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ABSTRACT

Global climate change due to CO2 emissions is an issue of international concern that primarily attributed
to fossil fuels. In this study, Genetic Algorithm (GA) is used for analyzing world CO2 emission based on the
global energy consumption. Linear and non-linear forms of equations were developed to forecast CO2
emission using Genetic Algorithm (GA) based on the global oil, natural gas, coal, and primary energy
consumption figures. The related data between 1980 and 2010 were used, partly for installing the models
(finding candidates of best weighting factors for each model (1980-2003)) and partly for testing the models
(2004–2010). Global CO2 emission is forecasted up to year 2030.
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1. INTRODUCTION

The combustion of fossil fuels is the largest contributor to CO2 emissions. Research on emission
trends and further forecasting their further values is important for adjusting energy policies,
particularly those relative to low carbon (Lotalipur et al., 2010).

Many countries have started to develop climate policies but scenario studies indicate that
greenhouse gas emissions are likely to increase in the future in most world regions (Dvoudpur
and Sodagh Ahdi, 2006).

The outlook of GHGs emission shows the importance of the need for CO2 emission modeling.
Several studies are presented to propose some models to investigate the causal relationships
between energy consumption and CO2 emission (Lotalipur et al., 2010)

This study presents a Genetic Algorithm (GA) approach to forecast global CO2 emission due to
energy consumption.
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2. GENETIC ALGORITHM (GA)

GAs encode candidate solutions as binary strings. Each string (chromosome) is built by chaining
a number of sub-strings, each sub-string representing one of the candidate solution’s features.
Biological genes are in this case equivalent to the substrings encoding the parameters, while each
binary digit can be related to the nucleotides composing the DNA. In most of the cases, one
individual is fully described by a single bit-string, thus leading to the identification of the
genotype with one single chromosome. Several other encoding procedures have been explored
leading to a debate on the most appropriate choice. Holland (1975) showed that binary coding
allows the maximum number of schemata to be processed per individual. On the other hand, the
mapping to binary coding introduces Hamming cliffs onto the search surface. Moreover, non-
binary representations may be more natural for some problem domains and may reduce the
computational burden of the search. The canonical binary-coded GA as described here is now
rarely used for continuous function optimization as it has been shown that solutions are too easily
disrupted (the Hamming cliff issue). Therefore researchers tend to use less disruptive coding such
as Gray coding (Michalewicz, 1999).

Similarly to the other Evolutionary Algorithms (EAs), canonical GAs use generational
replacement. Popular alternatives are elitism and steady-state replacement (Davis,1991). In the
first case, the best solution (s) are directly copied into the new population while in the second
case only a fraction of the population is replaced at each generation. Both variants aim to improve
the preservation of good genetic material at the expense of a reduced search space exploration. A
comparison between the behavior of generational and steady-state replacement is given in
Syswerda (1991).

Individuals are selected for reproduction with a probability depending on their fitness. Canonical
GAs allocate the mating probability of each individual proportionally to its fitness (proportional
selection) and draw the parents set (mating pool) through the roulette wheel selection procedure
(Goldberg, 1989). Other popular selection schemes are fitness ranking (Baker,1985) and
tournament selection (Goldberg and Deb, 1991). For a comparison of selection procedure, the
reader is referred to Goldberg and Deb (1991).

Crossover is the main search operator in GAs, creating offsprings by randomly mixing sections of
the parental genome. The number of sections exchanged varies widely with the GA
implementation. The most common crossover procedures are one-point crossover, two-point
crossover and uniform crossover (Davis, 1991). In canonical GAs, a crossover probability is set
for each couple. Couples not selected for recombination will generate two offsprings identical to
the parents.

A small fraction of the offsprings are randomly selected to undergo genetic mutation. The
mutation operator randomly picks a location from a bit-string and flips its contents. The
importance of this operator in GAs is however secondary, and to the main aim of mutation is the
preservation of the genetic diversity of the population.

GAs require the tuning of some parameters such as the mutation rate, crossover rate and
replacement rate in the case of steady-state replacement. This task is often not trivial as the
chosen values may strongly influence the search process (Grefenstette,1986; Schaffer et al.,1989).
Moreover, the optimal value for the GA parameters may vary according to the evolution of the
search process. For all these reasons, several adaptive schemes have been investigated. A survey
of adaptation in GAs is given in (Hinterding et al.,1997; Back,1993) proposed an off-line tuning
approach giving an optimal mutation rate schedule.  Problem-specific operators are sometimes
employed in addition to the canonical ones. The introduction of such operators results an increase
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in the search power of the algorithm but a loss of general applicability. This issue is analyzed in
Michalewicz (1993). For more details about intelligent optimization techniques the readers are
referred to (Asare et al., 2012a; Asare et al., 2012b;  Asare et al., 2010).

3. PROBLEM DEFINITION

In this study, global CO2 emission was projected based on the global oil, natural gas, coal and
primary energy consumption using GA.

For this purpose, following forms of equations (Linear and exponential) are developed:
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Where OIL, NG, COAL, PE are the global oil, natural gas, coal and primary energy

consumptions and iw are the corresponding weighting factors.

The fitness function, F(x), takes the following form:
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Where actualE and predictedE
are the actual and predicted values of global CO2 emission

respectively, m is the number of observations.

The related data from 1980 to 2010 were used, partly for installing the models (finding candidates
of best weighting factors for each model (1980-2003)) and partly for testing the models (2004–
2010). The values of global oil, natural gas, coal, and primary energy consumption are obtained
from Workbook (2011) and shown in Table 1.

<<Table 1. The values of global oil, natural gas, coal, and primary energy consumption
(Workbook; 2011).>>

4. RESULTS AND DISCUSSION

4.1 Estimating Weighting Factors Values by GA

In this section a code was developed in MATLAB 2008 (Math Works, Natick, MA) based on the
GA and applied for finding optimal values of weighting factors regarding actual data (1980-
2010). For this purpose, following stages were done:

(a) All input and output variables in Eqs.1 and 2 were normalized in the (0, 1) range.

(b): The proposed algorithm (GA) was applied in order to determine corresponding weighting

factors ( iw ) for each model. The related data from 1980 to 2003 were used in this stage.
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(c): The best results (optimal values of weighting parameters) for each model were chosen
according to (b) and less average relative errors in testing period. The related data from 2004 to
2010 were used in this stage.

(d): Demand estimation models were proposed using the optimal values of weighting parameters.
The GA models were performed using the following user-specified parameters:

Population size: 50
Crossover rate: 0.85
Mutation rate: 0.01
Maximum Generation: 200

In the linear and exponential forms of GA models, coefficients obtained are given below:

0.0326PE0.1973COAL0.4218NG0.0264OIL0.2763COGA
linear2 ++++=−
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Table 2 shows the comparison between the Actual and estimated values of global CO2 emission
on testing period.

<< Table 2. Comparison between the Actual and estimated values of global CO2 emission on
testing period (2004-2010) >>

As it can be seen in this table, the estimation models are in good agreement with the actual data

but linear2COGA −
outperformed another presented model.

4.2. Future Projection

In order to use Eqs. (4) and (5) for future projections, each input variable (i.e. oil consumption-
natural gas consumption– coal consumption- primary energy consumption) should be forecasted
in future time domain (2011–2030). To achieve this, the designed scenarios for future projection
of each input variable remained the same which were developed by Bhreng et al. (2011a). The
values of oil, natural gas, coal, and primary energy consumptions between 2011 and 2030 based
on the designed scenario by Bhreng et al., (2011a) are shown in Table 3.

<< Table 3. The values of designed scenario by Bhreng et al. (2011a) for oil, natural gas, coal,
and primary energy consumptions between 2011 and 2030.>>.

Figure 1 shows the comparison between different projections for global CO2 emission.

<< Figure 1. Comparison between different projections for global CO2 emission.>>

Table 4 shows the comparison of different projections for global CO2 emission.

<<Table 4. Comparison of different projections for global CO2 emission (in million tones) up to
2030. >>
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5. CONCLUSION

This paper investigates the causal relationships among global carbon emission and energy
consumption, using Genetic Algorithm (GA). 31 years data (1980–2010) were used for
developing both forms (linear and exponential) of GA estimation models. Validations of models
show that the estimation models are in good agreement with the observed data but GAlinear
outperformed another developed model in this study.  The results presented here provide helpful
insight into energy system and CO2 emission control modeling. They are also instrumental to
scholars and policy makers as a potential tool for developing energy plans.

Future work is focused on comparing the methods presented here with other available tools.
Forecasting of CO2 emission can also be investigated with Particle Swarm Optimization,
Artificial Bee Colony, Ant Colony, or other metaheuristic algorithm. The results of the different
methods can be compared with the GA technique.
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Figure Captions:

Figure 1. Comparison between different projections for global CO2 emission.

Table Captions:

Table 1. The values of global oil, natural gas, coal, and primary energy consumption
(Workbook; 2011).

Table 2. Comparison between the Actual and estimated values of global CO2 emission on
testing period (2004-2010) .

Table 3. The values of designed scenario by Bhreng et al. (2011a) for oil, natural gas,
coal, and primary energy consumptions between 2011 and 2030.

Table 4. Comparison of different projections for global CO2 emission (in million tones)
up to 2030.
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Table 1. The values of global oil, natural gas, coal, and primary energy consumption and CO2

emission (Workbook; 2011).

Year
Oil
consumption
(Mtoe)a

NG
consumptio
n (Mtoe)

Coal
consumption
(Mtoe)

PE
consumptio
n (Mtoe)

CO2

emission
(Mt)b

1980 2972.2 1296.9 1806.4 6624.0 19322.4
1981 2863.0 1309.5 1820.6 6577.5 19073.2
1982 2770.7 1312.5 1846.9 6548.4 18900.7
1983 2748.3 1329.0 1897.7 6638.2 19072.1
1984 2810.1 1440.0 1983.2 6960.2 19861.0
1985 2804.7 1488.3 2056.0 7137.5 20246.7
1986 2894.1 1503.6 2089.2 7307.5 20688.3
1987 2946.8 1579.6 2169.0 7555.7 21344.5
1988 3038.8 1654.9 2231.7 7833.5 22052.2
1989 3093.0 1729.2 2251.2 8001.7 22470.2
1990 3148.6 1769.5 2220.3 8108.7 22613.2
1991 3148.2 1807.5 2196.4 8156.0 22606.5
1992 3184.8 1817.9 2174.6 8187.6 22656.7
1993 3158.0 1853.9 2187.6 8257.5 22710.6
1994 3218.7 1865.4 2201.9 8357.6 22980.3
1995 3271.3 1927.0 2256.2 8577.9 23501.7
1996 3344.9 2020.5 2292.2 8809.5 24089.8
1997 3432.2 2016.8 2301.8 8911.6 24387.1
1998 3455.4 2050.3 2300.2 8986.6 24530.5
1999 3526.0 2098.4 2316.0 9151.4 24922.7
2000 3571.6 2176.2 2399.7 9382.4 25576.9
2001 3597.2 2216.6 2412.4 9465.6 25800.8
2002 3632.3 2275.6 2476.7 9651.8 26301.3
2003 3707.4 2353.1 2677.3 9997.8 27508.7
2004 3858.7 2431.8 2858.4 10482.0 28875.2
2005 3908.5 2511.2 3012.9 10800.9 29826.1
2006 3945.3 2565.6 3164.5 11087.8 30667.6
2007 4007.3 2661.3 3305.6 11398.4 31641.2
2008 3996.5 2731.4 3341.7 11535.8 31915.9
2009 3908.7 2661.4 3305.6 11363.2 31338.8
2010 4028.1 2858.1 3555.8 12002.4 33158.4
a(Mtoe): Million tonne oil equivalent
b(Mt): Million tonne
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Table 2. Comparison between the Actual and estimated values of global CO2 emission on testing period (2004-
2010).

Years 2004 2005 2006 2007 2008 2009 2010 Average
Actual Dataa

28875.2 29826.1 30667.6 31641.2 31915.9 31338.8 33158.4
-

GA-CO2exponential 28033.8 29481.9 30217.8 30859.0 31630.7 31728.3 31080.5 -

Relative error (%) 4.46 0.68 0.45 1.00 1.00 2.66 5.55 2.26

GA-CO2linear 27586.2 29624.2 30530.8 31324.7 32233.9 32171.0 31317.7 -

Relative error (%) 1.91 2.10 1.31 0.62 0.03 0.59 0.82 1.06

a (Workbook, 2011)

Table 3. The values of designed scenario by Bhreng et al. (2011a) for oil, natural gas, coal, and primary energy
consumptions between 2011 and 2030.

Year
Oil
consumption
(Mtoe)

NG
consumption
(Mtoe)

Coal
consumption
(Mtoe)

PE
consumption
(Mtoe)

2011 4071.1 2888.1 3662.3 12206.0
2012 4104.7 2952.9 3775.6 12455.5
2013 4138.3 3017.6 3888.8 12704.9
2014 4171.9 3082.4 4002.1 12954.4
2015 4205.4 3147.2 4115.3 13203.8
2016 4239.0 3211.9 4228.5 13453.2
2017 4272.6 3276.7 4341.8 13702.7
2018 4306.2 3341.4 4455.0 13952.1
2019 4339.7 3406.2 4568.3 14201.6
2020 4373.3 3470.9 4681.5 14451.0
2021 4406.9 3535.7 4794.8 14700.5
2022 4440.5 3600.5 4908.0 14949.9
2023 4474.0 3665.2 5021.3 15199.3
2024 4507.6 3730.0 5134.5 15448.8
2025 4541.2 3794.7 5247.8 15698.2
2026 4574.7 3859.5 5361.0 15947.7
2027 4608.3 3924.3 5474.3 16197.1
2028 4641.9 3989.0 5587.5 16446.6
2029 4675.5 4053.8 5700.8 16696.0
2030 4709.0 4118.5 5814.0 16945.4
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Table 4. Comparison between different projections for global CO2 emission (in million tons) up to 2030.

Projection
Year

2015 2020 2025 2030

Present Study (Co2 linear) 35436.8 38674.4 41912.0 45149.6

Behrang et al (2011a) 38637.1 44812.5 51765.3 59469.7

EIA (2009) 33111 35428 37879 40385

Figure 1. Comparison between different projections for global CO2 emission.


