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ABSTRACT

As more vehicles continuously appear on our roads by the day causing congestion and accidents. A traffic
monitoring system capable of detecting, counting and classifying the passed vehicles is needed to provide
in advance information to relevant authorities on the road traffic demand. Background subtraction and
kalman filter algorithm are used to detect and track individual vehicles throughout the detection zone. The
detected vehicles blob-area is used to trigger the segmentation unit which inturn extracts the vehicle while
at a point closest to the camera. Finally, both geometric and appearance features of the segmented vehicles
are passed to the LDA classifier for proper categorisation.  The system achieved a high counting
performance of 97.37% with corresponding classification rate of 87.82 %
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1. INTRODUCTION

Visual based vehicle tracking and traffic surveillance have received considerable attention during
the last two decades. The subject has a great application in the field of vehicle surveillance
system, vehicle tracking and automatic road way and intersection monitoring.  Automatic
monitoring of traffic helps for early detection of possible road congestion in a timely way. Traffic
congestion occurs when the traffic demand exceeds the road capacity, which leads to time
wastage, energy lost and unnecessary emission of carbon into the atmosphere. Visual based road
management system offer a seamless means of vehicle counts and classification. Vehicle counts
and classification are important factors for computation of the number of vehicles and
percentages of their classes that run on a particular road. Furthermore, such information helps the
relevant authorities to plan for timely expansion of the existing road or construction of new ones.

In this project we use a single camera mounted on a pedestrian bridge directly looking down on
traffic scene. The camera is placed at the centre of the road to allow for multi lane detection and
minimise vehicle occlusion. In this paper we present a novel vehicle classification method which
is based on the both vehicle’s geometric and appearance features. The paper is organised as
follows. In section 2 we present an overview of the related work. Section 3 gives a brief system’s
overview. Section 4, describes the methodology. Experimental results are presented in section 5.
Finally, conclusions are discussed in section 6.
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1.1. Related work

A number of approaches for vehicle detection, tracking and classification have been developed in
the past using different attributes of the vehicles. There are several methods for detecting moving
vehicles taken from a stationary camera. Generally, they are categorised into three groups;
background subtraction, frame by frame differencing and optical flow approaches. In background
subtraction method, the object is detected by pixel wise subtraction between the current frame
and the background frame. Using some threshold limit, all pixels belonging to object (that are not
present in the background image) are detected and grouped together. A comprehensive survey on
vehicle detection appears in [1]. Tracking of moving vehicles in video sequences has been an
active research topic in field of computer vision. The main idea of the tracking processes is to
keep the identity of each detected vehicle over the whole sequences of the video. Thus, eliminates
possible multiple counts in the vehicle counting stage. Several vehicle tracking algorithms are
presented in [2-7].

Even though, a great deal of research has been reported on the vehicle detection and tracking.
However, no much work is done on the vehicle classification. This is due to inherent difficulties
associated with vehicle classification problem. The much wide variety of vehicle shapes and
colours within same class, make the classification task even more challenging. The main goal of
vehicle classification is to categorise the detected vehicles into their respective classes. Majority
of the papers reported in the literature on vehicle classification are based on model-based
approach [8-10] and recently [11] which is based on the vehicles colour. The model-based
classification relies on sets of 3D models that coarsely describe the shapes of each vehicle type.
Perhaps the most serious disadvantage of the model-based approach is the need to represent
various shapes of vehicles (although belonging to the same class) with a single model.

2. GENERAL SYSTEM OVERVIEW

Figure 1, gives a general overview of the proposed system, which pictorially shows various stages
of the system. The system basically consists of three main steps; vehicle detection, tracking and
classification.

Figure 1. Pictorial flow diagram of the proposed system
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2.1. System overview

The proposed system consists of the following stages:

1) Background estimation: the background is estimated from few initial frames of the video.

2) Detection region: in this stage, we constructed a binary mask to define our region of
interest.

3) Object detection: here, we employ background differencing to detect the foreground
objects and group the connected pixel into blobs.

4) Object tracking:  bounding boxes are placed on each detected blob and track from frame
to frame using Kalman filter.

5) Object segmentation: each track object is extract just before it starts leaving the detection
zone.

6) Object classification: the segmented objects are passed to classifier to categorise them
into their appropriate classes.

Section 3 provides detailed description of the stages.

3. MATERIALS AND METHODS

In this work, we utilised a video stream recorded using a single camera placed at high level.
Placing camera at high level and looking down to the centre of the scene provides clearer
distinctions among the closely moving vehicles. This helps in reducing possible occlusion
problem from the objects in the scene. The video used in this work was captured from a busy
urban intersection. Unlike high-way, urban intersections present additional challenges, besides
the common ones; global illumination changes, shadow handling, occlusion and multiple object
detection and tracking. These problems are characterised by cluttered background such as;
buildings, pedestrian, parked vehicles, stopping vehicles, slow moving,  fast moving, turn and u-
turn. Therefore, it is the goal of this paper to develop a low-cost vision-based vehicle detection
and classification system that can improve the much desired intelligent-transportation system.

3.1. Background Estimation

The first stage of the algorithm is generation of fairly stable background. Several methods are
used in the past for background extraction and update from images of moving vehicles in video.
Garcia and Shu, modelled the background using a single frame of the scene containing no object
of interest [12]. The image is then smoothed to reduce lighting effects. In [10] Gupe et al,
modelled the background using a weighted average of the previous frame and that of the current
frame of the video sequence. Since such images might also contain foreground images. Thus,
prior to background update the current image is classified into background and foreground. Only
pixels belonging to background of the current frame are used in pixel updating stage. Long et al.
in [4] used three stages approach to model the background. Firstly, some loosed video frames
were selected. Next, frame difference integration was applied to remove pixel movements
corresponding to vehicle in the selected frame. Finally, using median value method each pixel
value of the background is estimated. Gloyer et al. [6] Proposed an interesting method for
background modelling. The assumption here is that, intensity of pixels belonging to the road
remains relatively same across initialisation frames as compared to that of the passing vehicles.
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Thus, intensity values that have high occurrence within the initialisation frames are considered to
be part of the background image. In this work, this method for background modelling is adopted.

3.2. Vehicle Detection

Object detection is usually accomplished by a simple background by current frame differencing
and then followed by threshold [2]. The main idea here is to make a pair-wise subtraction
between pixels of the background frame and that of the current frame. In this way pixels having
value greater than certain threshold are considered to belong to the object (detected vehicle) as
shown in figure 2. In this work, we use four distinct steps to detect pixels belonging to moving
vehicles.

Figure 2.  Vehicle detection: (a) averaged background  (b) masked background with no object of interest
(c) masked current frame containing objects in the detection zone   (d) blobs of the detected objects

The first step into the proposed vehicle detection method is to construct a binary mask that
defined the detection range; in this case three lanes road from the intersection to the camera
location.  The mask “M” has same size as the video frames with entries of ones in the region
corresponding to the detection zone and zeros elsewhere. Next, we multiply both the background
and the current image with the mask figure 2 (b) and (c), this way all areas outside the detection
region are simply ignored or rejected (dark areas). We then apply the background subtraction
technique to detect locations in the current image that have values greater than the set threshold.
To further enhance the shapes of the detected blobs, we apply dilation then followed by erosion.
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3.3. Vehicle Tracking

Tracking is the process of labelling the detected object and maintaining its identity across the
whole video sequence.  Essentially, there are four types of object tracking methods [13]. (1)
Model based method, which relies on detailed geometric model of different objects.  (2) Feature
based method, tracks some selected salient features of the object instead of the whole object. (3)
Active contour based method, the main idea here is to represent the detected object by its
bounding contour and keep updating it throughout the detection region.  (4) Region based
method, employs background subtraction technique for initialisation. The detected objects are
then traced using region tracking techniques such as Kalman filter.

Kalman filter is a recursive predictive method which is based on the state space techniques. It
uses two steps method to estimates the state of a dynamic system; (1) the predict step, which uses
dynamic model to predict the object state, (2) the correction step, it corrected the prediction using
the measured or observed model, such that the error covariance of the estimator is minimised
[14]. In dynamic image processing, Kalman filter plays an important role in predicting the
position of a target in the current image frame ft using the prior information of its location in
previous frame ft-1. This procedure is repeated for each time step “t” with state of the previous
time as initial value as shown in figure 2. This method is adopted in this project, we employed
Kalman filter to track the labelled blobs throughout the whole length of the detection zone.

Figure 3. Diagram of Kalman Filter

As vehicles leave the intersection and enter the detection zone (top of the detection window)
bounding boxes are added to each detected object. As the video streams, the objects in the scene
advances towards the camera’s location and their respective blob areas keep growing. We
monitor these growing areas frame by frame until the object starts to leave the detection zone, in
which case its area begin to fall. We therefore use this reverse in growing blob area as trigger for
the segmentation unit. The interesting thing here is that, we segments the tracked vehicles at
points when they are closest to the camera, thus their structures and colour are more visible and
clearer. Cropping vehicle when it reaches it maximum size not only ease the classification task
but also enhances its performance. Figure 4 illustrates the proposed tracking method. In the frame
ft-5, five vehicles appear in the detection zone and are detected accordingly. As the vehicles
approach the camera position their blob areas increase frame ft-4. However, the blob area of the
white car occupying centre lane starts decreasing as the car leaves the detection zone frame ft-3.
Thus, we segment this car at frame ft-4 just before its blob starts falling. The same procedure is
repeated among frames ft-2, ft-1 and ft, leading to extraction of two cars.  The segmented vehicles
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together with their current blob areas, centroids and bounding boxes coordinates are passed to the
classification stage.

Figure 4. Illustrations of the proposed tracking and segmentation method

3.4. Vehicle Classification

In the field of pattern recognition, a classifier aims to identify the correct class of a given object
based on some classification rules and characteristic of the object, which are also called feature
vectors. Here, the main goal of this unit is to determine to which class the passing vehicle belongs
to and keep track of the number of vehicles that have passed through the detection zone. The
vehicles in the video are categorised into five groups; (1) motor cycles (2) cars (3) minibuses (4)
trucks and (5) heavy trucks. The selection of these categories is based on the available vehicles
types contained in the video. However, the system can easily be made to accommodate other
vehicles types by simply including them in the training set. Generally, object recognition consists
of three main stages; (1) object detection (2) feature extraction and (3) classification [15]. We
have already accomplished the object detection in section 3.2.  We now focus on feature
extraction and classification.

3.5. Feature Extraction using Local Binary Pattern

The local binary pattern (LBP) operator is a powerful feature extractor which transforms an
image into an integer labels statistics using a computationally efficient mean. Prior to the feature
extraction process, some image pre-processing steps were applied to standardised and enhance
the images. This includes; resizing each image into 64 by 64 pixels. Next, the RGB images are
converted into grey images retaining only their intensity values. Furthermore, contrast
enhancement technique was also applied to reduced illumination variations in the images. Figure
5 illustrates the pre-processing stage.

Following the image pre-processing, we employed local binary pattern (LBP) to extract unique
attributes of each object. The local binary pattern (LBP) was first introduced by [16] as grey-scale
and rotation invariant texture descriptor. The basic LBP operator labels the pixels Pn for
(n=0,1,....7) of an image by thresholding a 3 x 3 neighbourhood of each pixel with the value of
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the centre pixel Pc and considers the result as binary number. Given a pixel at location (xc, yc) the
resulting LBP at that location can be expressed as follows.
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The histogram of the labels computed over each region can be use as local primitive descriptors,
which robustly described the local changes in the region such as; flat area, curves, edges, spots
etc. In this work, the procedure for extracting the LBP descriptors for vehicle representation was
implemented as follows: first, the each pre-processed image was partitioned into 36 regions.
Second, the LBP histogram from each region was computed. Third, the histogram ratio hr and
maximum histogram value hm for each region was determined using equations 3 and 4. Finally,
the 36 hr and 36 hm from all the regions were concatenated into a single feature vector.
Additionally, the earlier extracted vehicle area, centroid and bounding box coordinates are further
fused to the LBP feature to account for the vehicle’s geometric features and its relative position
on the road equation 5.
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Figure 5.  Examples of image pre-processing, (a) original image (b) resized intensity image (c)
histogram equalisation (d) partitioned image

The formed feature vectors are then passed to linear classifier to categorise them into their
respective categories. Linear discriminate analysis (LDA): attempts to classify a given input
object into one of two or more categories based on features that characterize them, LDA attempts
to finds linear decision boundaries from the features space that best separate the objects classes.
This is achieve by maximizing the between class scatter matrix while minimizing the within class
scatter matrix [17]. Mathematically, the scatter matrices are defined as follows:
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Where, SW and SB stand for within class and between scatter matrices respectively, ni is the
number of training samples in class i, c is the number of class labels, mi is samples mean of class
i, xi stands for ith class sample set and xj represents the jth object of that class. |SW| and |SB|
represents the determinants of within and between class matrices.

4. EXPERIMENTAL RESULTS

The performance of the proposed method was tested on a video sequence of 3,400 frames
containing 76 vehicles. The video was recorded from typical urban intersection characterised by
cluttered background. We segmented the video into two parts; the first part contains 2,200 frames
was used in training the classifier. The remaining 1,200 frames were used during the testing
phase. The system was successfully able to detected and tracked most vehicles correctly
(97.37%). However, only 87.82% of the vehicles were correctly classified. Errors in the detection
stage were mostly associated with occlusions, especially in the cases where the vehicles moves
very closely (bumper to bumper) to each other. Even though, when the leading vehicle leaves the
detection zone, the system is robust enough to detect the second vehicle separately. The
misclassification cases were mostly between cars and minibuses. Although, both geometric and
appearance attributes were used as discriminative descriptors, but due to strong similarities in
both shapes and appearances between these classes, the system finds it very difficult to correctly
classify them. Tables 1 through 3 summarise the results.

To validate the result, two persons were requested to independently count and classify the
vehicles into the considered classes from both training and testing clips. The results from the two
persons were simply averaged as shown in table 1 and used as a ground-truth.

Table1. Ground-truth result for the training and testing sequences

Training
sequence

Testing
sequence

Total

Motor cycles 9 4 13
cars 30 13 43
Trucks 7 4 11

Minibuses 5 3 8
Heavy trucks 1 0 1

Total number of vehicles =          76

Table 2. System’s counter output for both training and testing sequences

Training
sequence

Testing
sequence

Total

Motor cycles 9 4 13
cars 28 13 41
Trucks 7 4 11

Minibuses 5 3 8
Heavy trucks 1 0 1

Total number of vehicles detected = 74
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Table 3. System classifier’s output for testing sequences

Motor
cycles

cars Trucks Minibuses Heavy
trucks

Motor
cycles

4 0 0 0 o

cars 0 11 0 2 0
Trucks 0 0 4 0 0

Minibuses 0 1 0 2 0
Heavy
trucks

0 0 0 0 0

At the end of the experiments, the proposed system’s detection and classification accuracies were
compared against the ground-truth Tables (1). It can be seen from Table 2 that the proposed
system had detected, tracked and counted 74 objects as the number of passed vehicles in both the
training and testing sequences against the actual number 76 in the ground truth. This corresponds
to an error of 2.63%. In the classification stage, the system classified all the motor cycles, trucks
and heavy trucks accurately. However, we recorded a global classification error of 12.18%, which
resulted due to systems confusion between minibuses and cars. It is obvious that, the passengers
sitting capacity of the two vehicle types under discussion is different. However, the frontal
appearance of these vehicles looks quite similar. Hence, leading to a higher misclassification
recorded between these vehicle types.

5. CONCLUSIONS

The author has presented a novel method for vehicle detection, tracking and classification using
both geometric and appearance attributes of the vehicles. The proposed system was tested on a
video sequence of 3,400 frames recorded from a typical urban intersection. Background
subtraction method and Kalma filter algorithm were employed in the detection and tracking
stages of the system. Using the vehicle’s blob area, the system segmented the tracked vehicle at a
point where its structure is most clear. The geometric and appearance features of the segmented
vehicles were fed to LDA classifier for appropriate categorisation. The results indicated a
promising trend in the vision-based vehicle detection and classification. Although, the proposed
system had demonstrated robustness in the vehicle detection and tracking, further work is still
required to help resolve the occlusion issues raised (such as using stereo camera system). We
intend to take up this challenge in our future work.
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