
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

DOI : 10.5121/ijcsea.2014.4501 1

TRUNCATED BOOLEAN MATRICES FOR DNA
COMPUTATION

Nordiana Rajaee1 , Awang Ahmad Sallehin Awang Hussaini2 and Sharifah
Masniah Wan Masra4

1Faculty of Engineering, Universiti Malaysia Sarawak
2Faculty of Resource Science and Technology, Universiti Malaysia Sarawak

3Faculty of Engineering, Universiti Malaysia Sarawak

ABSTRACT

Although DNA computing has emerged as a new computing paradigm with its massive parallel computing
capabilities, the large number of DNA required for larger size of computational problems still remain as a
stumbling block to its development as practical computing.  In this paper, we propose a modification to
implement a physical experimentation of two Boolean matrices multiplication problem with DNA
computing.  The Truncated Matrices reduces the number of DNA sequences and lengths utilized to compute
the problem with DNA computing.

KEYWORDS

DNA computation, Boolean Matrices,  Bio-molecular tools, Parallel Overlap Assembly

1. INTRODUCTION

When Leonard M Adleman first proposed the use of DNA for computation in solving the
Hamiltonian Path Problem (HPP) in 1994, the computation was implemented in an in-vitro
experimentation with designed DNA oligonucleotide sequences to represent the vertices and the
edges.  The solution to the computation was then derived from the chemical reactions via bio-
molecular tools such as hybridication-ligation method, polymerase chain reaction and cutting by
restriction enzymes.  The output was then visualized in gel electrophoresis process.  The
computation of seven-node HPP took seven days to complete [1].  Since then, many proposals
were presented to compute problems with DNA computation but most of them still rely on the
L.M Adleman’s architecture to carry out the computation.  Although the massive parallel
computing capabilities of DNA computing promises faster and denser computation there remain
several drawbacks which prevent it from becoming a practical computing material.  One reason is
the exponential requirement of DNA in computing larger size of computational problem [2].

Current strategy in DNA computing is to embed the computation problems in the DNA
oligonucleotides sequences and derive the solution by eliminating incorrect DNA via selective
processes.   For a seven-node HPP, the problem was encoded in a 20 oligonucleotide sequence.
For a 23-node HPP, the computation will require 1 kg of DNA and for a 70-node HPP, the
computation will require 1025 kg of DNA to represent all the nodes [3]. Other problems such as
maximal clique problems, vertex-cover problems and set packaging problems all show similarly
exponential requirement of DNA and increased time for the computations.  LaBean et al (2000)
proposed that an1.89n volume, O (n2+m2) time molecular algorithm for the 3-coloring problem



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

2

and a 1.51n volume, O (n2m2) time molecular algorithm for the independent set problem, where n
and m are, subsequently, the number of vertices and the number of edges in the problems resolved
[4].  Fu (1997) presented a polynomial time algorithm with 1.497n volume for the 3-SAT
problem, a polynomial time algorithm with a 1.345n volume for the 3-coloring problem and a
polynomial time algorithm with a 1.229n volume for the independent set [5].  Bunow goes on to
estimate that an extension combinatorial database would require nearly 1070 nucleotides (by
comparison, the universe is estimated to contain roughly 1080 subatomic particles) [7].

The original algorithm to solve a Boolean matrix multiplication with DNA requires the generation
of initial vertices, intermediate vertices, terminal vertices and directed edges to link the initial-
intermediate / intermediate-terminal vertices.  In our previous works in solving Boolean Matrices
with DNA computing, the quantity of DNA oligonucleotides to encode the problem is
proportionate to the number of vertices and edges existing in the graph problem representing the
matrix multiplication.  The number of primers to represent the elements in the product matrix is
derived from its total number of row and column indicators whereas the total tubes to represent
each element in the product matrix is derived from the total number of primer combinations [7-9].
For a 2 x 2 product matrix, the total number of primers required is 4 and the total number of tubes
is also 4.  In other words, for an (m x k) • (k x n) matrix multiplication problem, the total number
of primers is m + n and total number of tubes is m x n is required to represent the problem.

Given any matrix multiplication problem with increasing N number of intermediate matrices, the
number of intermediate vertices for the problem also increases (though not necessarily the
number of test tubes representing the product matrix).  For example, consider matrix problems
with pth power, a (10 x 10)2 matrix and a (10 x 10)10 matrix multiplication.  The number of test
tubes representing both problems is 100 but the number of intermediate vertices is 10 (for p = 2)
and 90 (for p = 10).  The number of primers and tubes increases also drastically for a larger N x N
computation.  For a 10 x 10 product matrix, the total number of primers required is 20 and the
total number of tubes to represent all elements in the product matrix is 100 as shown in Figure 1.
As the size of the problem increases, the volume of DNA increases exponentially and the number
of experimental work becomes tedious and impractical to be considered as a viable technology.

1
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0

0
1
0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
0
0
0

0
0
0
0
1
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
1

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0

0
1
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
1
0

0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0

1
0
0
0
0
0
0
0
0
0

X =

10 x 10 10 x 10 10 x 10

X . . . .

0
0
0
1
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0

10 x 10

X

10個p = 10

Figure 1. (10 x 10)10 matrix multiplication

2. TRUNCATED BOOLEAN MATRICES

In in-vitro implementation of Boolean Matrix Multiplication problems, DNA oligonucleotide
strands are synthesized to represent the initial vertices, intermediate vertices, terminal vertices and
edges representing the problem.  All generated single stranded sequences are quoted in 5’-3’



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

3

order and length is denoted in mer, in which one mer represents one DNA oligonucleotide.  The
output of the computation is analysed quantitatively based on the direct proportionality of the
DNA sequence strands.

Let us assume a Boolean matrix multiplication problem as shown in Figure 2.

0
1

1
0

c d
a
b

1
1

0
0

e f
c
d

1
0

0
1

g h
e
f

0
0

1
1

i j
g
h

0
0

1
1

i j
a
b=

1st 2nd 3rd 4th

a

b

c

d

e

f

g

h

i

j

a

b

i

j
=

Figure 2.  Four Boolean Matrix Multiplication and its graph representation

Using the original algorithm, the problem is represented by a directed graph G where the total
DNA strands generated for the problem is 18 as shown in Table 1.

Table 1 Number of DNA sequence strands for vertices and edges

DNA strands sequences for vertices and edges Number of
DNA strands

Initial vertices = {Va, Vb} 2
Intermediate vertices = { Vc, Vd, Ve, Vf, Vg , Vh} 6
Terminal vertices = {Vi, Vj } 2
Directed edges = {Ead, Ebc, Ece, Ede, Eeg, Efh, Egj, Ehj} 8

Total: 18

In case of cube matrices whereby the number of rows and columns for all matrices in the
multiplication are equal, we propose a modification in order to reduce the generation of vertices
with Truncated Matrix. The main idea of truncating matrices is to eliminate or reduce the
generation of vertices by replacing them directly with directed edges.  Originally, the directed
edge for element of value 1 in the matrices is constructed from partial complementary strands
from a previous vertex to a next vertex.  With Truncated Matrices, edges are constructed directly
from combination of sequences for rows and columns containing an element value of 1.

Thus, the problem in Figure 2 is modelled such that each row and column indicator for all the
matrices refers to a library containing pre-defined sequences for a vertex label.  Table 2 shows the
library of generated DNA strand sequences for the vertex labels.



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

4

Table 2 DNA Sequence for Vertex Labels

Sequence Complementary Sequence
a cgatggcgtg gctaccgcac
b cccgagcgtt gggctcgcaa
c ggacagccct cctgtcggga
d tgccgtagcg acggcatcgc
e caacggtggc gttgccaccg
f ctctcaggcg gagagtccgc
g gctcctgggg cgaggacccc
h gagggcgtcg ctcccgcagc
i cgatggcgtg gctaccgcac
j ggggcggaat ccccgcctta

The edges constructed to represent the problem are shown in Table 3 and Table 4 for odd and
even matrices existing in the problem.  SeqLen represents the sequence length of the strands,
GC% represent the GC content in the sequence strands which may influence the stability of the
strands, and Tm refers to the melting temperature.

For matrix = Odd:

Generate edge sequences for all elements of value 1 from corresponding row and column
sequences.  From the 1st matrix, elements of value 1 exist for intersections of row a – column d
and row b – column c.  From the 3rd matrix, elements of value 1 exist for intersections of row e –
column g and row f – column h.  Therefore, the generated edges for the odd matrices are as shown
in Table 3:

Table 3 DNA Sequence for Edges (Matrix:  Odd)

Edges Sequence SeqLen GC% Tm

ad cgatggcgtgtgccgtagcg 20 0.70 74.5
bc cccgagcgttggacagccct 20 0.70 73.3
eg caacggtggcgctcctgggg 20 0.75 76.5
fh ctctcaggcggagggcgtcg 20 0.75 74.2

For matrix = Even:

Generate complementary edge sequences for all elements of value 1 from corresponding row and
column sequences.  From the 2nd matrix, elements of value 1 exist for intersections of row c –
column e and row d – column e.  From the 4th matrix, elements of value 1 exist for intersections
of row g – column j and row h – column j.  Therefore, the generated edges for the even matrices
are as shown in Table 4:



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

5

Table 4 DNA Sequence for Edges (Matrix:  Even)

Edges Sequence SeqLen GC% Tm

ce cctgtcgggagttgccaccg 20 0.70 72.8

de acggcatcgcgttgccaccg 20 0.70 77.8

gj cgaggaccccccccgcctta 20 0.75 75.2

hj ctcccgcagcccccgcctta 20 0.75 76.4

Figure 3 shows the constructed edges for the Truncated Matrix.

a d

b c

c e

d e

e g

f h

g j

h j

a d

d e

e g

g j

b c

c e

e g

g j

Figure 3 Constructed Edges for Truncated Matrix

3. EXPERIMENTAL RESULTS

Generated single stranded DNA sequences representing the constructed edges are poured into a
single test tube T0 for generation of initial pool containing all possible solutions.  Parallel Overlap
Assembly method is utilized to allow the individual DNA strands to assemble and hybridize to
their complementary strands.  The strands will be extended with each denaturing, annealing and
elongation cycles.  At the end of the cycles, a formed path for solution of the problem will be
constructed which can be extracted as output of the computation. The formed path consists of
sequences containing initial vertex and terminal vertex sequences.  We then allocate test tubes T1,
T2, T3 and T4 to represent the intersections of row a – column i, row a – column j, row b –
column i and row b – column j in the product matrix respectively.  Contents of test tube T0 after
the POA process are distributed into each test tube T1 – T4.  Gel electrophoresis process is
utilized to visualize the output of the computation.  The gel electrophoresis is a technique which
separates the DNA solution based on their size or sequence lengths.  Therefore, the lengths of the
formed paths in the test tubes T1 – T4 can be determined.  From the captured image of gel
electrophoresis process in Figure 4, the most left lane is the marker image for sequence lengths
which are in base pair (b.p) unit for the constructed double stranded sequences of formed paths.

From the gel electrophoresis, test tubes T2 and T4 yield 50 b.p bands which are consistent with
constructed paths of elements with value 1 in the product matrix representing the formed path
from vertices a – j and b – j.  In test tubes T1 and T3, highlighted bands show 40 b.p and 30 b.p
strands indicating incomplete paths.



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

6

Marker
T4 T3 T2 T1

50 b.p
40 b.p
30 b.p

Figure 4 Results from gel electrophoresis process

3. CONCLUSIONS

In this work, we propose Truncated Matrices to reduce the material consumption in DNA
computing.  Using the original algorithm, assuming all 18 DNA sequence strands in Table 1 as set
as 20 mer length sequences, the output of the computation will be of length 100 b.p. which is
directly proportional to its sequence length from the initial to terminal vertex. However, using 20
mer length strands in Truncated Matrices will only generate a 50 b.p length output of formed path
solution.  The number of DNA strands for the computation is also reduced to 8 as shown in Table
3 and 4. The major constraints to successful implementation of the experiments come from in the
instability of the generated DNA sequence strands.  While simulated DNA sequences
theoretically in compliance to expected temperatures and other parameters, the problem comes
when actual DNA sequence strands differ in their compositions.

ACKNOWLEDGEMENTS

The authors would like to thank Universiti Malaysia Sarawak for the support.

REFERENCES

[1] Adleman L, (1994), “Molecular computation of solutions to combinatorial problems”, Science, vol.
266, no. 5187, pp. 1021-1024.

[2] Amos M, (2004), Theoretical and Experimental DNA Computation, Natural Computing Series,
Springer.

[3] Cox J C, Cohen D S & Ellington A D, (1999), “The complexities of DNA computation”, Trends
Biotechnology, 171, pp 151-154.

[4] LaBean, Reif  M C & Seeman T H, (2003), “Logical computation using algorithmic self-assembly of
DNA triple-crossover molecules”, Nature, vol. 407, pp 493-496.

[5] Fu B & Beigel R, (1997), “A Comparison of Resource Bounded Molecular Computation Models, in
Proceedings of the 5th Israel Symposium on Theory of Computing and Systems,  pp 6-11.

[6] Bunow, (1995), “On the potential of molecular computing,” Science, vol. 268, pp. 482-483.
[7] Rajaee N & Ono O, (2007), “Boolean Matrix Implementation with DNA computing”, Proceedings of

International Conference on Robotics, Vision, Information and Signal Processing (ROVISP), pp 36-
39



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.5, October 2014

7

[8] Rajaee N & Ono O, (2010), “ Experimental Implementation of Boolean Matrix Multiplication with
DNA Computing using Parallel Overlap Assembly”, International Journal of Innovative Computing,
Information and Control (IJICIC) ,vol. 6, no.2, pp. 591 - 599

[9] Rajaee N, Aoyagi H & Ono O, (2010), “Single Stranded DNA and Primers for Boolean Matrix
Multiplication with DNA Computing”, ICIC-EL  International Journal of Research and Surveys
ISNN1811-803X, pp 1067-1072

[10] Murphy R C, Deaton R, Stevens S E & Franceschetti R, (1997), “A new algorithm for DNA based
computation”, Proceedings of the IEEE International Conference on Evolutionary Computation, pp
207-212

[11] Kaplan P D, Ouyang Q, Thaler D S & Libchaber A, (1997), , “Parallel Overlap Assembly for the
construction of computational DNA libraries”, Journal of Theoretical Biology, vol. 188, pp 333-341

[12] Boneh D, Dunworth C & Sgall J, (1996), “On the computational power of DNA”, Discrete Applied
Mathematics, vol. 71, pp 79-94.

[13] Ogihara M & Ray A, (1996), “Simulating Boolean circuits on a DNA computer”, Technical Report
TR 631, University of Rochester.

Authors

Nordiana Rajaee received her BEng (Hons) from Electronic and Information Engineering
from Kyushu Institute of Technology, Fukuoka, Japan in 1999, her MSc in Microelectronics
in University of Newcastle Upon Tyne, United Kingdom in 2003 and PhD in DNA
Computing from Meiji University, Japan in 2011.

Awang Ahmad Sallehin Awang Husaini received his BSc (Hons.) in Biochemistry and
Microbiology from Universiti Putra Malaysia (UPM), Selangor, Malaysia in 1996 and PhD
in Molecular Biology (Enzymology) from University of Manchester, Manchester, United
Ki ngdom in 2001.

Sharifah Masniah Wan Masra received her BEng (Hons) in Telecommunication from
Universiti Malaya, Kuala Lumpur, Malaysia in 2000 and MSc in Electronic from Cardiff
University, Wales, UK in 2003


