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ABSTRACT

In general, analysing cameras is a difficult problem and solutions are often found only for geometric
approach. In this paper, the image capturing capability of a camera is presented from optical perspective.
Since most compact cameras can acquire only visible light, the description and propagation method of the
visible part of the electromagnetic spectrum reflected by a scene object is made based on Maxwell’s
equations. We then seek to use this understanding in the modelling of the image formation process of the
camera. The dependency of camera sensor field distribution on aperture dimension is emphasized. This
modelling leads to an important camera and image quality parameter called Modulation Transfer
Function. The model presented is based on a wave optics in which the wavefront is modified by the lens
after diffraction has taken place at the camera rectangular aperture positioned at the front focal point of
the lens. Simulation results are presented to validate the approach.
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1. INTRODUCTION

The study of optics is believed to have started with the Sumerians during the 4000 B.C. The
discovery of rock crystal lens, Palaeolithic wall paintings often found in caves of almost total
darkness and the use of a lamp and a hand-held mirror were significant developments which point
to the cultivated high level civilization during that time [1]. The idea about vision is arguably
considered to have began in Greece by Euclid and others. Their understanding of vision was that
humans see because some rays called eye rays emanate from the eye, strike the scene objects and
are returned to the eye.

The second century A.D. witnessed a major conceptual shift when more quantitative experiments
started. Refraction of light at air-water interface was studied by Claudius Ptolemy [1].

Conventional imaging, and especially computer-assisted imaging, has brought many areas of
research and applications to a mature plateau with astonishing advantages [2]. Therefore, we
argue that camera modelling should be primarily directed towards describing mathematically any
improvement strategies that can be made to the image formation process, and noise
characterisation and evaluation [3, 4].
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In a compact (refined) camera, the numerical form of the continuous variation of the scene object
being sensed is produced. Comprehensively speaking, the modelling pipeline of the image
formation process of a camera consists of radiometry, the camera (optics and sensor), the motion
associated with the camera, the processing, the display, and the interpretation as functional blocks
[4]. Only the optics and sensor model will be presented based on wave optics and the use of
rectangular aperture.

This paper is structured as follows. Section two covers a brief overview of imaging systems. The
main idea of the paper is presented in section three. In section four, simulation results are
presented and discussed. An overall conclusion about the paper is drawn in section five.

2. IMAGING SYSTEM IN PERSPECTIVE

A large number of compact cameras are based on perspective projection model with a single
centre of projection. They are generally characterised by a typically narrow field of view (FOV)
of 50o × 35o and hence sometimes called directional cameras. FOV makes compact cameras less
popular in certain vision applications. A compact camera is widely used in the acquisition of both
static and dynamic scenes. Traditional cameras capture light onto photographic film. Digital
cameras use electronics, usually a charge coupled device (CCD) to store digital images in
computer memory inside the camera.

Enhancement of FOV is the main reason for the invention of catadioptric imaging systems. A
merit of single view point [5] is significant in the face of the complexity arising from the shape,
position, and orientation of the reflecting surfaces employed.

Large FOV above 180o is the main characteristic of omnidirectional cameras. Furthermore, as
pointed out in [6], images of all scene points cannot be represented by intersections of camera
rays with a single image plane. For that reason, rays of the image are represented as a set of unit
vectors in three-dimensional (3D) such that one vector corresponds just to one image of a scene
point. Omnidirectional cameras usually find application in areas such as structure from motion,
and surveillance where considerably stable ergo_motion computation is expected.

It is stated in [7] that single-camera panoramic stereo imaging systems using an unusual
arrangement of curved mirrors, is becoming attractive. Such systems solve the problem of
capturing a panoramic image with a single motionless camera, and are also capable of positioning
and measuring an object with a single imaging process.

The objects of interest in the world are simply a set of points. The intensity acquisition of these
points is achieved through the non-singular transformation capability of cameras which are
almost usually based on signal processing principles, measurement, and algorithms [8]. Although
important research and developmental effort have been targeted at camera fabrication based on
state-of-the art technology, there still exist practical limits on the intrinsic parameters such as
focal length, [9]. For example, in Figure 1, the dependence of two important parameters depth of
view (DOF) and FOV on camera focal length f, working distance u, magnification μ, circle of
confusion c, f-number of camera lens fn, and sensor physical size s, are expressed in (1) and (2)
respectively[9].
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Figure 1: DOF and FOV of a compact camera.

DOF = 2f 2fnc(μ 1)f 2μ2 fn2c2 (1)

FOV = tan d(u f)2uf (2)

It is explicitly obvious from (1) and (2) that localisation and matching errors [8], are deeply
engraved in camera measurements. It turns out that the data acquired with such cameras are
difficult to work with especially in scene reconstruction and other certain critical application
areas, and often does not give accurate result. It is important that these errors be adequately
attended to and considerably reduced in order to improve accuracy, reliability, and computational
performance issues in image processing applications such as 3D reconstruction. Hence, camera
optical analysis has become an attractive research interest

3. IMAGE FORMATION BASED ON WAVE OPTICS

The energy that is captured by the camera is the visible part of electromagnetic (EM) spectrum, a
self-propagating wave comprised of oscillating electric and magnetic fields generated by the
acceleration of charged particles [10]. The propagation of EM radiation through inhomogeneous
media with random fluctuations of local optical characteristics results in the formation of an
optical wave that is characterised by random temporal and spatial distributions of its parameters
such as intensity, phase, and, in general cases, its state of polarisation. Theoretical modelling of
the propagation and the diffraction of electromagnetic wave at the camera aperture provides a
vital input into the understanding of established imaging techniques and the development of new
procedures.

Since the visible light shown in Figure 2 (a), reflected from scene objects, propagated and
captured by the camera as depicted in Figure 2(b), [10], is an EM phenomenon of a particular
wavelength, it can be described by Maxwell’s equations. Maxwell’s equations represent a
unification of the works of Lorentz, Faraday, Ampere, and Gauss that predict the propagation of
EM waves in free space at the speed of light [11, 12, 13, 14]. Maxwell’s equations which model
EM waves are stated as:
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.E = ρε Gauss'slaw (3)× E = ∂B∂t Faraday'slaw (4)

× H = ∂D∂t + J Ampere'slaw (5).B = 0 Fluxlaw (6)

Figure 2: (a) Visible light spectrum, (b) the sun as a radiant source.

Where ∇ is the del operator, E and are electric and magnetic respectively. D is the electric
displacement, H defines the magnetic intensity, J is the conduction current density in a volume, ε
is the permittivity, and ρ is the charge density.

Equations (4) and (6) are valid only if position and time dependent magnetic ( ,t) and electric
φ(r,t) potentials exist at a field point on the camera sensor such that:

B = × A (7)

E = − φ − ∂A

∂t
(8)

substituting E from (8) in (3), we get

.(− φ − ∂A

∂t
) = ρ

ε
(9)

1

c2

∂2φ
∂t2

− ∇2φ = ρ
ε

(10)

using (7) in (4) we obtain× E = ∂( ×A)
∂t

= ×∂A

∂t
(11)

rearranging (11) gives× (E + ∂A

∂t
) = 0 (12)

Two constitutive relationships can be written. These are
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D = εE (13)

B = μH (14)

Equation (12) represents the infinitesimal rotation of the electric field. Since it is irrotational, it
means it can be expressed as the gradient of electric potential φ( r,t) . Hence we can write

E + ∂A

∂t
= − φ (15)

Since the magnetic and electric potentials are not uniquely defined, there is the need to impose a
constraint based on the gauge invariance of Maxwell’s equations. The constrain widely applied is
known as Lorenz condition and is written as

.A + 1

c2

∂φ
∂t

= 0 (16)

where c is the speed of light. c = εμ . ε and μ are the dielectric parameters of the medium, i.e
permittivity and permeability of space. Equation (5) can be rearrange as× H − ∂D

∂t
= J (17)

using (13), (14), and (16) in (17) we obtain

× ( × A) − 1

c2

∂
∂t

(− φ − ∂A

∂t
) = μJ V (18)

1

c2

∂2A

∂t2
− ∇2A = μJ (19)

The expressions in (20) and (21) constitute the gauge invariance of Maxwell’s equations which
leaves and changed [15] for any scalar function f(r,t) .

φ' = φ − ∂f
∂t

(20)

A
' = A + f (21)

Applying (20) and (21) to (16), we can write

.A
' + 1

c2

∂φ'

∂t
= .A + 1

c2

∂φ
∂t

− 1

c2

∂2f

∂t2
+ ∇2f (22)

Comparing (16) and (22), we have

1

c2

∂2f

∂t2
− ∇2f = .A + 1

c2

∂φ
∂t

(23)

Equation (23) is an inhomogeneous wave equation whose solution f could be used to refine A and
φ so that equation (16) is satisfied.

Therefore, (10) and (19) are wave equations for the potentials which are representative of
Maxwell’s equations. The potentials can be computed if both conduction current density and
charge density are known. In each of these two equations, the right hand side represents a
continuous source function. In image acquisition using a camera, based on Huygens’ principle,
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discrete functions are considered since any scene object is a set of point sources.

Consider a source point located on a scene object of volume V of known densities as shown in

Figure 3. On the basis of the principle of causality, it takes
R

c
seconds for the wave front

emanating from the source ′ to reach any field points r . Hence the potentials computed using
(10) and (19) are referred to as retarded potentials.

Assuming a source point of arbitrary function f(t) , (10) will take the form

1

c2

∂2φ
∂t2

− ∇2φ = f(t)δ(3)(r) (24)

Figure 3: Retarded potentials generated by a localized current/charge distribution.

where δ(3)(r) is a three-dimensional (3D) delta function. A delta function is defined only for
x = 0. The value at x = 0 is infinity.

Also, assuming the solution of (24) at a retarded time t' = t − R

c
is

φg(r,t) = f(t')
4πr

= f(t
R
c

)
4πr

(25)

Using a green’s function g(r) such that

g(r) = 1

4πr
(26)

Therefore, (25) becomes

φ(r,t) = f(t − r

c
)g(r) (27)

from (26) we obtain
g = −r̂

g

r
(28)∇2g = −δ(3)(r) (29)̂ is a unit vector in the radial direction. The differential of the numerator of (25) with respect to r

is:
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∂
∂r

f(t − r

c
) = 1

c
ḟ (30)

Also

f = −r̂
ḟ
c

(31)

∇2f = 1

c2 ̈f − 2ḟ
cr

(32)

According to [15]∇2φ = ∇2(fg) = 2 f. g + g∇2f + f∇2g (33)∇2φ = 1

c2 ̈fg − f(t − r

c
)δ(3)(r) (34)

from (27)

1

c2

∂2φ
∂t2

= 1

c2 ̈fg (35)

Therefore, (34) becomes

1

c2

∂2φ
∂t2

− ∇2φ = f(t)δ(3)(r) (36)

This means that starting with the causal solution of (25) and the use of green’s function for
electrostatic Coulomb problem, it is possible to derive the corresponding wave equation (36)
which is the same as (24). Therefore, the causal solution of (25) is correct.

For another source point at another location with the considered volume of Figure 3, becomes

r − r' . As a result of this change, equation (36) becomes

1

c2

∂2φ
∂t2

− ∇2φ = f(t)δ(3)(r − r') (37)

The causal solution of (37) therefore can be written as

φ(r,t) = f(r
',(t

R
c

))
4π(r r

') (38)

Therefore, the total source function due to all the discrete source points in the considered volume
can be obtained by performing volume integral. As such we have

f(r,t) = ∫∫∫f(r,t)δ(3)(r − r')dxdydzr' (39)

The potential φ(r,t) corresponding to the source expressed in (39) is obtained as

φ(r,t) = ∫∫∫
f(r

',(t
R
c

))
4π(r r

') dxdydzr' (40)

In conclusion, (40) is the causal solution to the general wave equation expressed in (34). Using a
similar argument, A(r,t) can be written as
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A(r,t) = ∫∫∫
f(r

',(t
R
c

))
4π(r r

') dxdydzr' (41)

This idea can be applied in order to compute the retarded potentials to the wave equations (10)

and (19) where f( r,t) = ρ(r,t)
ε

, f( r,t) = μJ(r,t) , and R = |r − r'| . i.e

φ(r,t) = ∫∫∫ ρ(r
')

4πεR
dxdydzr' (42)

A(r,t) = ∫∫∫ μJ(r
')

4πR
dxdydzr' (43)

In practice, the both conduction current density and electric charge density ρ depend on the
object to be capture by the camera.

If the source point oscillates with respect to time, then φ( ,t) = φ( )ejωt , A( r,t) = A(r)ejωt ,
ρ( r,t) = ρ(r)ejωt , J( r,t) = J(r)ejωt . Where ω is the angular frequency of the oscillation, j is the
complex component. Therefore, the retarded potentials will take to different forms as

φ(r,t) = ∫∫∫ ρ(r
')ejωtejω(t

R
c)

4πεR
dxdydzr' (44)

A(r,t) = ∫∫∫ μJ(r
')ejωtejω(t

R
c)

4πR
dxdydzr' (45)

The simplification of (44) and (45) yield

φ(r,t) = ∫∫∫ ρ(r
')e jkR

4πεR
dxdydzr' (46)

A(r,t) = ∫∫∫ μJ(r
')e jkR

4πR
dxdydzr' (47)

where k = ω
c

is referred to as the wave number.

Therefore, the magnetic and electric fields of (7) and (8) can be calculated if ( ,t) and φ(r,t) are
known. However, (8) can be made to depend only on vector potential ( ,t) with further

simplification. Re-writing Lonrenz condition and recall that c = εμ , and
∂
∂t

= jω, we can have

.A + jωεμφ = 0 (48)

making φ the subject of the formula, we get Type equation here.
φ = 1

jωεμ
.A (49)

Therefore, the electric field expressed in (8) becomes



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.4, No.6, December 2014

43

E = 1

jωεμ
( ( .A) + k2A)

E = 1

jωεμ
( × ( × A) − μJ) (50)

In electromagnetic imaging problems, interest focuses on the behaviour of the scattered EM
wavefield generated by variations in the material parameters ε, μ, and σ. σ is the conductivity of
the medium. Also

H = 1

μ
× A (51)

In optical imaging, the camera sensor is considered to be located in the fields that have radiated
away from their current sources (scene objects). This is because they carry large power. Such far-

fields have to satisfy the condition r ≫ r' or r > l. Where l is the extent of the current
distribution in the source. The situation usually obtained in practice and depicted in Figure 4 is
that at far distances the sides PP' and PQ of the triangle PQP' are almost equal.

Figure 4: Far-field approximation

Applying cosine rule to triangle PQP' we get

R = |r − r'| = (r2 r'2 2rr'cosψ)1

2
(52)

when r is factored out of the square root, we can write

R = r
(1 2

r'

r
cosψ r'

2

r2
)1

2
(53)

Considering the fact that r ≫ r' and applying Binomial approximation to (53), we have the
reduced form as

R = r(1 − 1

2
(2

r'

r
cosψ)) (54)

with further simplification, and recognizing that the dot product . of two vectors and
that are positioned with respect to each other at an angle θ between them is |M||N|cosθ , we get

R = r − r'cosψ = r − r̂.r' ≃ r (55)
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We now substitute the approximate form of R (the distance from a volume element to the
point of observation) in the denominator part of (47). The approximation allows for component
terms that constitute the waves that are propagated towards the camera sensor. Hence we obtain

A(r,t) = ∫∫∫ μJ(r
')e jk(r r̂.r')

4πr
dxdydzr' (56)

rearranging (56) we getA(r,t) = μe jkr4πr ∫∫∫ J(r')ejkr̂.r'dxdydzr' (57)

To use the camera aperture as field source of the radiated fields, a variation of the Huygens-
Fresnel principle needs to be used. This principle states that the points on each wavefront become
the sources of secondary spherical waves propagating outwards and whose superposition
generates the next wavefront. Therefore, rectangular aperture will be considered.

3.1. RECTANGULAR APERTURE

In [16, 17, 18], it is thought that an aperture can be a source. We are now interested in the field
distribution emanating from it. If we consider an infinitesimally small camera aperture (pinhole)
as shown in Figure 5 to be a source of surface , with the surface current density distribution Js ,
then (57) can be written as

Figure 5: Radiating surface element

dA(r,t) = μe jkr

4πr
∫∫ Js(r')ejkr̂.r'

dSr' (58)

Jsis expressed as

Js = n̂ × Hy = Ex

η
r' ̂ (59)

where η is the wave impedance. Ex and Hy are the electric and magnetic fields in the x and y
directions.

The wave exiting the aperture is spherical. In the region farther from the aperture, the field
distribution can be approximated as parabolic wave. This is referred to as the Fresnel region. As
the waves travel even further away from the aperture the spherical waves become approximately
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plane waves. Usually the camera lens will bring the propagating light in the far-field (Fraunhofer
diffraction region) to a focus on the sensor to form the image.

To model the far-field, the solutions of Maxwell’s equations and the directional patterns of a
source are best described in spherical coordinates since the fields radiated by sources of finite
dimensions are spherical. Therefore, the magnetic vector potential is expressed in component
form as

Ar = sinθcosϕAx
Aθ = cosθcosϕAx

Aϕ = −sinϕAx

(60)

× A = r̂
1

rsinθ
∂ sinθAϕ

∂θ
− ∂Aθ

∂ϕ
+ θ 1

r

1

sinθ
∂Ar

∂ϕ
− ∂ rAϕ

∂r
+ ϕ̂ 1

r
(∂(rAθ)

∂r
− ∂Ar

∂r
) (61)

× A = ∂Aϕ∂r θ̂ + ∂Aθ∂r (62)

Using (50) under the assumption of free-space (points removed from source, Ĵ = 0 ), [19] the
electric field components in the θ and ϕ directions can be obtained as

Eθ = jExe jkr

2λr
(cosθ + 1)cosϕdS (63)

Eθ = −sinϕ jExe jkr

2λr
(cosθ + 1)dS (64)

Hθ = Eϕ

η
Hϕ = Eθ

η
Hr = 0Er = 0 (65)

For a camera aperture of dimensions a and b in the x-y plane shown in Figure 6, the radiated
electric is the summation of all the contributions by the infinitesimally small sources within the
dimension of the aperture. Therefore we can write

Eθ = jExe jkr

2λr
(cosθ + 1)∫ m

m
∫ n
n

e jkr̂.r'
dx'dy' (66)

where m = b

2
, n = a

2
, and

r̂.r' = (cosϕsinθ)x' + (sinϕsinθ)y' (67)
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Figure 6: Radiation aperture of a by b dimension.

Therefore, (66) becomes

Eθ = (sin(1
2
kbsinθsinϕ)

1
2
kbsinθsinϕ

)(sin(1
2
kasinθcosϕ)

1
2
kasinθcosϕ

)sinϕ(1 + cosθ) jabEx

2λr
e jkr (68)

where λ is the wavelength. Similarly

Eϕ = (sin(1
2
kbsinθsinϕ)

1
2
kbsinθsinϕ

)(sin(1
2
kasinθcosϕ)

1
2
kasinθcosϕ

)cosϕ(1 + cosθ) jabEx

2λr
e jkr ` (69)

According to [16], Eθ and Eϕ only exist in the yz-plane (ϕ = π
2
) and xz-plane (ϕ = 0)

respectively. It is further stated that significant field is generated at small angles only if the
aperture is large such that a and b ≫ λ. This means cosθ ≈ 1 and sinθ = θ. Therefore, the field
pattern yz-plane (E − plane) becomes

Er = Eϕ = 0, Eθ = (sin(1
2
kbθ)

1
2
kbθ

) jabEx

λr
e jkr (70)

for the xz-plane, i.e (H - plane), we have

Er = Eθ = 0, Eϕ = (sin(1
2
kaθ)

1
2
kaθ

) jabEx

λr
e jkr (71)

Equation (70) and (71) describe the 3D electric field distribution that is focused on the camera
sensor.

Therefore, the intensity distribution I(x,y) recorded on the camera sensor is

I(x,y) = |Eθ|2 = E
x2(λr)2 |ab((sin(1

2
kaθ)

1
2
kaθ

)2 + (sin(1
2
kbθ)

1
2
kbθ

)2)|2 (72)

Equation (72) expresses the diffraction ability of the aperture. the consequence of this is that
different scene points are made to spread out.

Experiment has shown that because camera sensors are not perfect, a scene point will always be
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blurred as shown in Figure 7. If a lens produces the same blurring effect irrespective of the
position of the scene point, then the lens is said to be linear shift-invariant. Therefore, the blur
point can be considered as the point PSF of the lens. The challenge now is how to obtain this
PSF.

Figure 7: The image of a scene point is not a perfect point on the camera sensor.

From (3.70), it is observed that the I(x,y) is directly proportional to PSF. We extract PSF as

PSF = ab|((sin(1
2
kaθ)

1
2
kaθ

)2 + (sin(1
2
kbθ)

1
2
kbθ

)2)|2 (73)

Consider a scene as a set of points with different intensity value represented by p(x,y) . If the
image of p(x,y) is P(x,y) , then the image formation process can be expressed in convolution
form as

P(x,y) = PSF(x,y) ∗ p(x,y) (74)

Writing (74) in frequency domain we have

Fouriertransform[P(x,y)] = Fouriertransform[PSF(x,y) ∗ p(x,y)] (75)

Hence the Fourier transform of PSF is the optical transfer function (OTF) of the camera. It is
expressed as

OTF = Fouriertransform[PSF(x,y)] (76)

In the normalized form, the OTF is referred to as modulation transfer function (MTF). This is an
important parameter used for performance characterization of cameras and images as shown in
Figure 8(a).

(a) (b)

Figure 8: (a) Testing of cameras: http://www.edmundoptics.com/technical-resources-center/, (b) circular
aperture.

http://www.edmundoptics.com/technical-resources-center/
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4. SIMULATION RESULTS AND DISCUSSION

A 3D plot of the field patterns can be seen in Figure 9. It can be observed that because the
dimensions of the aperture are one wavelength, there are no sidelobes. However, when the
aperture dimensions are a multiple of one wavelength, multiple sidelobes begin to appear. The
reason for this observation can be found in (70) and (71). The E-plane field distribution is a
function of the dimension b of the aperture while for the H-plane it is dependent on a . Therefore,
the number of sidelobes increases as the aperture dimension increases [19].

(a) = = (b) = 2 , =

(c) a = 5λ, b = 4λ (d) a = 8λ,b = 4λ

(e) a = 8λ, b = λ (f) a = 7λ,b = 2.5λ

Figure 9: 3D plot of radiation pattern focused on camera sensor based on the use of rectangular aperture.
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Also a plot of the field strength against theta θ, for some aperture dimensions is give in Figure 10
and 11.

(a) = = = 0 (b) = = = 90

(c) = = = 0: 360 (d) = 3 , = = 0

(e) = 3 , = = 90 (f) = 3 , = = 0: 360
Figure 10: 2D plot of field strength against theta.
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(a) = 4 , = 8 = 0 (b) = 4 , = 8 = 90

(c) = 4 , = 8 = 0: 360 (d) = 8 , = = 0

(e) = 8 , = = 90 (f) = 8 , = = 0: 360
Figure 11: 2D plot of field strength against theta.
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5. CONCLUSION

An important camera and image quality parameter known as MTF is the basis of the modelling
presented in this chapter. This has been achieved through wave optics consideration of camera
image formation. It is experimentally observed that the number of sidelobes increases as the
aperture dimension increases. The sidelobe is a measure of the spread out of an imaged point.
Therefore, a high quality image of a point would be produced when the camera aperture is one
wavelength. A measure of the ability, in frequency domain, of a camera to produce an exact
replica of a point is referred to as MTF. Consequently, this reflects in the overall quality of the
image of an object which is usually a set of points. Also, MTF is use for objective quality
assessment of both cameras and images.
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