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ABSTRACT

Fault tolerance can improve reliability and robustness when providing connectivity among entities. Many
studies had accounted for entities that were uniform and similar in nature. However, applications today
often require the entities to have distinguished roles. For instance, a power system has two types of entities:
sources and loads. A source mainly concerns no disconnection from the network, while a load further
favors connections to multiple sources to gain dependable services. Such non-uniformity in the
requirements calls for a new fault tolerance modeling approach. This paper introduces a 2-edge
supply/demand (2-ESD) connected problem. It is NP-hard like many connectivity problems. Algorithms are
developed to satisfy different fault tolerance requirements of the entities. Edge reduction and refactoring
are further employed to identify a better cost effective solution. Experiments were conducted to compare
the cost of the derived 2-ESD network with that of the minimum spanning tree (MST) solution.
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1. INTRODUCTION

Fault tolerance should be an option when providing connectivity for entities with a high reliability
demand.  For example, in the electrical power grid, most substations (power loads) are connected
by two or more transmission lines, ensuring that loss of one line does not result in loss of power
to a substation [1,2].  The new renewable energy sources at remote locations, such as wind
turbine farms, are expected to be integrated into the transmission system in the coming decades.
Because the cost of installing transmission lines is estimated at $1.5M/mile [3], there is a strong
motivation to minimize the extent of this new infrastructure without compromising the network
robustness.

The area of fault tolerant routing had been extensively studied.  In [4], the authors provide a
routine for routing of bi-connected graphs that is optimal for both vertex faults and edge faults.
In [5], an optimal routing algorithm is presented for double loop communication networks with at
most one faulty edge.  The authors in [6] investigate fault tolerance of wireless networks while
ensuring minimum power consumption for critical military and disaster relief applications.
Similarly, the problem of connecting new power sources and loads to the electrical power grid
can be depicted by a graph with vertices (e.g., wind farms and substations) and edges (e.g.,
transmission lines).
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Nevertheless, the prior work in fault tolerant routing only had to model uniform vertices with
same connectivity demands.  This is not applicable to the power grid problem in which the
vertices can have different connectivity requirements.  In reality, fault tolerance is more vital to
the substations than the wind farms, because a power source going offline carries fewer
consequences than a power load would do. A nonfunctional wind farm may likely be
compensated by the other connected power sources, but a disconnected substation will result in
power loss to a community.  This real-world problem motivates our study to meet this new
connectivity requirement for distinguished entities.

For the two types of entities, the vertices in the graph can be partitioned into two classes:
supply/producer vertices, and demand/consumer vertices.  This classification terminology has
been used in other areas such as the supply chain [7] or transportation network [8].  The objective
of this work is to ensure that fault tolerance is provided to all demand vertices without accounting
for the supply vertices, because loss of a supply vertex is not deemed critical.  Consequently, an
edge disconnection to a demand vertex must not result in its loss of services from any other
supply vertices.  From the power point of view, one single edge failure will not cause a substation
to disconnect with to all power sources.  This problem is referred to as a 2-edge supply/demand
(2-ESD) connected problem and its solution, a 2-ESD redundant graph.  In our proposed
algorithms, optimization is also employed to the solution to reduce the connection cost.

The rest of this paper is organized as follows. First, the 2-ESD problem is presented and some
elementary properties are discussed to illustrate the problem’s NP-hardness. Next a series of
heuristic algorithms are presented to solve the 2-ESD problem. Finally, the experimental results
compare the developed 2-ESD redundant graph with the MST network on the Euclidean distance
and computational time.

2. PROPERTIES

The minimal cost 2-ESD connected problem is defined as follows. Given a complete graph G =
(V, E), a partition of V into two sets S (for supply vertices) and D (for demand vertices), and a
cost function C: E → +, determine a least cost collection of edges E ⊆ E connecting vertices in
S and D into a single connected component with the property that the removal of any single edge
in E leaves at least one path from any vertex in D to some vertex in S.

Menger’s Theorem, a special case of the Max-flow Min-cut Theorem [9], can be used to provide
a different perspective on 2-ESD connectivity.  It states that the smallest size of an edge-cut
which disconnects a graph is equal to the largest number of edge disjoint paths between any pair
of vertices in the two components.  In a 2-ESD connected graph, it would take the removal of at
least two edges (an edge-cut of size 2) to disconnect a demand vertex from a supply vertex.
Hence, a 2-ESD connected graph has, by Menger’s Theorem, two edge-disjoint paths between a
demand vertex and one or more supply vertices.

A closely related problem to the 2-ESD connectivity problem is the minimal cost 2-edge
connected graph problem [10], defined as follows.  Given a complete graph G = (V, E) and a cost
function C: E → +, determine a least cost collection of edges connecting the graph in a single
connected component with the property that the removal of any single edge leaves the graph
connected.  This problem has long been known to be NP-complete [11].

The difference between the two problems is the differentiation of the vertices into supply and
demand vertices which can lead to different solutions as shown in Figure 1.  Although the two
problems are not identical, the 2-edge connected problem can be used to explain that the 2-ESD
connected problem is NP-hard by showing that an instance of the 2-edge connectivity problem
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can be transformed and solved as a 2-ESD instance.

Figure 1. A 2-edge connected (left) network and 2-ESD connected network (right) on the same set of
points.  Supply vertices are shown as squares and demand vertices as circles.

Consider an instance of the minimal cost 2-edge connected graph problem, I, consisting of a
graph G = (V, E) and a cost function C. I is transformed into an instance of the 2-ESD connected
graph problem I consisting of a graph G = (V, E), a partition of the vertices V = S ∪ D, and a
cost function C. To accomplish this, first, set V = V and place all but one vertex from V into the
set of demand vertices, D.  Add the single remaining vertex, denoted v, to the set of supply
vertices, S.  Add all the edges from E into E and use the same cost function for each edge.
Lemma 1 shows that the choice of which vertex to put into S does not affect the cost of the
solution.

Lemma 1: In the construction of I, the choice of which vertex to select as v does not change
the cost of the solution to I.

Proof: Assume to the contrary, that the cost of a solution to I1, when vertex v1 is put into S, is c1.
Also assume that the cost of a solution to I2, when vertex v2 is placed into S, is c2 and that c1 < c2.
It can be shown that every vertex in I1 has two edge-disjoint paths to v2.  Hence I1 is a solution for
I2, contradicting the supposed minimality of I2.

Since every vertex in I1 is connected to v1 by two edge-disjoint paths, then v2 is connected to v1 by
two edge-disjoint paths.  Any other vertex in I1, denoted v3, is connected to v1 by two disjoint
paths which interact with the paths of v2 in a variety of ways, all of which are enumerated in
Figure 2.  In order to reduce the number of subcases, Figure 2 only shows the initial subpath of v3

to v1 which is independent of the paths from v2 to v1.  In all cases there are two edge-disjoint paths
from v3 to v2.

Since v3 is any vertex in the graph, there are two edge-disjoint paths between every vertex and v2.
Since we assumed that solution I1 had a lower cost, the solution for I1 can be used as a lower cost
solution for the instance I2, contradicting the supposed minimality of I2.  Hence, the choice of
vertex to select makes no difference to the cost of the resulting solution. 

Figure 2. If every vertex in a 2-ESD connected graph has two edge-disjoint paths to supply vertex v1, there
are also two edge-disjoint paths to v2.

As a corollary to Lemma 1, the network of edges created by the solution of the 2-ESD instance I
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is 2-edge connected because every vertex has two edge-disjoint paths to v2, an arbitrary vertex in
the graph.

Theorem 1: Given a 2-edge connected instance I, create a 2-ESD instance I by placing all but
one vertex in the demand set and the remaining vertex in the supply set. An optimal solution to I
is an optimal solution to I.

Proof: Select an arbitrary vertex as v to be the supply vertex in the 2-ESD instance I and
determine the optimal solution. Lemma 1 implies that there are two edge-disjoint paths between
any pair of vertices in I, hence is 2-edge connected.  Thus, the optimal solution to I cannot cost
more than the optimal solution I , otherwise I could be used as a lower cost solution.

Since the solution I is 2-edge connected it could be used as a solution for I.  Thus, the cost for the
solution I cannot be higher than the cost of the solution for I.

Since the solutions I and I cannot cost more than one another, they must have the same cost.
Furthermore, since I has a feasible structure for a solution to I, an optimal solution to the 2-ESD
instance I , is an optimal solution to the 2-edge instance I. 

With the solutions of I and I having the same cost, the problem of finding a 2-ESD connected
network is at least as difficult as finding the 2-edge connected network.  Consequently, the 2-ESD
connected network problem is NP-Hard.

3. ALGORITHM

The heuristic algorithms employed to generate a solution to the 2-ESD problem can be separated
into two main components, edge generation and edge reduction/refactoring.  The routines
developed to assist the edge-generation phase are explained in greater detail, because any
heuristic algorithm which constructs a 2-ESD network incrementally will require similar routines.
First, some definitions and properties are presented.

3.1. Definitions and Properties

A path is a sequence of vertices such that there is an edge between consecutive vertices in the
sequence.  A simple cycle is a path with no repeated edges and vertices other than the starting and
ending vertices.  A vertex is robust if it is a demand vertex that has two or more edge-disjoint
paths to a supply vertex, or is a supply vertex.  The degree of a vertex v, denoted as deg(v), is the
number of incident edges of v.  A demand vertex with degree one is called a singleton.  When the
degree of a vertex is greater than or equal to a value, it is described with a number followed by a
“+”.  The cost of an edge is the Euclidean distance between the end points.  The cost of a network
is the sum of the cost of all of its edges.

Lemma 2: A demand vertex v on a path P which begins and ends on robust vertices vr1 and
vr2 is also robust.

Proof: If vr1 and vr2 are the same vertex, denoted vr, then v lies on a simple cycle.  The vertex v
has two edge-disjoint paths to vr, one traversing the cycle clock-wise and the other counter-clock-
wise. The robust vertex vr has two edge disjoint paths to supply vertices s1 and s2 (s1 may be the
same vertex as s2). It is a simple matter to construct two edge-disjoint paths from v to s1 and s2,
via vr, using these four edge-disjoint paths.
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Otherwise, vr1 and vr2 are distinct terminals of a path. In this case, the vertex v has at least one
path to a supply vertex formed by traversing the path from v to vr1 and then onwards to one of vr1

supply vertices.  Assume that v is not robust then v has only one path to a supply vertex through,
without loss of generality, vr1.  Since there are no edge disjoint paths from v to a source through
vr2, then both of the paths from the robust vertex vr2 to its associated supply vertices must share a
common edge with the path from vr1 to its supply vertices.  This implies that vr2 is not robust, a
contradiction, consequently v is robust. 

The 2-ESD network is formed on the set of vertices in the Euclidian plane along with the
corresponding edges between the vertices.  The cost of an edge is the Euclidean distance between
its associated vertices.  Since the algorithm spends a significant amount of time processing edges,
there is a strong motivation to reduce the size of the pool of O(|V|2) candidate edges.

Call an edge, both of whose terminals are demand vertices, a demand-edge.  It can be shown that
in an optimal 2-ESD connected network, demand-edges do not cross.  Hence, when connecting
demand vertices, the algorithm only selects non-intersecting edges.  To facilitate this selection,
the algorithm draws edges from those in the Delaunay triangulation [12,13].

A triangulation of a graph G = (V, E) is a partitioning of the plane into triangles whose vertices
are the vertices of the graph.  A Delaunay triangulation consists of the vertices of V along with a
subset of edges E ⊆ E which meet the empty-circle condition [12].  An edge e is said to meet the
empty-circle condition if there exists a circle circumscribing the end vertices that does not contain
any other vertices of the graph.  Since the edges of the Delaunay triangulation do not intersect one
another, they form a convenient set from which to draw candidate edges of the 2-ESD network.  It
remains an open question whether an optimal 2-ESD connected network is constructed solely
from edges in the Delaunay triangulation.  Consequently, restricting an algorithm to this set of
edges, while convenient for the formation of a redundant network, may result in a suboptimal
solution.

3.2. Generation of Redundant Edges

The algorithm developed to solve the 2-ESD redundant problem starts by forming a minimum
spanning tree (MST) over all the points in the graph making no distinction between the supply
and demand vertices. Figure 3 shows the MST (in bold lines) over an instance with 4 supply
vertices (squares) and 11 demand vertices (circles).  The supply and demand vertices are labeled
with an “s” and “d”, respectively, and subscripted with an index.  The edges of the Delaunay
triangulation are the union of the dotted lines and the MST edges.  There are five singletons d1,
d2, d4, d5 and d10.

Figure 3. The MST, built from Delaunay triangulation, for the set of 11 demand vertices and 4 supply
vertices.
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Using the MST as a starting point edges are added iteratively to singletons with the aim of
converting them into robust vertices.  To do this the algorithm keeps track of the vertices that are
robust by putting them into a set R.  With respect to Figure 3, R = {d3, d6, d7, d9, d11, s1, s2, s3, s4}.
Since the MST connects all the vertices together, every non-robust demand vertex has at least one
path to a supply vertex.  Thus, by Lemma 2, all that is required to convert a singleton into a robust
vertex is to add an edge to connect it to a robust vertex.  For example, adding the edge <d10, s4> to
the graph in Figure 3 makes vertices d10 and d8 robust and consequently new elements of R.
Thus, the problem of building a 2-ESD network is reduced to finding the best edge to add to the
singletons.  To do this, a greedy approach is used, selecting the edge with the least cost which
increases the cardinality of R.

The getRobustSet routine in Listing 2 assists in the process of selecting an edge by returning a set
of vertices in the graph which are robust.  The routine explores the graph in a depth first manner
starting at an arbitrary supply vertex to form a set of independent paths stored in a 2-dimensional
array A using the recursive depthFirst routine in Listing 1.

Prior to calling the depthFirst routine the caller must initialize all the edges as unvisited, the idx
and tail globals to 0, and A[0][0] = v, where v is the vertex which the depthFirst routine is called
with. Independent paths are stored in rows of A as sequences of vertices.  Each row of A
corresponds to an independent path stored in a compressed format, e.g., a path consisting of three
edges <a, b>, <b, c>, and <c, d> is stored as ‘a, b, c, d’ in a row of A.  Routine depthFirst is
called from the terminal vertex of the currently traversed edge on the path.  At this vertex
depthFirst chooses an untraversed edge from the vertex (line 2), marks this edge as traversed (line
3), and adds the edge to the current independent path.  If there are no untraversed edges,
execution returns to the caller.  If a vertex has more than one untraversed edge, each edge after
the first will create a new independent path.  Consequently, the new_path flag is set (line 10) after
the first iteration of the main for loop (line 2).  Each subsequent iteration of the main for loop will
result in the creation of a new independent path by incrementing the row index of the A array
(line 6) and resetting the pointer (line 5).  If this is the first edge of the independent path, both the
starting and ending vertices are stored in A (line 6, 7); afterwards just the terminal vertex of the
edge is stored (line 9).  After traversing an edge, the depthFirst routine is recursively called (line
11) at the new terminal vertex of the selected edge.

Listing 1. Independent paths created by a depth first traversal of the spanning structure.

As an example, Table 1 lists the independent paths discovered by a call of depthFirst(s1) on the
MST spanning structure given in Figure 3.  The choice of which unvisited edge to traverse first in
line 2 is arbitrary.  In the example listed in Table 1, the edge <s1, d2> is explored first resulting in
a call to depthFirst(d2).  Since there are no outgoing untraversed edges from d2, execution returns
and resumes at depthFirst(s1).  A new independent path is created starting with the exploration of

depthFirst(v) // v vertex
1 new_path = FALSE; // local
2 for all untraversed edges e=<v,w>
3 traversed (e) ← TRUE;
4 if new_path
5 tail ← 0;
6 A[++idx][tail] ← v;
7 A[idx][++tail] ← w;
8 else
9 A[idx][++tail] ← w;
10 new_path ← TRUE
11 depthFirst(w);
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edge <s1, d3> and a commensurate call to depthFirst(d3).  Notice that the last vertex in each
independent path has degree one and consequently is a singleton if it is a demand vertex.

Table 1. Six independent paths for the MST in
Figure 3 derived by depthFirst called with the supply vertex s1.

Independent Paths in A
1 s1, d2

2 s1, d3, d1

3 d3, s2, d4

4 s2, d6, d9, s4, d11, d7, s3

5 d7, d5

6 d9, d8, d10

The time complexity of the depthFirst routine is simple to compute.  The routine visits each of the
O(|V|) edges in the spanning structure once and does a constant amount of work at each.  Hence
the running time of the depthFirst routine is O(|V|).

To understand the behavior of getRobustSet it is necessary to understand the context in which it is
called.  As previously described the MST is augmented with edges until all the vertices are
robust.  After each edge is added to a singleton, getRobustSet is called and returns the new set of
robust vertices.

Listing 2. The get RobustSet routine is called after every single edge insertion.

getRobustSet(s) // s ∈ S, the set of supply vertices
1. A ← depthFirst(s);
2. tail ← length(A[0])-1;
3. for i ←0 to length(A)-1
4. Q[i] ← A[0][i];
5. for i ← 1 to length(A)-1
6. robust ← false;
7. while Q[tail] != A[i][0]
8. if Q[tail] ∈ S || Q[tail] ∈ R
9. robust ← true;
10. if robust = true && Q[tail] ∉ R
11. R ← R ∪ Q[tail];
12. tail ← tail - 1;
13. if robust = true && Q[tail] ∉ R
14. R ← R ∪ Q[tail];
15. for j ← 0 to length(A[i])-1
16. tail ← tail + 1;
17. Q[tail] ← A[i][j];
18. robust ← false;
19. while tail >= 0
20. if Q[tail] ∈ S || Q[tail] ∈ R
21. robust ← true;
22. if robust = true && Q[tail] ∉ R
23. R ← R ∪ Q[tail];
24. tail ← tail - 1;
25. return R;
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As seen in Listing 2, getRobustSet calls depthFirst, with an arbitrary supply vertex s.  After the
depthFirst determines the set of independent paths in the spanning structure, the getRobust
routine will utilize these independent paths to construct paths, all rooted at s, through the
spanning structure.

The current path through the spanning structure is maintained in an array Q.  The first element of
Q will always be s, a supply vertex used in the call to depthFirst.  The getRobustSet routine
initializes the path of vertices, Q, to the first independent path discovered by the depthFirst
routine (lines 3-4).  Next, getRobustSet backward scans the Q array from the last element towards
the first element, and looks for a robust vertex, stopping only when it finds the first element of the
next independent path in A (line 7).  Since the path implied by Q is always rooted at a supply
vertex, any robust vertex encountered will, by Lemma 2, result in all of the vertices between the
robust vertex and s being classified as robust.  However, this conversion will not happen all at
once in the getRobustSet routine. When a robust vertex is encountered (lines 8) the robust flag is
set (line 9) and the vertices in Q, up to the first vertex of the next independent path in A, are then
moved into R (lines 10, 11 and 13, 14). The next independent path is then appended to Q (lines
15-17). After the last independent path in A has been appended, the backward scan of Q is
continued all the way back to s, the argument of getRobustSet (lines 19-24).

To better understand the getRobustSet procedure, its execution is presented using the independent
paths from Table 1.  Table 2 shows Q for each referenced independent path, labeled “IP”.  The
column labeled “Backscan” contains the first vertex of the next independent path and
consequently the end of the backscan of Q (line 7).  The column labeled “R” lists the vertices
added to the robust set R in lines 11, 14, or 23 of the getRobustSet algorithm.

Table 2. The evolution of the data structures in getRobustSet(s1)  when called with the MST in Figure 3.

IP Q Backscan R
1 s1, d2 s1 {s1}
2 s1, d3, d1 d3 {s1}
3 s1, d3, s2, d4 s2 { s1, s2}
4 s1, d3, s2, d6, d9,

s4, d11, d7, s3

d7 { s1, s2, s3, d7}

5 s1, d3, s2, d6, d9,
s4, d11, d7, d5

d9 {s1, s2, s3, d7,
d11, s4, d9}

6 s1, d3, s2, d6, d9,
d8, d10

s1 { s1, s2, s3, d7,
d11, s4, d9, d6,
d3}

Showing the correctness of the getRobustSet algorithm proceeds in two steps, showing that it
returns a correct robust set when called with an MST and that it correctly augments the set of
robust vertices under a single edge insertion operation (see Figure 4 for the augmented spanning
structure).  In both cases it is necessary to show that the classification of a vertex as robust cannot
affect the classification of a vertex on an indepdent path of A which has already been processed.

The first invocation of getRobustSet is run on an MST of the network where all paths end in
singletons.  Thus it is not possible for a vertex which is discovered at some point to be robust to
affect a vertex in another independent path because there are no cycles in a MST and
consequently no connections between the branches of a tree.

To show that getRobustSet correctly augments the set of robust vertices under a single edge
insertion operation, assume that all preceding invocations of getRobustSet have correctly
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identified the set of robust vertices.  An edge is added to the spanning structure from a singleton
vertex, v, to a redundant vertex, w. After the edge, e = <v, w>, is added to the spanning structure,
getRedundentSet is called to augment the robust set.  The edge <v, w> will cause the vertices on
the path from s to v to become robust.  No other vertices in the spanning structure are affected
because w is already robust and there is at most one path from v to s (that’s why v is a singleton).

Figure 4. The spanning structure resulting from the edge augmentation of the MST in Figure 3.

There are times when the set of edges provided by the Delaunay triangulation proves to be
insufficient for the augmentation process to find an edge which increases the size of the robust
vertices as shown in Figure 5. In such cases the augmentation algorithm looks for the shortest
edge which connects the singleton to a supply vertex.

Figure 5. Example of a 2-ESD connectivity which uses an edge outside of the Delaunay triangulation.

The augmentation process ends when the set of robust vertices is equal to the set of supply and
demand vertices. At this point the graph is 2-ESD connected.  The second phase of the algorithms
then takes over, reducing the cost of the 2-ESD connected network while maintaining the
redundancy of the network.

3.3. Edge Reduction/Refactoring

The graph resulting from the augmentation of the MST is 2-ESD connected, but may not be
optimal in terms of cost.  The cost of the spanning structure can be reduced by eliminating
unnecessary edges using reduction heuristics.  The removal of an edge may have two negative
consequences, eliminating the robustness of a vertex or breaking the graph into two components.
In order to ensure that the application of a reduction heuristic does not create an illegal
configuration, the edge replacement is applied only if getRobustSet returns a complete set of
vertices under a tentative application of the edge reduction.  The three reduction heuristics
utilized are greedy-based and often yield a solution that is close to optimal.
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3.3.1. Triangle Inequality

The first reduction heuristic looks to replace a pair of edges with a single edge based on the
triangle inequality.  A 2-ESD redundant network containing a supply vertex with degree 3+ or a
demand vertex with degree 4+ can have its cost reduced by replacing the two most expensive
edges <v, v1> and <v, v2> with the edge <v1, v2> where v is the high degree vertex.  This
replacement always reduces the cost of the network because the triangle inequality states that the
sum of any two edges of a triangle is always greater than the length of the third edge [12].

Although the replacement of edges does not affect the robustness of the vertices, it can split the
graph into two components.  Thus, each step in the application of this reduction heuristic must be
followed by a check for 2-ESD.  First, the new edge is added to the spanning structure.  Then
each expensive edge is removed from the spanning structure (one at a time), getRobustSet is
called, and the returned set of robust vertices, R, is checked.  If R is changed, the replacement is
rejected and the original state is reinstated, otherwise the substitution is retained. Figure 6 shows
the application of this first reduction heuristic.

Figure 6. The application of the triangle inequality to replace edges <d2, d3> and <d1, d3> with <d1, d2> and
then replace edges <d1, s2> and <d3, s2> with <d1, d3>.

3.3.2. Edge Removal

The second reduction heuristic looks for edges which can be removed.  Instead of attempting to
eliminate each of the edges in the 2-ESD network one at a time, candidate edges for removal are
identified by the degree and type of their terminals.  Let s be a supply vertex and d be a demand
vertex.  The following three rules specify the conditions sufficient to remove an edge.

Remove edge <s, d> when deg(s) > 1 and deg(d) > 2
Remove edge <s1, s2> when deg(s1) > 1 and deg(s2) > 1
Remove edge < d1, d2> when deg(d1) > 2 and deg(d2) > 2

For example, the first rule states that an edge whose one terminal is a supply vertex with degree
1+ and the other is a demand vertex with degree 2+ may be removed.  It can be shown that this
removal will not affect the robustness of the vertices, but may affect the connectedness of the
graph.  Thus, this optimization step is applied with the condition that getRobustSet returns a
complete set of vertices after the edge has been removed.  The application of the second reduction
heuristic is shown in Figure 7.
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Figure 7. The application of the reduction heuristic in the removal of edge <d7, s3>.

3.3.3. Edge Refactoring

The previous reduction heuristic looks for an edge which terminates in high degree vertices.  The
edge refactoring reduction heuristic looks for a path terminating in high degree vertices.  One
edge incident to each of the high degree vertices may be removed and replaced with an edge
joining the terminating vertices whose degree have also been reduced.  For example, in Figure 7
vertices s1 and d1 are high degree, based on the first rule in section C2.  Edges <s1, d3> and <d1,
d2> are removed and replaced with a cost-reducing edge <d2, d3>.  This exchange results in the 2-
ESD connected network shown in Figure 8.  In this case, vertices d2 and d3 are terminating
vertices.  This optimization step is also applied with the condition that getRobustSet returns a
complete set of vertices after refactoring has occurred.

This reduction heuristic is computationally intensive because both the number of paths and the set
of candidate replacement edges are quite large.  The set of candidate replacement edges is large
because it includes edges not in the Delaunay triangulation, similar to the situation shown in
Figure 5.

Figure 8. The application of the refactoring heuristic to replace edges <s1, d3> and <d1, d2> with <d2, d3>.

4. EXPERIMENTS

The proposed algorithm was implemented in Java v1.6 and tested on a PC with Windows 7 32-bit
Enterprise OS.  The computer has 4 GB RAM and the CPU is Intel Core 2 Quad Q8200 @
2.33GHz.  Although the greedy approach may not yield an optimal solution, experiments are
conducted to compare the cost for networks with and without fault tolerance.  Cost is taken to
have two meanings: the cost associated with the Euclidean distance to form a network, and the
cost associated with the network’s computation time.
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To address different network complexities, the number of vertices in the network covers 10, 50,
100 and then increments by 100 up to 800 vertices.  Coordinates are randomly generated within a
600 × 1000 rectangle.  The density of demand vertices, with respect to the number of vertices, is
varied between 10% and 90%.  Note that a density of 0% implies that all the vertices are supply
vertices.  Consequently the connection requirements of the supply vertices imply that the 2-ESD
network is simply an MST.

Figure 9 depicts the Euclidean distance cost associated with adding redundancy to a MST. The
vertical axis is the percentage increase in the cost of the redundant network over the MST.  The
data is collected by averaging the percentage increase in cost over 20 randomly generated
networks.  The increase in cost is plotted against the number of vertices in the network and the
density of demand vertices.

The large percentage increase in cost associated with adding redundancy to small networks is a
side effect of their small size.  The addition of a single edge to a small network having just a few
edges represents a significant portion of the network cost.  More representative behavior is
exhibited in larger networks. Increasing the proportion of demand vertices results in a larger
increase in the cost because each demand vertex must have two independent paths to a supply
vertex, whereas a supply vertex may have degree one if it’s connected to another supply vertex.
The computation time required to add redundancy to a network increases as the number of
vertices increase as shown in Figure 10. However, for larger networks the minimum computation
time occurs when there are an equal number of demand and supply vertices.

To explain this saddle point, Figure 10 shows the running time of each of the 5 phases of the
algorithm (MST construction, edge augmentation (Section III.B), Triangle Inequality (Section
III.C1), Edge reduction (Section III.C2), and Edge refactoring (Section III.C3)) are plotted for a
network with 800 vertices and having a demand vertex density between 10% and 90%.  When the
density of demand vertices is low, the large number of supply vertices requires a lot of time to be
spent on refactoring, in an attempt to reduce the degree of the supply vertices.  A high density of
demand vertices implies a proportionally large number of singleton vertices.  Thus, a lot of time
is spent on augmenting the network to make it redundant.
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Figure 9. The cost of adding redundancy to a MST expressed as a percentage of the MST's cost.
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Figure 10. Computation time cost associated with adding redundancy to a network.
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Figure 11. Computation time cost for individual stages in the 2-ESD development process.

5. CONCLUSIONS AND FUTURE WORK

A new class of NP-hard problem, the 2-ESD connected network, is introduced. This problem
seeks to establish connectivity between two types of functionally distinct entities, namely, one
which supplies services to fulfill demands of the other.  The demand entities must be able to
tolerate a connection break-down in the infrastructure in order to stay served. This problem has
applications to areas, such as power systems, supply chain and logistics.

The proposed algorithm adopts a two-phase approach to solve this problem.  After constructing
an MST to connect all the entities, the first phase generates redundant connections for the demand
entities to meet their fault tolerance requirement.  The second phase incorporates a series of
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greedy procedures to refactor and eliminate unnecessary connections to decrease the cost of the
entire infrastructure.  Experimental results show that adding redundancy may increase the cost of
the infrastructure by up to 20% for large network.

Future work in this area includes looking at more effective optimization heuristics while
decreasing the running time of the algorithm. Since the luxury of designing a new network
topology from scratch is rare, there is a need to examine how to augment an existing non-
redundant network to make it redundant.  A related problem is how to add supply and demand
vertices and edges to an existing network so that the connection requirements of a 2-ESD network
are satisfied.

This work considers space to have a uniform cost.  In some applications this may not be the case,
for example when installing transmission lines the cost to traverse an open plain may be greater
than when traversing a mountainous regions.  Further work needs to be directed at this practical
variation.
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