, a) CNOT(d, b)
TOF(b, d, a) TOF4(a, c, d, b) TOF(c, d, b) TOF(b, d, a) ]CNOT(b, c) CNOT(a, d) TOF(b, c, d) TOF(a, d, b)
CNOT(b, c) TOF(c, d, b) TOF4(a, c, d, b) CNOT(b, c) TOF(b, d, a)

APP2.5

TOF(c, d, a) TOF(a, b, c) TOF(a, d, b) CNOT(b, c) [TOF4(a, c, d, b) TOF(c, d, b) TOF(b, d, a) TOF4(a, c,
d, b) CNOT(d, b) TOF(c, d, b) TOF(b, d, a) TOF(c, d, b) TOF(b, d, a) TOF4(a, c, d, b) CNOT(d, b) TOF(b,
d, a) TOF4(a, c, d, b) ]TOF4(a, c, d, b) TOF4(b, c, d, a) CNOT(b, d) CNOT(d, b) CNOT(d, a) TOF(c, d, b)

APP2.6

TOF4(a, c, d, b) CNOT(c, b) TOF4(a, c, d, b) CNOT(a, b) [TOF4(a, c, d, b) TOF(b, d, a) TOF4(a, c, d, b) TOF(b, d, a)
CNOT(d, b) TOF(b, d, a) TOF4(a, c, d, b) TOF(b, d, a) CNOT(d, b) TOF4(a, c, d, b) TOF(c, d, b) TOF(b, d, a) TOF(c,
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d, b) TOF(b, d, a) ]CNOT(c, b) NOT(a) NOT(b) CNOT(c, b) TOF(a, c, b) CNOT(b, c) TOF(a, b, c)

APP2.7

CNOT(a, d) TOF(a, c, b) CNOT(c, d) TOF(a, b, c) CNOT(c, d) CNOT(b, a) TOF4(a, b, c, d) TOF(a, c, d)
TOF(c, d, a) NOT(b) CNOT(b, c) [TOF4(a, c, d, b) TOF4(a, b, d, c) TOF4(a, c, d, b) TOF4(a, b, d, c)
TOF4(a, c, d, b) TOF4(a, b, d, c) ]CNOT(a, c) TOF4(a, b, c, d) TOF(b, d, a) CNOT(d, a)

APP2.8

TOF(a, d, c) TOF(a, b, d) TOF(c, d, a) [TOF4(a, c, d, b) TOF(a, d, c) TOF4(a, c, d, b) TOF(a, d, c) TOF4(a,
c, d, b) TOF(a, d, c) TOF4(a, c, d, b) TOF(a, d, c) ]TOF(b, c, d) CNOT(b, c) NOT(c) CNOT(c, d) TOF(a, c,
b) TOF(c, d, b) CNOT(d, a) CNOT(b, c) TOF4(b, c, d, a) NOT(b) TOF(a, d, c) NOT(a)

APP2.9

TOF(a, c, d) TOF(a, d, b) CNOT(d, b) CNOT(c, a) TOF(a, c, b) TOF(a, b, c) TOF(b, d, c) TOF(a, c, b)
TOF4(a, b, c, d) [CNOT(d, c) TOF(b, c, a) TOF(b, d, a) CNOT(d, c) TOF(b, c, a) ]CNOT(d, c) TOF(b, c, d)
CNOT(b, c)

APP2.10

TOF(a, b, d) CNOT(c, b) TOF(a, b, c) TOF(b, c, d) CNOT(d, c) CNOT(d, b) TOF(b, c, d) CNOT(a, b)
TOF(c, d, b) TOF(a, c, d) [CNOT(d, c) TOF(b, c, a) CNOT(d, c) TOF(b, c, a) TOF(b, d, a) ]CNOT(a, d)
TOF(c, d, a) TOF(b, d, a) TOF(c, d, a) TOF4(b, c, d, a)

APP2.11

TOF(a, c, b) NOT(c) TOF4(b, c, d, a) TOF(a, b, c) CNOT(a, c) TOF4(a, c, d, b) TOF4(a, b, c, d) [CNOT(d,
c) CNOT(c, b) TOF(b, c, a) CNOT(c, a) CNOT(c, b) TOF(b, c, a) CNOT(d, c) ]TOF(b, d, a) CNOT(a, c)
TOF4(a, c, d, b) CNOT(c, d) TOF(a, b, c) TOF(a, b, d) NOT(c)

APP2.12

TOF(c, d, a) TOF(a, c, d) CNOT(c, d) NOT(a) TOF(c, d, a) [CNOT(d, c) CNOT(c, b) TOF(b, c, a)
CNOT(c, b) CNOT(d, c) CNOT(c, a) CNOT(d, c) CNOT(c, a) CNOT(d, c) CNOT(c, a) TOF(b, c, a)
TOF(b, d, a) ]TOF(a, c, d) NOT(d) CNOT(d, c) TOF(a, c, d) NOT(a) NOT(b) CNOT(a, d) TOF4(a, c, d, b)
NOT(c) CNOT(c, a) CNOT(b, c) TOF(a, b, d)

APP2.13

CNOT(c, a) TOF(b, d, a) NOT(c) TOF(a, c, d) TOF(a, b, c) TOF4(a, b, d, c) TOF(b, d, a) CNOT(d, a)
CNOT(b, d)[CNOT(d, c) TOF(b, d, a) CNOT(d, c) TOF(b, c, a) CNOT(d, c) TOF(b, c, a) CNOT(d, c)
]NOT(a) NOT(d) TOF(a, b,d) TOF(b, c, a) NOT(d) TOF(a, d, b) NOT(c) NOT(d) TOF(b, c, d)
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