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ABSTRACT

Uncertainty is inherent in various applications, such as Sensor Networks, Large Datasets, Medicine,
Mobile Networks, Biomedical and Clinical Data, Social and Economical Research. Uncertain data poses
significant challenges for data analytic tasks. Analysis of large collections of uncertain data is a primary
task in these applications, because data is vague, ambiguous, incomplete, and inefficient. In this paper, we
investigate the fundamental problem of analysis and representation of uncertain data objects for
processing. Representation of uncertain data in various approaches such as Probabilistic based,
Possibilistic based, plausibility based theory and so on, in terms of Data Streams, Linkage models, DAG
models, etc. Among these Possibilistic data models are the most simple, natural way to process and
produce the optimized results through Query processing. In this paper, we propose the Uncertain Data
model can be represented as a Min-based symmetry Possibilistic data model and vice versa using linkage
data model through possible Worlds.
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1. INTRODUCTION

The construction of mathematical theory of risk has been realized in the framework of possibility
theory. Possibilistic methods constitute a very efficient tool in the analysis of uncertain data. The
evaluations and forecasting’s realized with Possibilistic models are efficient for the large data.
Possibility theory initiated by Zadeh [32 ] is an alternative to probability theory in the treatment
of uncertainty. It studies those situations of uncertainty in which the events do not occur a large
number of times and therefore the information is not extracted from a large volume of data. It has
been successfully applied in decision making problems in conditions of uncertainty.

Possibility theory is based on new concepts such as possibility measure, necessity measure,
possibility distributions, etc. Traditionally, possibilistic distributions are interpreted as fuzzy sets.
The notions of probability and possibility express different aspects of uncertainty. Probability
theory offers a quantitative model for randomness and indecisiveness, possibility theory offers a
qualitative model of incomplete knowledge [32].
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Possibility theory [4,19,33] offers a natural and simple model to handle uncertain data. It is a
framework for experts to express the uncertainty numerically in terms of possibility degrees in the
universe of discourse. The Propositions of product based and min based possibilistic data models
discussed in [1,4 and 5]. The aim of this paper presents to represent the uncertain data model into
min-based symmetry possibilistic data model and vice versa using possible worlds.

2. MIN BASED POSSIBLISTIC APPROACH

The Possibility theory offers two approaches of conditioning 1) min-based and 2) product based
operators. This leads to these two possible approaches of directed casual possiblistic networks.
The product based possibilistic network model for representing uncertain data discussed in[1].
The min-based approach to represent uncertain will be discussed in the further sections.

2.1 Conditional Independence relations

Conditional independence[4,5] relations between variables play an important role in handling
uncertain data in possibilistic approach. There two ways conditional independence relations can
be described.

1. Decompositional independence ensures the decomposition of a joint distribution
pertaining to tuples of variables into local distributions on smaller subsets of
variables.

2. Causal independence, expressing the lack of causality between variables. This kind
of independence is characterized in semantic representations. For instance, a variable
is said to have no influence on another variable, if our belief in the value of the latter
does not change when learning something about the value of the former.

From the observations[4,5,17 and 23] of these two independence relations, decompositional
independence is recommended for the representation of uncertain data models.

2.2 Independence Relations in Possibilistic Framework

From [3,31,33], two types of independence relations have been considered such as 1) Possibilistic
Casual Independence 2) Possibilistic Decompositional Independence: Non-Interactivity. For these
two independence relations, possibility theory has several kinds of conditioning relations such as
1) Plausibility independent 2) min-based independent 3) Product-based independent 4) Pareto
Independent 5) Leximin independent 6) Leximax independent relations. These relations have
been discussed in [3,31,33]. From the observation of [3,31], min-based independence
decomposition is considered in the possibilistic decompositional independence relation with the
help of Graphical models.  Basically a graphical model supports 5 properties such as P1:
Symmetry, P2: Decomposition, P3: Weak Union, P4: Contraction, P5: Intersection.

The independence relations supports only few of the properties[3] which are mentioned above,
listed in Table2.
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Table2: Graphical Properties on Independence Relations

Independence
Relation

Symme
try

Decomp
osition

Weak
Union

Contr
action

Intersecti
on

Non-Interactivity yes yes yes yes no

Min-based no yes yes yes yes

Min-based
Symmetry

yes yes yes yes yes

Product-based yes yes yes yes yes if π>0
Pareto yes yes yes yes yes

Plausibility no yes yes yes yes

Leximax yes yes no no no

Leximin yes yes no no no

From these observations, the casual and decompositional independence relations based on
product and min operators are reasonable relations with good properties, since they are semi-
graphiods. Indeed, the min-based with symmetry property independence relation is too strong
than the rest of the relations,[3,14], this relation has been considered in the Possibilistic Graphical
model. The product-based relation is good but it cannot satisfy the intersection property, it is good
and most used operator in the Probabilistic network models. It is good and most used operator,
the min-based independence relation is considered to represent uncertain data model using
Possibilistic graphical models.

2.5 Min-based Possibilistic Networks

A min-based possibilistic graph[3,19,31] over a set of variables, denoted by PossGm, is a
possibilistic graph, where conditionals are defined using min-based conditioning :

1 ( ) ( )

( | , ) ( | , ) ( ) ( ) ( )

0
m m

if and

Poss if and

otherwise

    
           

= Π ∈
= = < Π ∈


The joint distribution relative to min-based possibilistic networks can be computed using the min-
based chain rule.

Min-based chain rule: Given a min-based possibilistic network ПGm, the global joint possibility
distribution over a set of variables },.....,,{ 21 nAAAV = can be expressed as the minimum of the

N initial a Priori and conditional possibilities via min-based chain rule:

1 2 1...
( , ,....., ) min ( | )m n i i

i N
Poss A A A A U

=
= ∏ , which is derived from the minimum independence

relations. From the non-interactivity of the min-based is defined by
zyxzyzXzyx ,,)),|(),|(min()|( ∀ΠΠ=∧Π to express that the variables sets X and Y are

non-interactivity independent in the context of Z.

Let 1 2,{ , ...... }Nd A A A= be an ordering of the variables in V such that

1, { ,....., }
ii A i NA U A A+∀ ⊆ . Let

i iA AR V U= − . Then by the definition of min-based chain rule:
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1 1 1min 1 2 1( , ,.... ) min( ( , | ), ( ))N A A AA A A A R U U = Π Π

11 2 3,min( ( , ), ( , ....., ))A NA U A A A= Π Π

It may be noted that, in the min-based Possibilistic networks do not recover the initial data
provided by the experts, since the unrecovered data correspond to the redundant data that can be
ignored and have no influence on independence relations.

3. UNCERTAIN DATA MODEL

Modeling and Querying uncertain data [7,15,21,23,25] has been a fast growing research direction
and receives an increasing attention. Various models of uncertain and fuzzy data have been
developed. We proposed a novel model for modeling uncertain data in the fuzzy environment
using Possibilistic data model. The working model for uncertain data describes the existence
possibility of a tuple in an uncertain data set and the constraints on the uncertain tuples.

A fuzzy database [11,12,15,19] comprises of multiple fuzzy tables. A fuzzy table contains a set of
tuples, where each tuple is associated with a fuzzy membership value, which is treated as Degree
of Possibility in the Possibilistic Model. A fuzzy table may also come with some generation rules
to capture the dependencies among tuples, where a generation rule specifies a set of exclusive
tuples, and each tuple is involved in at most one generation rule.

Another useful model is the Uncertain Object Model [7,10,19]; an uncertain object is
conceptually described by a fuzzy membership function, i.e. Possibility Distribution in the data
space. In this scenario a possibility degree of an uncertain object is unknown, a set of samples
(instances) are collected to approximate the fuzzy distribution, which is a possibility distribution.
Definition: An Uncertain Object is a set of instances 2{ , ,....... }i nU u u u= such that each instance

(1 )iu i n≤ ≤ takes a possibility membership ( ) ( ) 0i iPoss u u= > and
1

( ) 1
n

i
i

u
−

=∑ .

The cardinality of an uncertain object 2{ , ,....... }i nU u u u= denoted by |U| is the number of

instances contained in U. The set of all uncertain objects denoted by X, 1 2{ , ,....... }nX U U U= .

3.1 Possible worlds of Uncertain Objects

A possible world is a full description of how the history of the universe might have gone that is
logically possible. The laws of logic set the only constraint on possibility in this wide inclusive
sense. A possible world might include events that are physically impossible, not consistent with
the fundamental laws of nature. A possible world is a possible way the world (the real
world or some imaginary world) could be. For instance, when representing a crossword
puzzle, the possible worlds correspond to the ways the crossword could be filled out.
Possible worlds are described by algebraic variables. An algebraic variable is a symbol
used to denote features of possible worlds. Possible worlds can be defined in terms of
variables or variables can be defined in terms of possible worlds.

Definition 3.2: Possible worlds of Uncertain Objects can be defined as: Let 2{ , ,....... }i nU u u u=
be a set of uncertain objects. A Possible world 2{ , ,....... }, ( )i m i iW w w w w U= ∈ is a  set of

instances such that one instance is taken from each uncertain object. The possibility of W (min-
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based) is min( ) ( ),1iPoss W Poss w i m= ≤ ≤ , where W is the set of all possible worlds. The

number of all possible worlds is min| | | |iW Poss w= and min( ) ( ) ( ) 1
w W

Poss W W w 
∈

= = =∑ .

3.2 Possibilistic Table

A Possibilistic database model is used to represent uncertain data, which is a finite set of
Possibilistic tables; A Possibilistic table contains a set of uncertain tuples T and a set of
generation rules . Each uncertain tuple t T is associated with a possibility degree,

( ) ( ) 0Poss t t= > . Each generation rule R specifies a set of exclusive tuples in the form

1 2 3
: .......

mr r r rR t t t t⊕ ⊕ ⊕ , where (1 )
ir

t T i m∈ ≤ ≤

( ) 0, (1 , , )
i jr rPoss t t i j m i j∧ = ≤ ≤ ≠ and

1

( ) 1
i

m

r
i

Poss t
=

=∑ .

The cardinality of a generation rule R, denoted by |R|, is the number of tuples involved in R. The
generation rule R is the set of all tuples

1 2 3
, , .....,

mr r r rt t t t involved in the rule, at most one tuple can

appear in a possible world. R is a singleton rule if there is only one tuple involved in the rule,
otherwise R is a multiple rule, and thus the Possibilistic database follows a possible world.

Given a Possibilistic Table
~

T a possible world W is a subset of
~

T such that for each generation

rule TR ∈ℜ , 1R W∩ = if ( ) 1,Poss R = and 1R W∩ ≤ if ( ) 1,Poss R < Thus, the existing

membership of W is

min min
, 1 ,

( ) ( ) (1 ( ))
T TR R W R R W

Poss W Poss R W Poss R
∈ℜ ∩ = ∈ℜ ∩ =

= ∩ −∏ ∏

For an uncertain table
~

T with a set of generation rules Tℜ , the number of all possible worlds is

, ( ) 1 , ( ) 1

1
T TR Poss R R Poss R

W R R
∈ℜ = ∈ℜ <

= +∏ ∏

We can convert the Uncertain Object model into Possibilistic database model[10,25,28,30] and
vice versa. When, it is concerned that both are equivalent. The conversion process will be
presented below.

1. Conversion between Uncertain Object Model to Possibilistic Database Model: A set of
uncertain objects can be represented by a fuzzy table. For each instance ‘x’, of an uncertain
Object ’X’, to create a tuple tx, whose membership or possibility degree value is

min( ) ( )x xPoss t t= for each uncertain object { }1 2, ,....... mX x x x= to create one generation

rule
1 2

: ......
mX x x xR t t t⊕ ⊕ ⊕ .

2. Conversion between Possibilistic Database models to Uncertain Object Model: A fuzzy
table can be represented by a set of uncertain objects with discrete instances. For each tuple
t in a fuzzy table, to create an instance xt, whose membership or possibility degree is

min( ) ( ) ( )t tf x Poss x t= = . For a generation rule
1 2

: ......
mr r rR t t t⊕ ⊕ ⊕ , to create an

uncertain object XR, which includes instances
1 2

......
x x xm

t t tx x x⊕ ⊕ ⊕ corresponding to
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1 2
, ,......,

mr r rt t t , respectively. Moreever, min
1 1

( ) ( ) 1
i i

m m

r r
i i

Poss t t
= =

= <∑ ∑ . We create another

instance xQ whose fuzzy membership function is min
1

( ) 1 ( )
i

m

Q r
i

f x t
=

= − ∑ and uQ to the

uncertain object XR.

4. POSSIBILISTIC LINKAGE MODEL

In the basic uncertain object model, we assume that each instance belongs to a unique object,
though the object may have multiple instances, if an instance may belong to different objects in
different possible worlds. Such a model is useful in Possibility Linkage analysis.

A Possibilistic linkage model[10,15,16,19] contains two sets of tuples A and B and a set of
linkages . Each linkage in    matches one tuple in A and one tuple in B. For a linkage
=(tA,tB), we say is associated with tA and tB. We write tA and tB . We consider each tuple
tA A as an uncertain object and tA B as an instance of tA if there is a linkage =(tA,tB) . The
membership possibility of instance tB with respect to object tA is π( ), which is µ( ).

Object tA may contain multiple instances{ }
1 2
, ,......,

kB B Bt t t where ( ), (1 )
iA Bt t i k∈ ℑ ≤ ≤ . At the

same time, an instance Bt may belong to multiple objects { }
1 2
, ,......,

dA A At t t where

( ), (1 )
jA Bt t j d∈ ℑ ≤ ≤ . A mutual exclusion rule

1 2
( , ) ( , ) ......, ( , )

B dT A B A B A BR t t t t t t= ⊕ ⊕
specifies that tB can only belong to one object in a possible world.

A record linkage [7,11,26] is a technique that finds the linkages among data entries referring to
the same real world entities from different data sources. In the real world applications, data is
often incomplete or ambiguous. Thus, record linkages are often uncertain.
Possibility Record Linkages [7,11,26,29]are often used to model the uncertainty. For teo records,
a state- of-the art, possibility record linkage model can estimate the possibility degree that the two
records refer to the same real world entity. Let us consider teo thresholds

1 2 1 2& (0 1)   ≤ < ≤ . When the possibility linkage is less than 1 , the records are not

matched. When the possibility linkages are between 1 2&  , then records considered possibly

matched.

To build a possibility record linkage effectively and efficiently with the some real world
scenarios. Each linked pair of records as an uncertain instance and each record as an uncertain
object. Two uncertain objects from different data sets may share zero or one instance. Thus the
uncertain objects may not be independent. For instance, let us consider the patient data from
hospitalized registered and cause of death data, which is presented in Table3.
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Table3: Record linkages between the patients registered data and cause of death registered data.

Lin
kag
e ID

Patient Registered Data Cause of Death Data Possib
ility

Degre
e

PI
D

Name of the
Patient

Disease DI
D

Name of the
Patient

Age

l1 x1 Sita M. Lakshmi Flu y1 Maha Lakshmi 42 0.4

l2 x1 Sita M. Lakshmi Flu y2 M. Lakshmi 45 0.4

l3 x1 Sita M. Lakshmi Flu y3 S. Lakshmi 32 0.5

l4 x2 S. MahaLakshmi Cancer y3 S. Lakshmi 32 0.2

l5 x2 S. MahaLakshmi Cancer y4 S. M. Lakshmi 55 0.8

Let E be the set of real world entities. Let us consider two tables A and B which describe subsets
,A BE E E⊆ of entities in E. Each entity is described by at most one tuple in each table. In

general, A BE andE may not be identical, they may have different schemas as well.

Possibility Linkage: Consider two tables A and B each describing a subset of entities in E, a
linkage function : [0,1]L A B× → gives a score ( , )A BL t t for a pair of tuples ,A Bt A t B∈ ∈ to

measure the likelihood that A Bt andt describes the same entity in E.

A pair of tuples ( , )A Bl t t= is called a possibility record linkage, if ( ) 0, ( ) ( , )A BL l Poss l L t t> =
is the possibility degree of ‘l’. Given a linkage ( , )A Bl t t= , the larger the possibility degree

Poss(l), the more likely the two tuples A Bt andt describe the similarity entity.

A tuple At A∈ may participate in zero, one or multiple linkages. The number of linkages that

At participates in as called the Degree of At denoted by ( )Ad t . Similarly we can define ( )Bd t .

For a tuple At A∈ , let
11 ( , ),.........., ( , )

dA B d A Bl t t l t t= = be the linkages that At participates in.

For each tuple At A∈ , we can write a Mutual Exclusive Rule (MER)

1 2 ( ).......
A At d tR l l l= ⊕ ⊕ ⊕ , where d is the degree of At A∈ , that indicates atmost one linkage

can hold based on the assumption that each entity can be described by atmost one tuple in each

table. The possibility degree is computed as
( )

1

( ) ( )
Ad t

A i
i

Poss t Poss l
=

= ∑ that tA is matched by some

tuples in B. Since the linkage function is normalized, ( ) 1APoss t ≤ . It is denoted by

{ | }
AA t AR R t A= ∈ , the set of mutual exclusion rules for tuples in A. Similarly

Bt
R for Bt B∈ ,

are symmetrically defined.

Therefore (£,A,B) specifies a bipartite Graph, where tuples in A and those in B are two
independent sets of nodes respectively and the edges are the linkages between the tuples in the
two data tables.
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4.1 Connection with the Uncertain Object Model.

Given a set of Possibility linkages, L between tuple sets, A and B, we consider each tuple At A∈ ,

as an uncertain object. For any tuple Bt B∈ , if there is a linkage ( , )A Bl t t= such that

( ) 0Poss l > . Then Bt can be considered as an instance of object At A∈ whose possibility degree

is ( )Poss l .

In contrast to the basic uncertain object model where each instance only belongs to one object, in
the Possibility Linkage model, a tuple Bt B∈ may be the instance of multiple

objects{ }
1 2
, ,......,

dA A At t t where d is the degree and
iAt is a tuple in A with linkage

( , ) (1 )
iA Bt t L i d∈ ≤ ≤ A mutual exclusion rule ( , ) ....... ( , )

B i dt A B A BR t t t t= ⊕ ⊕ specifies that tB

should only belong to one object in a possible world.

Alternatively, we consider each tuple Bt B∈ as an uncertain object and a tuple At A∈ is an

instance of Bt if there is a linkage ( , )A Bt t L∈ . Thus, a linkage function can be regarded as the

summarization of a set of possible worlds.

For a linkage function L and tables A and B, let LA,B be the set  of linkages between tuples A and
B. A Possible world of LA,B denoted by ,A BW L⊆ is a set of pairs ( , )A Bl t t= such that

1. For any mutual exclusion rule , ( ) 1
At AR ifPoss t = , then there exists one pair ( , )A Bt t W∈ .

Symmetrically, for any mutual exclusion rule, , ( ) 1
Bt BR ifPoss t = then there exists one

pair ( ( , )A Bt t W∈ .

2. Each tuple At A∈ participates in at most one pair in W, so does each tuple Bt B∈ .

,A BLW denotes the set of all possible worlds of ,A BL

3.
Similarly we can represent the uncertain data models in the form of Data Streams as well as
Possibilistic Graphical models using Possibilistic Networks that can be discussed in future
presentations.

5. CONCLUSION

The object of this paper is to represent the uncertain data using Min based Possibilistic object
models for processing and evaluating Query and also give the ranking to the evaluated query.
Here, an uncertain object model is represented as Possibilistic Database Model using Possibilistic
Networks through Min-based operator and vice versa so that the uncertain data model can be
evaluated through the query evolution mechanism using Possibilistic Database model. Further,
the uncertain data may be represented as Data streams and Possibilistic Graphical Models that
process the data objects to evaluate through query evaluation mechanism using Possibility theory.
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